Upload main.py
Browse files
main.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import mss
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import time
|
7 |
+
import glob
|
8 |
+
from ultralytics import YOLO
|
9 |
+
from openpyxl import Workbook
|
10 |
+
|
11 |
+
# Ensure necessary directories exist
|
12 |
+
save_path = "/home/ml/ML/ml_backup/arjun/"
|
13 |
+
screenshots_path = os.path.join(save_path, "screenshots")
|
14 |
+
detect_path = os.path.join(save_path, "runs/detect/")
|
15 |
+
|
16 |
+
os.makedirs(save_path, exist_ok=True)
|
17 |
+
os.makedirs(screenshots_path, exist_ok=True)
|
18 |
+
|
19 |
+
# Define pattern classes
|
20 |
+
classes = ['Head and shoulders bottom', 'Head and shoulders top', 'M_Head', 'StockLine', 'Triangle', 'W_Bottom']
|
21 |
+
|
22 |
+
# Load YOLOv8 model
|
23 |
+
model_path = "/home/ml/ML/ml_backup/arjun/best111.pt"
|
24 |
+
if not os.path.exists(model_path):
|
25 |
+
raise FileNotFoundError(f"Model file not found: {model_path}")
|
26 |
+
model = YOLO(model_path)
|
27 |
+
|
28 |
+
# Define screen capture region
|
29 |
+
monitor = {"top": 0, "left": 683, "width": 683, "height": 768}
|
30 |
+
|
31 |
+
# Create an Excel file
|
32 |
+
excel_file = os.path.join(save_path, "classification_results.xlsx")
|
33 |
+
wb = Workbook()
|
34 |
+
ws = wb.active
|
35 |
+
ws.append(["Timestamp", "Predicted Image Path", "Label"]) # Headers
|
36 |
+
|
37 |
+
# Initialize video writer
|
38 |
+
video_path = os.path.join(save_path, "annotated_video.mp4")
|
39 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
40 |
+
fps = 0.5 # Adjust frames per second as needed
|
41 |
+
video_writer = None
|
42 |
+
|
43 |
+
# Start capturing
|
44 |
+
with mss.mss() as sct:
|
45 |
+
start_time = time.time()
|
46 |
+
last_capture_time = start_time # Track the last capture time
|
47 |
+
frame_count = 0
|
48 |
+
|
49 |
+
while True:
|
50 |
+
# Continuously capture the screen
|
51 |
+
sct_img = sct.grab(monitor)
|
52 |
+
img = np.array(sct_img)
|
53 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
|
54 |
+
|
55 |
+
# Check if 60 seconds have passed since last YOLO prediction
|
56 |
+
current_time = time.time()
|
57 |
+
if current_time - last_capture_time >= 60:
|
58 |
+
# Take screenshot for YOLO prediction
|
59 |
+
timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
|
60 |
+
image_name = f"predicted_images_{timestamp}_{frame_count}.png"
|
61 |
+
image_path = os.path.join(screenshots_path, image_name)
|
62 |
+
cv2.imwrite(image_path, img)
|
63 |
+
|
64 |
+
# Run YOLO model and get save directory
|
65 |
+
results = model(image_path, save=True)
|
66 |
+
predict_path = results[0].save_dir if results else None
|
67 |
+
|
68 |
+
# Find the latest annotated image inside predict_path
|
69 |
+
if predict_path and os.path.exists(predict_path):
|
70 |
+
annotated_images = sorted(glob.glob(os.path.join(predict_path, "*.jpg")), key=os.path.getmtime, reverse=True)
|
71 |
+
final_image_path = annotated_images[0] if annotated_images else image_path
|
72 |
+
else:
|
73 |
+
final_image_path = image_path # Fallback to original image
|
74 |
+
|
75 |
+
# Determine predicted label
|
76 |
+
if results and results[0].boxes:
|
77 |
+
class_indices = results[0].boxes.cls.tolist()
|
78 |
+
predicted_label = classes[int(class_indices[0])]
|
79 |
+
else:
|
80 |
+
predicted_label = "No pattern detected"
|
81 |
+
|
82 |
+
# Insert data into Excel (store path instead of image)
|
83 |
+
ws.append([timestamp, final_image_path, predicted_label])
|
84 |
+
|
85 |
+
# Read the image for video processing
|
86 |
+
annotated_img = cv2.imread(final_image_path)
|
87 |
+
if annotated_img is not None:
|
88 |
+
# Add timestamp and label text to the image
|
89 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
90 |
+
cv2.putText(annotated_img, f"{timestamp}", (10, 30), font, 0.7, (0, 255, 0), 2, cv2.LINE_AA)
|
91 |
+
cv2.putText(annotated_img, f"{predicted_label}", (10, 60), font, 0.7, (0, 255, 255), 2, cv2.LINE_AA)
|
92 |
+
|
93 |
+
# Initialize video writer if not already initialized
|
94 |
+
if video_writer is None:
|
95 |
+
height, width, layers = annotated_img.shape
|
96 |
+
video_writer = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
|
97 |
+
|
98 |
+
video_writer.write(annotated_img)
|
99 |
+
|
100 |
+
print(f"Frame {frame_count}: {final_image_path} -> {predicted_label}")
|
101 |
+
frame_count += 1
|
102 |
+
|
103 |
+
# Update the last capture time
|
104 |
+
last_capture_time = current_time
|
105 |
+
|
106 |
+
# Save the Excel file periodically
|
107 |
+
wb.save(excel_file)
|
108 |
+
|
109 |
+
# If you want to continuously display the screen, you can add this line
|
110 |
+
cv2.imshow("Screen Capture", img)
|
111 |
+
|
112 |
+
# Break if 'q' is pressed (you can exit the loop this way)
|
113 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
114 |
+
break
|
115 |
+
|
116 |
+
# Release video writer
|
117 |
+
if video_writer is not None:
|
118 |
+
video_writer.release()
|
119 |
+
print(f"Video saved at {video_path}")
|
120 |
+
|
121 |
+
# Remove all files in screenshots directory
|
122 |
+
for file in os.scandir(screenshots_path):
|
123 |
+
os.remove(file.path)
|
124 |
+
os.rmdir(screenshots_path)
|
125 |
+
|
126 |
+
print(f"Results saved to {excel_file}")
|
127 |
+
|
128 |
+
# Close OpenCV window
|
129 |
+
cv2.destroyAllWindows()
|