import json import os import datasets _CITATION = """\ @InProceedings{...}, title = {Your Dataset Title}, author={Your Name}, year={2025} } """ _DESCRIPTION = """\ Dataset containing multi-view images with camera poses, depth maps, and masks for NeRF training. """ _LICENSE = "MIT" class RefRefConfig(datasets.BuilderConfig): """BuilderConfig for RefRef dataset.""" def __init__(self, scene=None, **kwargs): """BuilderConfig for RefRef dataset. Args: **kwargs: keyword arguments forwarded to super. """ super().__init__(**kwargs) self.scene = scene class RefRef(datasets.GeneratorBasedBuilder): """A dataset loader for NeRF-style data with camera poses, depth maps, and masks.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIG_CLASS = RefRefConfig BUILDER_CONFIGS = [ RefRefConfig( name="single-non-convex", description="Single non-convex scene configuration for RefRef dataset.", ), RefRefConfig( name="multiple-non-convex", description="Multiple non-convex scene configuration for RefRef dataset.", ), RefRefConfig( name="single-convex", description="Single convex scene configuration for RefRef dataset.", ) ] def _info(self): features = datasets.Features({ "image": datasets.Image(), "depth": datasets.Image(), "mask": datasets.Image(), "transform_matrix": datasets.Sequence( datasets.Sequence(datasets.Value("float64"), length=4), length=4 ), "rotation": datasets.Value("float32") }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage="", license=_LICENSE, citation=_CITATION ) def _split_generators(self, dl_manager): # Automatically find all JSON files matching the split patterns return [ datasets.SplitGenerator( name=f"{'cubeBg' if cat == 'textured_cube_scene' else 'sphereBg' if cat == 'textured_sphere_scene' else 'envMapBg'}_{'singleMatConvex' if self.config.name == 'single-convex' else 'singleMatNonConvex' if self.config.name == 'single-non-convex' else 'multiMatNonConvex'}_{self.config.scene}", gen_kwargs={ "filepaths": os.path.join(f"https://huggingface.co/datasets/yinyue27/RefRef_dataset/resolve/main/image_data/{cat}/{self.config.name}/", f"{self.config.scene}_sphere" if cat == "textured_sphere_scene" else f"{self.config.scene}_hdr" if cat == "environment_map_scene" else self.config.scene), "split": f"{'cubeBg' if cat == 'textured_cube_scene' else 'sphereBg' if cat == 'textured_sphere_scene' else 'envMapBg'}_{'singleMatConvex' if self.config.name == 'single-convex' else 'singleMatNonConvex' if self.config.name == 'single-non-convex' else 'multiMatNonConvex'}_{self.config.scene}", }, ) for cat in ["textured_sphere_scene", "textured_cube_scene", "environment_map_scene"] ] def _generate_examples(self, filepaths, split): for split in ["train", "val", "test"]: split_filepaths = os.path.join(filepaths, f"transforms_{split}.json") with open(split_filepaths, "r", encoding="utf-8") as f: try: data = json.load(f) except json.JSONDecodeError: print("Error opening " + split_filepaths) continue scene_name = os.path.basename(os.path.dirname(split_filepaths)) for frame_idx, frame in enumerate(data.get("frames", [])): base_dir = os.path.dirname(split_filepaths) yield f"{scene_name}_{frame_idx}", { "image": os.path.join(base_dir, frame["file_path"]+".png"), "depth": os.path.join(base_dir, frame["depth_file_path"]), "mask": os.path.join(base_dir, frame["mask_file_path"]), "transform_matrix": frame["transform_matrix"], "rotation": frame.get("rotation", 0.0) }