--- language: - en base_model: - Qwen/Qwen2.5-7B-Instruct library_name: transformers --- ## Introduction FLock Web3 Agent Model is a specialized LLM designed to address complex queries in the Web3 ecosystem, with a focus on DeFi, blockchain interoperability, on-chain analytics, and etc.. The model excels in function-calling reasoning, enabling it to break down intricate user requests into actionable steps, interact with external APIs, and provide data-driven insights for Web3 applications. It is tailored for users ranging from developers and researchers to investors navigating the decentralized landscape. ## Requirements We advise you to use the latest version of `transformers`. ## Quickstart Given a query and a list of available tools. The model generate function calls using the provided tools to respond the query correctly. **Example query and tools format** ```python input_example= { "query": "Track crosschain message verification, implement timeout recovery procedures.", "tools": [ {"type": "function", "function": {"name": "track_crosschain_message", "description": "Track the status of a crosschain message", "parameters": {"type": "object", "properties": {"message_id": {"type": "string"}}}}}, {"type": "function", "function": {"name": "schedule_timeout_check", "description": "Schedule a timeout check for a message", "parameters": {"type": "object", "properties": {"message_id": {"type": "string"}, "timeout": {"type": "integer"}}}}} ] } ``` **Function calling generation** ```python from transformers import AutoModelForCausalLM, AutoTokenizer import json model_name = "flock-io/Flock_Web3_Agent_Model" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) messages = [ {"role": "system", "content": "You are a helpful assistant with access to the following functions. Use them if required -" + json.dumps(input_example["tools"], ensure_ascii=False)}, {"role": "user", "content": input_example["query"]} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=3000 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` The output text is in the string format ``` [ {"name": "track_crosschain_message", "arguments": {"message_id": "msg12345"}}, {"name": "schedule_timeout_check", "arguments": {"message_id": "msg12345", "timeout": "30"}} ] ```