File size: 1,940 Bytes
35820c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e199c04
 
 
 
 
 
35820c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e199c04
 
 
 
 
35820c4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my-custom-repo2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my-custom-repo2

This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0076
- Rouge1: 5.2564
- Rouge2: 4.3885
- Rougel: 4.8606
- Rougelsum: 4.8628
- Gen Len: 8.7847

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.0301        | 1.0   | 1500 | 0.0186          | 6.1606 | 5.3745 | 5.7762 | 5.7752    | 5.4517  |
| 0.0169        | 2.0   | 3000 | 0.0115          | 5.5084 | 4.6793 | 5.1194 | 5.1214    | 7.6477  |
| 0.0136        | 3.0   | 4500 | 0.0090          | 5.2597 | 4.4065 | 4.8716 | 4.8723    | 8.557   |
| 0.0118        | 4.0   | 6000 | 0.0079          | 5.2273 | 4.3653 | 4.8349 | 4.8352    | 8.815   |
| 0.0107        | 5.0   | 7500 | 0.0076          | 5.2564 | 4.3885 | 4.8606 | 4.8628    | 8.7847  |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1