import os from torch.utils.data import Dataset import torch import pandas as pd class MGSV_EC_DataLoader(Dataset): def __init__( self, csv_path, args=None, ): self.args = args self.csv_data = pd.read_csv(csv_path) def __len__(self): return len(self.csv_data) def get_cw_propotion(self, gt_spans, max_m_duration): ''' Inputs: gt_spans: [1, 2] max_m_duration: float ''' gt_spans[:, 1] = torch.clamp(gt_spans[:, 1], max=max_m_duration) center_propotion = (gt_spans[:, 0] + gt_spans[:, 1]) / 2.0 / max_m_duration # [1] width_propotion = (gt_spans[:, 1] - gt_spans[:, 0]) / max_m_duration # [1] return torch.stack([center_propotion, width_propotion], dim=-1) # [1, 2] def __getitem__(self, idx): # id video_id = self.csv_data['video_id'].to_numpy()[idx] music_id = self.csv_data['music_id'].to_numpy()[idx] # duration # v_duration = self.csv_data['video_total_duration'].to_numpy()[idx] m_duration = self.csv_data['music_total_duration'].to_numpy()[idx] m_duration = float(m_duration) # video moment st, ed video_start_time = self.csv_data['video_start'].to_numpy()[idx] video_end_time = self.csv_data['video_end'].to_numpy()[idx] # music moment music_start_time = self.csv_data['music_start'].to_numpy()[idx] music_end_time = self.csv_data['music_end'].to_numpy()[idx] gt_windows_list = [(music_start_time, music_end_time)] gt_windows = torch.Tensor(gt_windows_list) # [1, 2] # time map meta_map = { "video_id": str(video_id), "music_id": str(music_id), "v_duration": torch.tensor(video_end_time - video_start_time), "m_duration": torch.tensor(m_duration), "gt_moment": gt_windows, # [1, 2] } # target spans spans_target = self.get_cw_propotion(gt_windows, self.args.max_m_duration) # [1, 2] # extract features video_feature_path = os.path.join(self.args.frame_frozen_feature_path, 'vit_feature', f'{video_id}.pt') video_mask_path = os.path.join(self.args.frame_frozen_feature_path, 'vit_mask', f'{video_id}.pt') frame_feats = torch.load(video_feature_path, map_location='cpu') frame_mask = torch.load(video_mask_path, map_location='cpu') frame_feats = frame_feats.masked_fill(frame_mask.unsqueeze(-1) == 0, 0) # [bs, max_frame_num, 512] music_feature_path = os.path.join(self.args.music_frozen_feature_path, 'ast_feature', f'{music_id}.pt') music_mask_path = os.path.join(self.args.music_frozen_feature_path, 'ast_mask', f'{music_id}.pt') segment_feats = torch.load(music_feature_path, map_location='cpu') segment_mask = torch.load(music_mask_path, map_location='cpu') segment_feats = segment_feats.masked_fill(segment_mask.unsqueeze(-1) == 0, 0) # [bs, max_snippet_num, 768] data_map = { "frame_feats": frame_feats, "frame_mask": frame_mask, "segment_feats": segment_feats, "segment_mask": segment_mask, } return data_map, meta_map, spans_target