import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification,tokenzir from scipy.special import softmax # Load the fine-tuned model and tokenizer model_dir = "./" tokenizer = AutoTokenizer.from_pretrained(model_dir) model = AutoModelForSequenceClassification.from_pretrained(model_dir) # Create a Streamlit app st.title('Sentiment Analysis with Fine Tuned Model') st.write('Enter some text ') text_input = st.text_input('Enter text here') if st.button('Submit'): # Tokenize the text inputs = tokenizer(text_input, return_tensors="pt") # Perform prediction output = model(**inputs) scores = output[0][0].detach().numpy() scores = softmax(scores) scores_dict = { 'Negative': scores[0], 'Neutral': scores[1], 'Positive': scores[2] } max_key = max(scores_dict, key=scores_dict.get) # Get the maximum value sentiment = str(scores_dict[max_key]) # Display the results st.write(f'Sentiment is {data["sentiment"]}') st.write(f'Score is {max_key}')