matrix-multiply commited on
Commit
347830b
·
verified ·
1 Parent(s): 752bdbc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -127
README.md CHANGED
@@ -17,21 +17,18 @@ The goal of the DocuMint model is to generate docstrings that are concise (brief
17
 
18
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
@@ -39,66 +36,24 @@ The goal of the DocuMint model is to generate docstrings that are concise (brief
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
@@ -106,67 +61,19 @@ Use the code below to get started with the model.
106
 
107
  ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
 
163
  #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
-
169
- [More Information Needed]
170
 
171
  ## Citation [optional]
172
 
@@ -174,29 +81,19 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
 
178
 
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
  [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
  - PEFT 0.8.2
 
17
 
18
 
19
 
20
+ - **Developed by:** Bibek Poudel, Adam Cook, Sekou Traore, Shelah Ameli (University of Tennessee, Knoxville)
21
+ - **Model type:** Causal language model fine-tuned for code documentation generation
22
+ - **Language(s) (NLP):** English, Python
23
+ - **License:** MIT
24
+ - **Finetuned from model [optional]:** google/codegemma-2b
 
 
25
 
26
  ### Model Sources [optional]
27
 
28
  <!-- Provide the basic links for the model. -->
29
 
30
+ - **Repository:** TODO
31
+ - **Paper [optional]:** TODO
 
32
 
33
  ## Uses
34
 
 
36
 
37
  ### Direct Use
38
 
39
+ The DocuMint model can be used directly to generate high-quality docstrings for Python functions. Given a Python function definition, the model will output a docstring in the format """<generated docstring>""".
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  ## Training Details
43
 
44
  ### Training Data
45
 
46
+ The training data consists of 100,000 Python functions and their docstrings extracted from popular open-source repositories in the FLOSS ecosystem. Repositories were filtered based on metrics such as number of contributors (> 50), commits (> 5k), stars (> 35k), and forks (> 10k) to focus on well-established and actively maintained projects.
 
 
 
 
 
 
 
 
 
 
47
 
48
+ An abstract syntax tree (AST) based parser was used to extract functions and docstrings. Challenges in the data sampling process included syntactic errors, multi-language repositories, computational expense, repository size discrepancies, and ensuring diversity while avoiding repetition.
49
 
50
  #### Training Hyperparameters
51
 
52
+ The model was fine-tuned using Low-Rank Adaptation (LoRA) for 4 epochs with a batch size of 8 and gradient accumulation steps of 16. The initial learning rate was 2e-4. In total, there were 78,446,592 LoRA parameters and 185,040,896 training tokens. The full hyperparameter configuration is provided in Table 2 of the paper.
53
 
54
+ Fine-tuning was performed using an Intel 12900K CPU, an Nvidia RTX-3090 GPU, and 64 GB RAM. Total fine-tuning time was 48 GPU hours.
55
 
 
56
 
 
57
 
58
  ## Evaluation
59
 
 
61
 
62
  ### Testing Data, Factors & Metrics
63
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  #### Metrics
65
 
66
+ - **Accuracy:** Measures the coverage of the generated docstring on code elements like input/output variables. Calculated using cosine similarity between the generated and expert docstring embeddings.
67
 
68
+ - **Conciseness:** Measures the ability to convey information succinctly without verbosity. Calculated as a compression ratio between the compressed and original docstring sizes.
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
+ - **Clarity:** Measures readability using simple, unambiguous language. Calculated using the Flesch-Kincaid readability score.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
 
 
 
72
 
73
  #### Hardware
74
 
75
+ Single GPU RTX-3090
76
 
 
 
 
77
 
78
  ## Citation [optional]
79
 
 
81
 
82
  **BibTeX:**
83
 
84
+ (TODO)
85
+ @misc{poudel2024documint,
86
+ title={DocuMint: Docstring Generation for Python using Small Language Models},
87
+ author={Bibek Poudel* and Adam Cook* and Sekou Traore* and Shelah Ameli*},
88
+ year={2024},
89
+ }
90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
  [More Information Needed]
93
 
94
  ## Model Card Contact
95
 
96
+ - For questions or more information, please contact:
97
+ {bpoudel3,acook46,staore1,oameli}@vols.utk.edu
98
 
99
  - PEFT 0.8.2