File size: 26,667 Bytes
b410583 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
import os
import torch
import logging
import argparse
import math
import numpy as np
from tqdm import tqdm
from itertools import cycle
import multiprocessing
import time
import sys
import pdb
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from transformers import AdamW, get_linear_schedule_with_warmup
from models import build_or_load_gen_model
from evaluator import smooth_bleu
from evaluator.CodeBLEU import calc_code_bleu
from evaluator.bleu import _bleu
from utils import get_elapse_time, load_and_cache_multi_gen_data
from configs import add_args, set_seed, set_dist
cpu_cont = multiprocessing.cpu_count()
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
WORKER_NUM = 0
def get_max_trg_len_by_task(task, sub_task):
if task == 'summarize':
max_target_length = 128
elif task == 'translate':
max_target_length = 256
elif task == 'refine':
if sub_task == 'small':
max_target_length = 120
else:
max_target_length = 240
elif task == 'concode':
max_target_length = 150
elif task == 'defect':
max_target_length = 3
return max_target_length
def get_bs(cur_task, model_tag):
task = cur_task.split('_')[0]
sub_task = cur_task.split('_')[-1]
if 'codet5_small' in model_tag:
bs = 32
if task == 'summarize' or task == 'translate' or (task == 'refine' and sub_task == 'small'):
bs = 64
else:
# codet5_base
bs = 28
if task == 'translate':
bs = 25
elif task == 'summarize':
bs = 40
return bs
def eval_bleu(args, eval_data, eval_examples, model, tokenizer, split_tag, cur_task, criteria):
eval_sampler = SequentialSampler(eval_data)
if args.data_num == -1:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size,
num_workers=4, pin_memory=True)
else:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
task = cur_task.split('_')[0]
sub_task = cur_task.split('_')[-1]
max_target_length = get_max_trg_len_by_task(task, sub_task)
model.eval()
pred_ids = []
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Eval bleu for {} set".format(split_tag)):
source_ids = batch[0].to(args.device)
source_mask = source_ids.ne(tokenizer.pad_token_id)
with torch.no_grad():
if args.model_type == 'roberta':
preds = model(source_ids=source_ids, source_mask=source_mask)
top_preds = [pred[0].cpu().numpy() for pred in preds]
else:
preds = model.generate(source_ids,
attention_mask=source_mask,
use_cache=True,
num_beams=5,
max_length=max_target_length, # length_penalty=0.6,
early_stopping=task == 'summarize')
top_preds = list(preds.cpu().numpy())
pred_ids.extend(top_preds)
pred_nls = [tokenizer.decode(id, skip_special_tokens=True, clean_up_tokenization_spaces=False) for id in pred_ids]
if task == 'defect':
target_dict = {0: 'false', 1: 'true'}
golds = [target_dict[ex.target] for ex in eval_examples]
eval_acc = np.mean([int(p == g) for p, g in zip(pred_nls, golds)])
result = {'em': eval_acc, 'bleu': 0, 'codebleu': 0}
else:
dev_accs = []
predictions = []
res_dir = os.path.join(args.res_dir, cur_task)
if not os.path.exists(res_dir):
os.makedirs(res_dir)
output_fn = os.path.join(res_dir, "test_{}.output".format(criteria))
gold_fn = os.path.join(res_dir, "test_{}.gold".format(criteria))
with open(output_fn, 'w') as f, open(gold_fn, 'w') as f1:
for pred_nl, gold in zip(pred_nls, eval_examples):
dev_accs.append(pred_nl.strip() == gold.target.strip())
if task == 'summarize':
predictions.append(str(gold.idx) + '\t' + pred_nl)
f.write(str(gold.idx) + '\t' + pred_nl.strip() + '\n')
f1.write(str(gold.idx) + '\t' + gold.target.strip() + '\n')
else:
f.write(pred_nl.strip() + '\n')
f1.write(gold.target.strip() + '\n')
try:
if task == 'summarize':
(goldMap, predictionMap) = smooth_bleu.computeMaps(predictions, gold_fn)
bleu = round(smooth_bleu.bleuFromMaps(goldMap, predictionMap)[0], 2)
else:
bleu = round(_bleu(gold_fn, output_fn), 2)
if split_tag == 'test':
if task in ['summarize', 'search']:
cur_lang = sub_task
elif task in ['refine', 'concode', 'clone']:
cur_lang = 'java'
elif task == 'defect':
cur_lang = 'c'
elif task == 'translate':
cur_lang = 'c_sharp' if sub_task == 'java-cs' else 'java'
codebleu = calc_code_bleu.get_codebleu(gold_fn, output_fn, cur_lang)
except:
bleu = 0.0
codebleu = 0.0
result = {}
em = np.mean(dev_accs) * 100
result['em'] = em
result['bleu'] = bleu
if not args.task == 'summarize' and split_tag == 'test':
result['codebleu'] = codebleu * 100
logger.info("***** Eval results [%s] *****", cur_task)
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(round(result[key], 4)))
return result
def main():
parser = argparse.ArgumentParser()
args = add_args(parser)
logger.info(args)
t0 = time.time()
set_dist(args)
set_seed(args)
config, model, tokenizer = build_or_load_gen_model(args)
model.to(args.device)
if args.n_gpu > 1:
# for DataParallel
model = torch.nn.DataParallel(model)
pool = multiprocessing.Pool(args.cpu_cont)
fa = open(os.path.join(args.output_dir, 'summary.log'), 'a+')
fa_dict = {}
if args.do_train:
if args.local_rank in [-1, 0] and args.data_num == -1:
summary_fn = './tensorboard/{}'.format('/'.join(args.output_dir.split('/')[1:]))
tb_writer = SummaryWriter(summary_fn)
# Prepare training data loader
train_examples_data_dict = load_and_cache_multi_gen_data(args, pool, tokenizer, 'train', is_sample=False)
train_data_list = [v[1] for k, v in train_examples_data_dict.items()]
all_tasks = [k for k, v in train_examples_data_dict.items()]
total_train_data_num = sum([len(v[0]) for k, v in train_examples_data_dict.items()])
for cur_task in all_tasks:
summary_dir = os.path.join(args.output_dir, 'summary')
if not os.path.exists(summary_dir):
os.makedirs(summary_dir)
fa_dict[cur_task] = open(os.path.join(summary_dir, '{}_summary.log'.format(cur_task)), 'a+')
train_dataloader_dict = dict()
for train_data, cur_task in zip(train_data_list, all_tasks):
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
if args.data_num == -1:
train_dataloader = DataLoader(train_data, sampler=train_sampler,
batch_size=get_bs(cur_task, args.model_name_or_path),
num_workers=WORKER_NUM, pin_memory=True)
else:
train_dataloader = DataLoader(train_data, sampler=train_sampler,
batch_size=get_bs(cur_task, args.model_name_or_path))
train_dataloader_dict[cur_task] = cycle(train_dataloader)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=args.max_steps)
# Start training
logger.info("***** Running training *****")
logger.info(" Total train data num = %d", total_train_data_num)
logger.info(" Max step = %d, Save step = %d", args.max_steps, args.save_steps)
dev_dataset = {}
step, global_step = 0, 0
best_bleu_em = dict([(k, -1) for k in all_tasks])
best_loss = dict([(k, 1e6) for k in all_tasks])
not_bleu_em_inc_cnt = dict([(k, 0) for k in all_tasks])
is_early_stop = dict([(k, 0) for k in all_tasks])
patience_pairs = []
for cur_task in all_tasks:
task = cur_task.split('_')[0]
if task == 'summarize':
patience_pairs.append((cur_task, 2))
elif task == 'translate':
patience_pairs.append((cur_task, 5))
elif task == 'refine':
patience_pairs.append((cur_task, 5))
elif task == 'concode':
patience_pairs.append((cur_task, 3))
elif task == 'defect':
patience_pairs.append((cur_task, 2))
patience_dict = dict(patience_pairs)
logger.info('Patience: %s', patience_dict)
probs = [len(x) for x in train_data_list]
probs = [x / sum(probs) for x in probs]
probs = [x ** 0.7 for x in probs]
probs = [x / sum(probs) for x in probs]
nb_tr_examples, nb_tr_steps, tr_nb, tr_loss, logging_loss = 0, 0, 0, 0, 0
bar = tqdm(total=args.max_steps, desc="Training")
skip_cnt = 0
while True:
cur_task = np.random.choice(all_tasks, 1, p=probs)[0]
train_dataloader = train_dataloader_dict[cur_task]
if is_early_stop[cur_task]:
skip_cnt += 1
if skip_cnt > 50:
logger.info('All tasks have early stopped at %d', step)
break
continue
else:
skip_cnt = 0
step += 1
batch = next(train_dataloader)
model.train()
batch = tuple(t.to(args.device) for t in batch)
source_ids, target_ids = batch
# logger.info('cur_task: %s, bs: %d', cur_task, source_ids.shape[0])
source_mask = source_ids.ne(tokenizer.pad_token_id)
target_mask = target_ids.ne(tokenizer.pad_token_id)
# pdb.set_trace()
if args.model_type == 'roberta':
loss, _, _ = model(source_ids=source_ids, source_mask=source_mask,
target_ids=target_ids, target_mask=target_mask)
else:
outputs = model(input_ids=source_ids, attention_mask=source_mask,
labels=target_ids, decoder_attention_mask=target_mask)
loss = outputs.loss
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
nb_tr_examples += source_ids.size(0)
nb_tr_steps += 1
loss.backward()
if nb_tr_steps % args.gradient_accumulation_steps == 0:
# Update parameters
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
train_loss = round((tr_loss - logging_loss) / (global_step - tr_nb), 6)
bar.update(1)
bar.set_description("[{}] Train loss {}".format(step, round(train_loss, 3)))
if args.local_rank in [-1, 0] and args.log_steps > 0 and global_step % args.log_steps == 0:
logging_loss = train_loss
tr_nb = global_step
if args.do_eval and args.local_rank in [-1, 0] \
and args.save_steps > 0 and global_step % args.save_steps == 0:
# save last checkpoint
if args.data_num == -1 and args.save_last_checkpoints:
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
if not os.path.exists(last_output_dir):
os.makedirs(last_output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the last model into %s", output_model_file)
if global_step % 100000 == 0:
step_tag = '{}00k'.format(global_step // 100000)
last_output_dir = os.path.join(args.output_dir, 'checkpoint-step-{}'.format(step_tag))
if not os.path.exists(last_output_dir):
os.makedirs(last_output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the last model into %s", output_model_file)
# Eval model with dev dataset
if 'dev_loss' in dev_dataset:
eval_examples_data_dict = dev_dataset['dev_loss']
else:
eval_examples_data_dict = load_and_cache_multi_gen_data(args, pool, tokenizer, 'dev')
dev_dataset['dev_loss'] = eval_examples_data_dict
for cur_task in eval_examples_data_dict.keys():
if is_early_stop[cur_task]:
continue
eval_examples, eval_data = eval_examples_data_dict[cur_task]
eval_sampler = SequentialSampler(eval_data)
if args.data_num == -1:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler,
batch_size=args.eval_batch_size,
num_workers=4, pin_memory=True)
else:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler,
batch_size=args.eval_batch_size)
logger.info(" " + "***** Running ppl evaluation on [{}] *****".format(cur_task))
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
# Start Evaluating model
model.eval()
eval_loss, batch_num = 0, 0
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Eval ppl"):
batch = tuple(t.to(args.device) for t in batch)
source_ids, target_ids = batch
source_mask = source_ids.ne(tokenizer.pad_token_id)
target_mask = target_ids.ne(tokenizer.pad_token_id)
with torch.no_grad():
if args.model_type == 'roberta':
loss, _, _ = model(source_ids=source_ids, source_mask=source_mask,
target_ids=target_ids, target_mask=target_mask)
else:
outputs = model(input_ids=source_ids, attention_mask=source_mask,
labels=target_ids, decoder_attention_mask=target_mask)
loss = outputs.loss
eval_loss += loss.item()
batch_num += 1
# Pring loss of dev dataset
eval_loss = eval_loss / batch_num
result = {'cur_task': cur_task,
'global_step': global_step,
'eval_ppl': round(np.exp(eval_loss), 5),
'train_loss': round(train_loss, 5)}
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
logger.info(" " + "*" * 20)
if args.data_num == -1:
tb_writer.add_scalar('dev_ppl_{}'.format(cur_task),
round(np.exp(eval_loss), 5),
global_step)
if eval_loss < best_loss[cur_task]:
logger.info(" Best ppl:%s", round(np.exp(eval_loss), 5))
logger.info(" " + "*" * 20)
fa_dict[cur_task].write(
"[%d: %s] Best ppl changed into %.4f\n" % (global_step, cur_task, np.exp(eval_loss)))
best_loss[cur_task] = eval_loss
# Save best checkpoint for best ppl
output_dir = os.path.join(args.output_dir, 'checkpoint-best-ppl', cur_task)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.data_num == -1 or args.always_save_model:
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the best ppl model into %s", output_model_file)
if args.do_eval_bleu:
eval_examples_data_dict = load_and_cache_multi_gen_data(args, pool, tokenizer, 'dev',
only_src=True, is_sample=True)
for cur_task in eval_examples_data_dict.keys():
if is_early_stop[cur_task]:
continue
eval_examples, eval_data = eval_examples_data_dict[cur_task]
# pdb.set_trace()
result = eval_bleu(args, eval_data, eval_examples, model, tokenizer, 'dev', cur_task,
criteria='e{}'.format(global_step))
dev_bleu, dev_em = result['bleu'], result['em']
if args.task == 'summarize':
dev_bleu_em = dev_bleu
elif args.task in ['defect', 'clone']:
dev_bleu_em = dev_em
else:
dev_bleu_em = dev_bleu + dev_em
if args.data_num == -1:
tb_writer.add_scalar('dev_bleu_em_{}'.format(cur_task), dev_bleu_em, global_step)
if dev_bleu_em > best_bleu_em[cur_task]:
not_bleu_em_inc_cnt[cur_task] = 0
logger.info(" [%d: %s] Best bleu+em: %.2f (bleu: %.2f, em: %.2f)",
global_step, cur_task, dev_bleu_em, dev_bleu, dev_em)
logger.info(" " + "*" * 20)
best_bleu_em[cur_task] = dev_bleu_em
fa_dict[cur_task].write(
"[%d: %s] Best bleu+em changed into %.2f (bleu: %.2f, em: %.2f)\n" % (
global_step, cur_task, best_bleu_em[cur_task], dev_bleu, dev_em))
# Save best checkpoint for best bleu
output_dir = os.path.join(args.output_dir, 'checkpoint-best-bleu', cur_task)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.data_num == -1 or args.always_save_model:
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the best bleu model into %s", output_model_file)
else:
not_bleu_em_inc_cnt[cur_task] += 1
logger.info("[%d %s] bleu/em does not increase for %d eval steps",
global_step, cur_task, not_bleu_em_inc_cnt[cur_task])
if not_bleu_em_inc_cnt[cur_task] > patience_dict[cur_task]:
logger.info("[%d %s] Early stop as bleu/em does not increase for %d eval steps",
global_step, cur_task, not_bleu_em_inc_cnt[cur_task])
is_early_stop[cur_task] = 1
fa_dict[cur_task].write(
"[%d %s] Early stop as bleu/em does not increase for %d eval steps, takes %s" %
(global_step, cur_task, not_bleu_em_inc_cnt[cur_task], get_elapse_time(t0)))
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
if global_step >= args.max_steps:
logger.info("Reach the max step: %d", args.max_steps)
break
if args.local_rank in [-1, 0] and args.data_num == -1:
tb_writer.close()
logger.info("Finish training and take %.2f", time.time() - t0)
for cur_task in all_tasks:
fa_dict[cur_task].close()
if args.do_test:
logger.info(" " + "***** Testing *****")
logger.info(" Batch size = %d", args.eval_batch_size)
eval_examples_data_dict = load_and_cache_multi_gen_data(args, pool, tokenizer, 'test', only_src=True)
all_tasks = list(eval_examples_data_dict.keys())
for cur_task in all_tasks:
summary_dir = os.path.join(args.output_dir, 'summary')
if not os.path.exists(summary_dir):
os.makedirs(summary_dir)
fa_dict[cur_task] = open(os.path.join(summary_dir, '{}_summary.log'.format(cur_task)), 'a+')
for cur_task in all_tasks:
eval_examples, eval_data = eval_examples_data_dict[cur_task]
args.task = cur_task.split('_')[0]
args.sub_task = cur_task.split('_')[-1]
for criteria in ['best-bleu', 'best-ppl', 'last']:
file = os.path.join(args.output_dir, 'checkpoint-{}/{}/pytorch_model.bin'.format(criteria, cur_task))
model.load_state_dict(torch.load(file))
result = eval_bleu(args, eval_data, eval_examples, model, tokenizer, 'test', cur_task, criteria)
test_bleu, test_em = result['bleu'], result['em']
test_codebleu = result['codebleu'] if 'codebleu' in result else 0
result_str = "[%s %s] bleu-4: %.2f, em: %.4f, codebleu: %.4f\n" % (
cur_task, criteria, test_bleu, test_em, test_codebleu)
logger.info(result_str)
fa_dict[cur_task].write(result_str)
fa.write(result_str)
if args.res_fn:
with open(args.res_fn, 'a+') as f:
f.write('[Time: {}] {}\n'.format(get_elapse_time(t0), file))
f.write(result_str)
logger.info("Finish and take {}".format(get_elapse_time(t0)))
for cur_task in all_tasks:
fa_dict[cur_task].close()
fa.write("Finish and take {}".format(get_elapse_time(t0)))
fa.close()
if __name__ == "__main__":
main()
|