Upload 11 files
Browse files- .gitattributes +1 -0
- README.md +143 -3
- config.json +28 -0
- d84e1b4a-ef6a-11ef-be05-a8a159eaf1f4 +3 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- sym_shape_infer_temp.onnx +3 -0
- to_onnx.py +188 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
d84e1b4a-ef6a-11ef-be05-a8a159eaf1f4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,143 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- question-answering
|
4 |
+
- bert
|
5 |
+
license: apache-2.0
|
6 |
+
datasets:
|
7 |
+
- squad
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
model-index:
|
11 |
+
- name: dynamic-tinybert
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
type: question-answering
|
15 |
+
name: question-answering
|
16 |
+
metrics:
|
17 |
+
- type: f1
|
18 |
+
value: 88.71
|
19 |
+
|
20 |
+
---
|
21 |
+
|
22 |
+
## Model Details: Dynamic-TinyBERT: Boost TinyBERT's Inference Efficiency by Dynamic Sequence Length
|
23 |
+
|
24 |
+
Dynamic-TinyBERT has been fine-tuned for the NLP task of question answering, trained on the SQuAD 1.1 dataset. [Guskin et al. (2021)](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf) note:
|
25 |
+
|
26 |
+
> Dynamic-TinyBERT is a TinyBERT model that utilizes sequence-length reduction and Hyperparameter Optimization for enhanced inference efficiency per any computational budget. Dynamic-TinyBERT is trained only once, performing on-par with BERT and achieving an accuracy-speedup trade-off superior to any other efficient approaches (up to 3.3x with <1% loss-drop).
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
| Model Detail | Description |
|
31 |
+
| ----------- | ----------- |
|
32 |
+
| Model Authors - Company | Intel |
|
33 |
+
| Model Card Authors | Intel in collaboration with Hugging Face |
|
34 |
+
| Date | November 22, 2021 |
|
35 |
+
| Version | 1 |
|
36 |
+
| Type | NLP - Question Answering |
|
37 |
+
| Architecture | "For our Dynamic-TinyBERT model we use the architecture of TinyBERT6L: a small BERT model with 6 layers, a hidden size of 768, a feed forward size of 3072 and 12 heads." [Guskin et al. (2021)](https://gyuwankim.github.io/publication/dynamic-tinybert/poster.pdf) |
|
38 |
+
| Paper or Other Resources | [Paper](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf); [Poster](https://gyuwankim.github.io/publication/dynamic-tinybert/poster.pdf); [GitHub Repo](https://github.com/IntelLabs/Model-Compression-Research-Package) |
|
39 |
+
| License | Apache 2.0 |
|
40 |
+
| Questions or Comments | [Community Tab](https://huggingface.co/Intel/dynamic_tinybert/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)|
|
41 |
+
|
42 |
+
| Intended Use | Description |
|
43 |
+
| ----------- | ----------- |
|
44 |
+
| Primary intended uses | You can use the model for the NLP task of question answering: given a corpus of text, you can ask it a question about that text, and it will find the answer in the text. |
|
45 |
+
| Primary intended users | Anyone doing question answering |
|
46 |
+
| Out-of-scope uses | The model should not be used to intentionally create hostile or alienating environments for people.|
|
47 |
+
|
48 |
+
### How to use
|
49 |
+
|
50 |
+
Here is how to import this model in Python:
|
51 |
+
|
52 |
+
<details>
|
53 |
+
<summary> Click to expand </summary>
|
54 |
+
|
55 |
+
```python
|
56 |
+
import torch
|
57 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
58 |
+
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained("Intel/dynamic_tinybert")
|
60 |
+
model = AutoModelForQuestionAnswering.from_pretrained("Intel/dynamic_tinybert")
|
61 |
+
|
62 |
+
context = "remember the number 123456, I'll ask you later."
|
63 |
+
question = "What is the number I told you?"
|
64 |
+
|
65 |
+
# Tokenize the context and question
|
66 |
+
tokens = tokenizer.encode_plus(question, context, return_tensors="pt", truncation=True)
|
67 |
+
|
68 |
+
# Get the input IDs and attention mask
|
69 |
+
input_ids = tokens["input_ids"]
|
70 |
+
attention_mask = tokens["attention_mask"]
|
71 |
+
|
72 |
+
# Perform question answering
|
73 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
74 |
+
start_scores = outputs.start_logits
|
75 |
+
end_scores = outputs.end_logits
|
76 |
+
|
77 |
+
# Find the start and end positions of the answer
|
78 |
+
answer_start = torch.argmax(start_scores)
|
79 |
+
answer_end = torch.argmax(end_scores) + 1
|
80 |
+
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[0][answer_start:answer_end]))
|
81 |
+
|
82 |
+
# Print the answer
|
83 |
+
print("Answer:", answer)
|
84 |
+
```
|
85 |
+
</details>
|
86 |
+
|
87 |
+
|
88 |
+
| Factors | Description |
|
89 |
+
| ----------- | ----------- |
|
90 |
+
| Groups | Many Wikipedia articles with question and answer labels are contained in the training data |
|
91 |
+
| Instrumentation | - |
|
92 |
+
| Environment | Training was completed on a Titan GPU. |
|
93 |
+
| Card Prompts | Model deployment on alternate hardware and software will change model performance |
|
94 |
+
|
95 |
+
| Metrics | Description |
|
96 |
+
| ----------- | ----------- |
|
97 |
+
| Model performance measures | F1 |
|
98 |
+
| Decision thresholds | - |
|
99 |
+
| Approaches to uncertainty and variability | - |
|
100 |
+
|
101 |
+
| Training and Evaluation Data | Description |
|
102 |
+
| ----------- | ----------- |
|
103 |
+
| Datasets | SQuAD1.1: "Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable." (https://huggingface.co/datasets/squad)|
|
104 |
+
| Motivation | To build an efficient and accurate model for the question answering task. |
|
105 |
+
| Preprocessing | "We start with a pre-trained general-TinyBERT student, which was trained to learn the general knowledge of BERT using the general-distillation method presented by TinyBERT. We perform transformer distillation from a fine- tuned BERT teacher to the student, following the same training steps used in the original TinyBERT: (1) intermediate-layer distillation (ID) — learning the knowledge residing in the hidden states and attentions matrices, and (2) prediction-layer distillation (PD) — fitting the predictions of the teacher." ([Guskin et al., 2021](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf))|
|
106 |
+
|
107 |
+
Model Performance Analysis:
|
108 |
+
|
109 |
+
| Model | Max F1 (full model) | Best Speedup within BERT-1% |
|
110 |
+
|------------------|---------------------|-----------------------------|
|
111 |
+
| Dynamic-TinyBERT | 88.71 | 3.3x |
|
112 |
+
|
113 |
+
| Ethical Considerations | Description |
|
114 |
+
| ----------- | ----------- |
|
115 |
+
| Data | The training data come from Wikipedia articles |
|
116 |
+
| Human life | The model is not intended to inform decisions central to human life or flourishing. It is an aggregated set of labelled Wikipedia articles. |
|
117 |
+
| Mitigations | No additional risk mitigation strategies were considered during model development. |
|
118 |
+
| Risks and harms | Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al., 2021](https://aclanthology.org/2021.acl-long.330.pdf), and [Bender et al., 2021](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. Beyond this, the extent of the risks involved by using the model remain unknown.|
|
119 |
+
| Use cases | - |
|
120 |
+
|
121 |
+
|
122 |
+
| Caveats and Recommendations |
|
123 |
+
| ----------- |
|
124 |
+
| Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. There are no additional caveats or recommendations for this model. |
|
125 |
+
|
126 |
+
|
127 |
+
### BibTeX entry and citation info
|
128 |
+
```bibtex
|
129 |
+
@misc{https://doi.org/10.48550/arxiv.2111.09645,
|
130 |
+
doi = {10.48550/ARXIV.2111.09645},
|
131 |
+
|
132 |
+
url = {https://arxiv.org/abs/2111.09645},
|
133 |
+
|
134 |
+
author = {Guskin, Shira and Wasserblat, Moshe and Ding, Ke and Kim, Gyuwan},
|
135 |
+
|
136 |
+
keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
137 |
+
|
138 |
+
title = {Dynamic-TinyBERT: Boost TinyBERT's Inference Efficiency by Dynamic Sequence Length},
|
139 |
+
|
140 |
+
publisher = {arXiv},
|
141 |
+
|
142 |
+
year = {2021},
|
143 |
+
```
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/store/nosnap/results/inter6_bert_24.8.13.50/checkpoint-last",
|
3 |
+
"architectures": [
|
4 |
+
"TinyBertForQuestionAnswering"
|
5 |
+
],
|
6 |
+
"attention_head_size": 26,
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"cell": {},
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "relu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-12,
|
16 |
+
"max_position_embeddings": 512,
|
17 |
+
"model_type": "bert",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 6,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"pre_trained": "",
|
23 |
+
"structure": [],
|
24 |
+
"transformers_version": "4.7.0",
|
25 |
+
"type_vocab_size": 2,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 30522
|
28 |
+
}
|
d84e1b4a-ef6a-11ef-be05-a8a159eaf1f4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b49586a9c1b0b622ab68f429e58309cb7c94a253ae952a32c097d24b9a021b48
|
3 |
+
size 265463808
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:559bc6e27704c82f08642c84a235a152983d619e9ba7e63fc2d6325c914f6e43
|
3 |
+
size 267855035
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
sym_shape_infer_temp.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b807c8f575fd06776726d5c485c7907e94f6adf2333fb1c80865ca907604ff33
|
3 |
+
size 170716
|
to_onnx.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForQuestionAnswering
|
3 |
+
from transformers import AutoTokenizer, BertConfig
|
4 |
+
import onnx
|
5 |
+
from onnxruntime.quantization import quantize_dynamic, QuantType
|
6 |
+
from onnxruntime.quantization import shape_inference
|
7 |
+
import os
|
8 |
+
import logging
|
9 |
+
from typing import Optional, Dict, Any
|
10 |
+
import subprocess # Import the subprocess module
|
11 |
+
|
12 |
+
class ONNXModelConverter:
|
13 |
+
def __init__(self, model_name: str, output_dir: str):
|
14 |
+
self.model_name = model_name
|
15 |
+
self.output_dir = output_dir
|
16 |
+
self.setup_logging()
|
17 |
+
|
18 |
+
os.makedirs(output_dir, exist_ok=True)
|
19 |
+
|
20 |
+
self.logger.info(f"Loading tokenizer {model_name}...")
|
21 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
22 |
+
|
23 |
+
self.logger.info(f"Loading model {model_name}...")
|
24 |
+
self.model = AutoModelForQuestionAnswering.from_pretrained(
|
25 |
+
model_name,
|
26 |
+
trust_remote_code=True,
|
27 |
+
torch_dtype=torch.float32
|
28 |
+
)
|
29 |
+
self.model.eval()
|
30 |
+
|
31 |
+
def setup_logging(self):
|
32 |
+
self.logger = logging.getLogger(__name__)
|
33 |
+
self.logger.setLevel(logging.INFO)
|
34 |
+
handler = logging.StreamHandler()
|
35 |
+
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
36 |
+
handler.setFormatter(formatter)
|
37 |
+
self.logger.addHandler(handler)
|
38 |
+
|
39 |
+
def prepare_dummy_inputs(self):
|
40 |
+
dummy_input = self.tokenizer(
|
41 |
+
"Hello, how are you?",
|
42 |
+
return_tensors="pt",
|
43 |
+
padding=True,
|
44 |
+
truncation=True,
|
45 |
+
max_length=128
|
46 |
+
)
|
47 |
+
return {
|
48 |
+
'input_ids': dummy_input['input_ids'],
|
49 |
+
'attention_mask': dummy_input['attention_mask'],
|
50 |
+
'token_type_ids': dummy_input['token_type_ids']
|
51 |
+
}
|
52 |
+
|
53 |
+
def export_to_onnx(self):
|
54 |
+
output_path = os.path.join(self.output_dir, "model.onnx")
|
55 |
+
inputs = self.prepare_dummy_inputs()
|
56 |
+
|
57 |
+
dynamic_axes = {
|
58 |
+
'input_ids': {0: 'batch_size', 1: 'sequence_length'},
|
59 |
+
'attention_mask': {0: 'batch_size', 1: 'sequence_length'},
|
60 |
+
'token_type_ids': {0: 'batch_size', 1: 'sequence_length'},
|
61 |
+
'start_logits': {0: 'batch_size', 1: 'sequence_length'},
|
62 |
+
'end_logits': {0: 'batch_size', 1: 'sequence_length'},
|
63 |
+
}
|
64 |
+
|
65 |
+
class ModelWrapper(torch.nn.Module):
|
66 |
+
def __init__(self, model):
|
67 |
+
super().__init__()
|
68 |
+
self.model = model
|
69 |
+
|
70 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
71 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
72 |
+
return outputs.start_logits, outputs.end_logits
|
73 |
+
|
74 |
+
wrapped_model = ModelWrapper(self.model)
|
75 |
+
|
76 |
+
try:
|
77 |
+
torch.onnx.export(
|
78 |
+
wrapped_model,
|
79 |
+
(inputs['input_ids'], inputs['attention_mask'], inputs['token_type_ids']),
|
80 |
+
output_path,
|
81 |
+
export_params=True,
|
82 |
+
opset_version=14, # Or a suitable version
|
83 |
+
do_constant_folding=True,
|
84 |
+
input_names=['input_ids', 'attention_mask', 'token_type_ids'],
|
85 |
+
output_names=['start_logits', 'end_logits'],
|
86 |
+
dynamic_axes=dynamic_axes,
|
87 |
+
verbose=False
|
88 |
+
)
|
89 |
+
self.logger.info(f"Model exported to {output_path}")
|
90 |
+
return output_path
|
91 |
+
except Exception as e:
|
92 |
+
self.logger.error(f"ONNX export failed: {str(e)}")
|
93 |
+
raise
|
94 |
+
|
95 |
+
def verify_model(self, model_path: str):
|
96 |
+
try:
|
97 |
+
onnx_model = onnx.load(model_path)
|
98 |
+
onnx.checker.check_model(onnx_model)
|
99 |
+
self.logger.info("ONNX model verification successful")
|
100 |
+
return True
|
101 |
+
except Exception as e:
|
102 |
+
self.logger.error(f"Model verification failed: {str(e)}")
|
103 |
+
return False
|
104 |
+
|
105 |
+
def preprocess_model(self, model_path: str) -> str:
|
106 |
+
preprocessed_path = os.path.join(self.output_dir, "model-infer.onnx")
|
107 |
+
try:
|
108 |
+
command = [
|
109 |
+
"python", "-m", "onnxruntime.quantization.preprocess",
|
110 |
+
"--input", model_path,
|
111 |
+
"--output", preprocessed_path
|
112 |
+
]
|
113 |
+
result = subprocess.run(command, check=True, capture_output=True, text=True)
|
114 |
+
if result.returncode == 0:
|
115 |
+
self.logger.info(f"Model preprocessing successful. Output saved to {preprocessed_path}")
|
116 |
+
return preprocessed_path
|
117 |
+
else:
|
118 |
+
raise subprocess.CalledProcessError(result.returncode, command, result.stdout, result.stderr)
|
119 |
+
except subprocess.CalledProcessError as e:
|
120 |
+
self.logger.error(f"Preprocessing failed: {e.stderr}")
|
121 |
+
raise
|
122 |
+
except Exception as e:
|
123 |
+
self.logger.error(f"Preprocessing failed: {str(e)}")
|
124 |
+
raise
|
125 |
+
|
126 |
+
def quantize_model(self, model_path: str):
|
127 |
+
weight_types = {'int4':QuantType.QInt4, 'int8':QuantType.QInt8, 'uint4':QuantType.QUInt4, 'uint8':QuantType.QUInt8, 'uint16':QuantType.QUInt16, 'int16':QuantType.QInt16}
|
128 |
+
all_quantized_paths = []
|
129 |
+
for weight_type in weight_types.keys():
|
130 |
+
quantized_path = os.path.join(self.output_dir, "model_" + weight_type + ".onnx")
|
131 |
+
|
132 |
+
try:
|
133 |
+
quantize_dynamic(
|
134 |
+
model_path,
|
135 |
+
quantized_path,
|
136 |
+
weight_type=weight_types[weight_type]
|
137 |
+
)
|
138 |
+
self.logger.info(f"Model quantized ({weight_type}) and saved to {quantized_path}")
|
139 |
+
all_quantized_paths.append(quantized_path)
|
140 |
+
except Exception as e:
|
141 |
+
self.logger.error(f"Quantization ({weight_type}) failed: {str(e)}")
|
142 |
+
raise
|
143 |
+
|
144 |
+
return all_quantized_paths
|
145 |
+
|
146 |
+
|
147 |
+
def convert(self):
|
148 |
+
try:
|
149 |
+
onnx_path = self.export_to_onnx()
|
150 |
+
|
151 |
+
if self.verify_model(onnx_path):
|
152 |
+
# Add preprocessing step before quantization
|
153 |
+
# preprocessed_path = self.preprocess_model(onnx_path)
|
154 |
+
|
155 |
+
# Use preprocessed model for quantization
|
156 |
+
quantized_paths = self.quantize_model(onnx_path)
|
157 |
+
|
158 |
+
tokenizer_path = os.path.join(self.output_dir, "tokenizer")
|
159 |
+
self.tokenizer.save_pretrained(tokenizer_path)
|
160 |
+
self.logger.info(f"Tokenizer saved to {tokenizer_path}")
|
161 |
+
|
162 |
+
return {
|
163 |
+
'onnx_model': onnx_path,
|
164 |
+
'quantized_models': quantized_paths, # Return a list of quantized model paths
|
165 |
+
'tokenizer': tokenizer_path
|
166 |
+
}
|
167 |
+
else:
|
168 |
+
raise Exception("Model verification failed")
|
169 |
+
|
170 |
+
except Exception as e:
|
171 |
+
self.logger.error(f"Conversion process failed: {str(e)}")
|
172 |
+
raise
|
173 |
+
|
174 |
+
if __name__ == "__main__":
|
175 |
+
MODEL_NAME = "Intel/dynamic_tinybert" # Or any other suitable model
|
176 |
+
OUTPUT_DIR = "onnx"
|
177 |
+
|
178 |
+
try:
|
179 |
+
converter = ONNXModelConverter(MODEL_NAME, OUTPUT_DIR)
|
180 |
+
results = converter.convert()
|
181 |
+
|
182 |
+
print("\nConversion completed successfully!")
|
183 |
+
print(f"ONNX model path: {results['onnx_model']}")
|
184 |
+
print(f"Quantized model paths: {results['quantized_models']}") # Print the list
|
185 |
+
print(f"Tokenizer path: {results['tokenizer']}")
|
186 |
+
|
187 |
+
except Exception as e:
|
188 |
+
print(f"Conversion failed: {str(e)}")
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "name_or_path": "/store/nosnap/results/inter6_bert_24.8.13.50/checkpoint-last", "do_basic_tokenize": true, "never_split": null}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45211a37428e561ecc29dc69804a75bca37187c651ccb38f8fa237eefa978c1e
|
3 |
+
size 2203
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|