--- license: mit language: - en metrics: - accuracy base_model: - google-bert/bert-base-uncased pipeline_tag: text-classification tags: - text-classification - spam - english --- # Fine-tuned BERT-base-uncased pre-trained model to classify spam SMS. Check Github for Eval Results logs: https://github.com/fzn0x/bert-sms-classification My second project in Natural Language Processing (NLP), where I fine-tuned a bert-base-uncased model to classify spam SMS. This is huge improvements from https://github.com/fzn0x/bert-indonesian-english-hate-comments. How to use this model? ```py from transformers import BertTokenizer, BertForSequenceClassification import torch tokenizer = BertTokenizer.from_pretrained('fzn0x/bert-spam-classification-model') model = BertForSequenceClassification.from_pretrained('fzn0x/bert-spam-classification-model') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() def model_predict(text: str): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits prediction = torch.argmax(logits, dim=1).item() return 'SPAM' if prediction == 1 else 'HAM' def predict(): text = "Hello, do you know with this crypto you can be rich? contact us in 88888" predicted_label = model_predict(text) print(f"1. Predicted class: {predicted_label}") # EXPECT: SPAM text = "Help me richard!" predicted_label = model_predict(text) print(f"2. Predicted class: {predicted_label}") # EXPECT: HAM text = "You can buy loopstation for 100$, try buyloopstation.com" predicted_label = model_predict(text) print(f"3. Predicted class: {predicted_label}") # EXPECT: SPAM text = "Mate, I try to contact your phone, where are you?" predicted_label = model_predict(text) print(f"4. Predicted class: {predicted_label}") # EXPECT: HAM if __name__ == "__main__": predict() ``` ## 📚 Citations If you use this repository or its ideas, please cite the following: See [`citations.bib`](./citations.bib) for full BibTeX entries. - Wolf et al., *Transformers: State-of-the-Art Natural Language Processing*, EMNLP 2020. [ACL Anthology](https://www.aclweb.org/anthology/2020.emnlp-demos.6) - Pedregosa et al., *Scikit-learn: Machine Learning in Python*, JMLR 2011. - Almeida & Gómez Hidalgo, *SMS Spam Collection v.1*, UCI Machine Learning Repository (2011). [Kaggle Link](https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset) ## 🧠 Credits and Libraries Used - [Hugging Face Transformers](https://github.com/huggingface/transformers) – model, tokenizer, and training utilities - [scikit-learn](https://scikit-learn.org/stable/) – metrics and preprocessing - Logging silencing inspired by Hugging Face GitHub discussions - Dataset from [UCI SMS Spam Collection](https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset) - Inspiration from [Kaggle Notebook by Suyash Khare](https://www.kaggle.com/code/suyashkhare/naive-bayes)