faizack commited on
Commit
eebd499
·
verified ·
1 Parent(s): 7e1b647
Files changed (1) hide show
  1. app.py +41 -0
app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification,tokenzir
3
+ from scipy.special import softmax
4
+
5
+
6
+ # Load the fine-tuned model and tokenizer
7
+ model_dir = "./"
8
+ tokenizer = AutoTokenizer.from_pretrained(model_dir)
9
+ model = AutoModelForSequenceClassification.from_pretrained(model_dir)
10
+
11
+ # Create a Streamlit app
12
+ st.title('Sentiment Analysis with Fine Tuned Model')
13
+ st.write('Enter some text ')
14
+
15
+
16
+
17
+ text_input = st.text_input('Enter text here')
18
+
19
+ if st.button('Submit'):
20
+
21
+ # Tokenize the text
22
+ inputs = tokenizer(text_input, return_tensors="pt")
23
+
24
+ # Perform prediction
25
+ output = model(**inputs)
26
+
27
+ scores = output[0][0].detach().numpy()
28
+ scores = softmax(scores)
29
+ scores_dict = {
30
+ 'Negative': scores[0],
31
+ 'Neutral': scores[1],
32
+ 'Positive': scores[2]
33
+ }
34
+ max_key = max(scores_dict, key=scores_dict.get)
35
+
36
+ # Get the maximum value
37
+ sentiment = str(scores_dict[max_key])
38
+
39
+ # Display the results
40
+ st.write(f'Sentiment is {data["sentiment"]}')
41
+ st.write(f'Score is {max_key}')