File size: 2,735 Bytes
8583887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
import torch.nn as nn
from transformers import CLIPTextModel, RobertaModel, CLIPVisionModel
from timm import create_model
EMBEDDING_DIM = 512
class ImageEncoder(nn.Module):
    def __init__(self):
        super(ImageEncoder, self).__init__()
        # Load the Swin Transformer with features_only=True
        self.swin = create_model("swin_base_patch4_window7_224", pretrained=True, features_only=True)
        for param in self.swin.parameters():
            param.requires_grad = True
        # Get the feature size of the final stage
        self.swin_output_dim = self.swin.feature_info.channels()[-1]  # Last stage: 1024 channels

        # Define FC layer
        self.fc1 = nn.Linear(self.swin_output_dim * 7 * 7, EMBEDDING_DIM)  # Flattened input size
        nn.init.xavier_uniform_(self.fc1.weight)
        nn.init.zeros_(self.fc1.bias)


    def forward(self, x):
        # Extract features from Swin
        swin_features = self.swin(x)[-1]  # Use the last stage feature map (e.g., [B, 1024, 7, 7])

        # Flatten feature map
        swin_features = swin_features.view(swin_features.size(0), -1)  # Shape: (B, 1024*7*7)

        # Pass through FC layer
        output = self.fc1(swin_features)  # Shape: (B, embedding_dim)
        return output

from transformers import RobertaModel

class RobertaEncoder(nn.Module):
    def __init__(self, roberta_model_path="roberta-base"):
        super(RobertaEncoder, self).__init__()
        # Load pre-trained RoBERTa model
        self.roberta = RobertaModel.from_pretrained(roberta_model_path)

        # Add a linear projection layer to reduce dimensionality
        self.projection = nn.Linear(self.roberta.config.hidden_size, EMBEDDING_DIM)

        # Initialize the projection layer weights
        nn.init.xavier_uniform_(self.projection.weight)
        nn.init.zeros_(self.projection.bias)

        # Allow fine-tuning of the RoBERTa model
        for param in self.roberta.parameters():
            param.requires_grad = True

    def forward(self, input_ids, attention_mask):
        """

        Forward pass through RoBERTa.

        Args:

            input_ids: Tensor of shape (batch_size, seq_length)

            attention_mask: Tensor of shape (batch_size, seq_length)



        Returns:

            Embedding: Tensor of shape (batch_size, EMBEDDING_DIM)

        """
        roberta_output = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
        cls_token = roberta_output.last_hidden_state[:, 0, :]  # Use CLS token
        pooled_output = torch.mean(roberta_output.last_hidden_state, dim=1)  # Mean pooling

        return self.projection(cls_token+pooled_output)