--- license: apache-2.0 language: - en library_name: transformers tags: - Reasoning - React - COT - MachineLearning - DeepLearning - FineTuning - NLP - AIResearch --- # Think-and-Code-React This is a fine-tuned Qwen model which is designed to provide frontend development solutions with enhanced reasoning capabilities on ReactJS. It can writes code after reasoning task then provide some best prectice after ansering. ## Table of Contents 1. [Problem Statement](#problem-statement) 2. [Solution](#solution) 3. [How It Works](#how-it-works) 4. [How to Use This Model](#how-to-use-this-model) 5. [Future Developments](#future-developments) 6. [License](#license) 7. [Model Card Contact](#model-card-contact) ## Problem Statement Coading is a challenging task for small models. small models as not enough capable for writing code with heigh accuracy and reasoning whare React is widely used javascript liberary and most time we found that small LLM are not very specific to programming: ## Solution Training LLM for React specific dataset and enable reasoning task. This LLM provides us cold start with React based LLM whare it does understand many react concept.: 1. Understands user's query 2. Evaluate Everything in \ tag 3. Provide answer in \ 4. Additionally provide Best Prectices in \ ## How It Works 1. **Data Collection**: The model is trained on 1000's of react specific senerios. it does provide us cold start with good reasoning capabilities 2. **Feature Extraction**: Upscalling it using RL to enable model with heigh level of accuracy and better output for reasoning. 3. **Machine Learning**: A sophisticated machine learning algorithm is employed to learn the heigh quality code in React Specific code and can be expand to all freamwork. ## How to Use This Model ### Prerequisites - Python 3.7 or higher - Required libraries (install via pip): ```bash pip install torch transformers ``` ### Installation 1. Clone this repository: ```bash git clone https://huggingface.co/foduucom/Think-and-Code-React cd Think-and-Code-React ``` ### Usage 1. Import the necessary libraries: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM ``` 2. Setting up models: ```python model_path = "./Path-to-llm-folder" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) ``` 3. Setting up AI Response: ```python def generate_text(prompt, max_length=2000): inputs = tokenizer(prompt, return_tensors="pt").to(device) output = model.generate( **inputs, do_sample=True, temperature=0.7 ) return tokenizer.decode(output[0], skip_special_tokens=True) ``` 4. Using LLM: ```python prompt = "Write a code in react for calling api to server at https://example.com/test" generated_text = generate_text(prompt) print(generated_text) ``` ## Future Developments This is a cold start LLM and can be enhance it's capabalities using RL so that this LLM perform more better. Currently we have found ## Model Card Contact For inquiries and contributions, please contact us at info@foduu.com. ```bibtex @ModelCard{ author = {Nehul Agrawal, Priyal Mehta and Ayush Panday}, title = {Think and Code in React}, year = {2025} } ```