import xgboost as xgb | |
import json | |
import numpy as np | |
def model_fn(model_dir): | |
# Load the model from Hugging Face Hub | |
model = xgb.Booster() | |
model.load_model(f"{model_dir}/xgboost_model.json") | |
return model | |
def predict_fn(data, model): | |
# Convert input data into DMatrix | |
dmatrix = xgb.DMatrix(np.array(data['inputs'])) | |
prediction = model.predict(dmatrix) | |
return prediction.tolist() | |
if __name__ == "__main__": | |
# Example of testing locally | |
model = model_fn(".") | |
sample_data = {"inputs": [[1, 2, 3], [4, 5, 6]]} # Replace with your input features | |
predictions = predict_fn(sample_data, model) | |
print(predictions) | |