added app
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification,tokenzir
|
3 |
+
from scipy.special import softmax
|
4 |
+
|
5 |
+
|
6 |
+
# Load the fine-tuned model and tokenizer
|
7 |
+
model_dir = "./"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_dir)
|
10 |
+
|
11 |
+
# Create a Streamlit app
|
12 |
+
st.title('Sentiment Analysis with Fine Tuned Model')
|
13 |
+
st.write('Enter some text ')
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
text_input = st.text_input('Enter text here')
|
18 |
+
|
19 |
+
if st.button('Submit'):
|
20 |
+
|
21 |
+
# Tokenize the text
|
22 |
+
inputs = tokenizer(text_input, return_tensors="pt")
|
23 |
+
|
24 |
+
# Perform prediction
|
25 |
+
output = model(**inputs)
|
26 |
+
|
27 |
+
scores = output[0][0].detach().numpy()
|
28 |
+
scores = softmax(scores)
|
29 |
+
scores_dict = {
|
30 |
+
'Negative': scores[0],
|
31 |
+
'Neutral': scores[1],
|
32 |
+
'Positive': scores[2]
|
33 |
+
}
|
34 |
+
max_key = max(scores_dict, key=scores_dict.get)
|
35 |
+
|
36 |
+
# Get the maximum value
|
37 |
+
sentiment = str(scores_dict[max_key])
|
38 |
+
|
39 |
+
# Display the results
|
40 |
+
st.write(f'Sentiment is {data["sentiment"]}')
|
41 |
+
st.write(f'Score is {max_key}')
|