wav2vec2-large-lv60_phoneme-timit_english_timit-4k

This model is a fine-tuned version of facebook/wav2vec2-large-lv60 on the TIMIT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3354
  • Phone Error Rate: 0.1053 (10.53%)

Intended uses & limitations

  • Phoneme recognition based on the TIMIT phoneme set

Phoneme-wise errors

Vowel Phonemes

Vowel confusion matrix

Stop Phonemes

Stop_consonant confusion matrix

Affricate Phonemes

Affricate_consonant confusion matrix

Fricative Phonemes

Fricative_consonant confusion matrix

Nasal Phonemes

Nasal_consonant confusion matrix

Semivowels/Glide Phonemes

Vowel confusion matrix

Training and evaluation data

  • Train: TIMIT train dataset (4620 samples)
  • Test: TIMIT test dataset (1680 samples)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss PER
7.9352 1.04 300 3.7710 0.9617
2.7874 2.08 600 0.9080 0.1929
0.8205 3.11 900 0.4670 0.1492
0.5504 4.15 1200 0.4025 0.1408
0.4632 5.19 1500 0.3696 0.1374
0.4148 6.23 1800 0.3519 0.1343
0.3873 7.27 2100 0.3419 0.1329
0.3695 8.3 2400 0.3368 0.1317
0.3531 9.34 2700 0.3406 0.1320
0.3507 10.38 3000 0.3354 0.1315

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
103
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for excalibur12/wav2vec2-large-lv60_phoneme-timit_english_timit-4k

Finetuned
(8)
this model

Dataset used to train excalibur12/wav2vec2-large-lv60_phoneme-timit_english_timit-4k

Evaluation results