Datasets:
update
Browse files- README.md +130 -3
- dataloader/data_dataloaders_feature.py +72 -0
- dataloader/dataloader_MGSV_EC_feature.py +75 -0
- dataset/MGSV-EC/test_data.csv +0 -0
- dataset/MGSV-EC/train_data.csv +0 -0
- dataset/MGSV-EC/val_data.csv +0 -0
README.md
CHANGED
@@ -1,3 +1,130 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: CC BY-NC 4.0
|
3 |
+
---
|
4 |
+
|
5 |
+
|
6 |
+
## Music Grounding by Short Video E-commerce (MGSV-EC) Dataset
|
7 |
+
|
8 |
+
📄 [[Paper]](https://arxiv.org/abs/2408.16990v2)
|
9 |
+
|
10 |
+
|
11 |
+
### 📝 Dataset Summary
|
12 |
+
|
13 |
+
**MGSV-EC** is a large-scale dataset for the new task of **Music Grounding by Short Video (MGSV)**, which aims to localize a specific music segment that best serves as the background music (BGM) for a given query short video.
|
14 |
+
Unlike traditional video-to-music retrieval (V2MR), MGSV requires both identifying the relevant music track and pinpointing a precise moment from the track.
|
15 |
+
|
16 |
+
The dataset contains **53,194 short e-commerce videos** paired with **35,393 music moments**, all derived from **4,050 unique music tracks**. It supports evaluation in two modes:
|
17 |
+
|
18 |
+
- **Single-music Grounding (SmG)**: the relevant music track is known, and the task is to detect the correct segment.
|
19 |
+
- **Music-set Grounding (MsG)**: the model must retrieve the correct music track and its corresponding segment.
|
20 |
+
|
21 |
+
|
22 |
+
### 📐 Evaluation Protocol
|
23 |
+
|
24 |
+
| Mode | Sub-task | Metric |
|
25 |
+
|:--------------|:----------------------|:-------------------------------------------------|
|
26 |
+
| *Single-music* | Grounding (SmG) | mIoU |
|
27 |
+
| *Music-set* | Video-to-Music Retrieval (V2MR) | R$k$ |
|
28 |
+
| *Music-set* | Grounding (MsG) | MoR$k$ |
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
---
|
33 |
+
|
34 |
+
### 📊 Dataset Statistics
|
35 |
+
|
36 |
+
| **Split** | **#Music Tracks** | *Avg. Music Duration(sec)* | #Query Videos | *Avg. Video Duration(sec)* | **#Moments** |
|
37 |
+
|---------|----------------|----------------------|---------|----------------------|-----------|
|
38 |
+
| Total | 4,050 | 138.9 ± 69.6 | 53,194 | 23.9 ± 10.7 | 35,393 |
|
39 |
+
| *Train* | 3,496 | 138.3 ± 69.4 | 49,194 | 24.0 ± 10.7 | 31,660 |
|
40 |
+
| *Val* | 2,000 | 139.6 ± 70.0 | 2,000 | 22.8 ± 10.8 | 2,000 |
|
41 |
+
| *Test* | 2,000 | 139.9 ± 70.1 | 2,000 | 22.6 ± 10.7 | 2,000 |
|
42 |
+
|
43 |
+
- 🎵 Music type ratio: **~60% songs**, **~40% instrumental**
|
44 |
+
- 📹 Frame rate: 34 FPS; resolution: 1080×1920
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
### 📁 Data Format
|
49 |
+
|
50 |
+
Each row in the CSV file represents a query video paired with a music track and a localized music moment. The meaning of each column is as follows:
|
51 |
+
|
52 |
+
| Column Name | Description |
|
53 |
+
|:-------------|--------------|
|
54 |
+
| video_id | Unique identifier for the short query video. |
|
55 |
+
| music_id | Unique identifier for the associated music track. |
|
56 |
+
| video_start | Start time of the video segment in full video. |
|
57 |
+
| video_end | End time of the video segment in full video. |
|
58 |
+
| music_start | Start time of the music segment in full track. |
|
59 |
+
| music_end | End time of the music segment in full track. |
|
60 |
+
| music_total_duration | Total duration of the music track. |
|
61 |
+
| video_segment_duration | Duration of the video segment. |
|
62 |
+
| music_segment_duration | Duration of the music segment. |
|
63 |
+
| music_path | Relative path to the music track file. |
|
64 |
+
| video_total_duration | Total duration of the video. |
|
65 |
+
| video_width | Width of the video frame. |
|
66 |
+
| video_height | Height of the video frame. |
|
67 |
+
| video_total_frames | Total number of frames in the video. |
|
68 |
+
| video_frame_rate | Frame rate of the video. |
|
69 |
+
| video_category | Category label of the video content (e.g., "美妆", "美食"). |
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
### 🧩 Feature Directory Structure
|
74 |
+
|
75 |
+
For each video-music pair, we provide pre-extracted visual and audio features for efficient training in [MGSV_feature.zip](./MGSV_feature.zip). The features are stored in the following directory structure:
|
76 |
+
|
77 |
+
```shell
|
78 |
+
[Your data feature path]
|
79 |
+
.
|
80 |
+
├── ast_feature2p5
|
81 |
+
│ ├── ast_feature/ # Audio segment features extracted by AST (Audio Spectrogram Transformer)
|
82 |
+
│ └── ast_mask/ # Segment-level masks indicating valid audio positions
|
83 |
+
└── vit_feature1
|
84 |
+
├── vit_feature/ # Frame-level visual features extracted by CLIP-ViT (ViT-B/32)
|
85 |
+
└── vit_mask/ # Frame-level masks indicating valid visual positions
|
86 |
+
```
|
87 |
+
Each .pt file corresponds to a single sample and includes:
|
88 |
+
- frame_feats: shape `[B, max_v_frames, 512]`
|
89 |
+
- frame_masks: shape `[B, max_v_frames]`, where 1 indicates valid frames, 0 for padding, used for padding control during batching
|
90 |
+
- segment_feats: shape `[B, max_snippet_num, 768]`
|
91 |
+
- segment_masks: shape `[B, max_snippet_num]`, indicating valid audio segments
|
92 |
+
|
93 |
+
Note:
|
94 |
+
- These pre-extracted features are compatible with our released PyTorch dataloader [dataloader_MGSV_EC_feature.py](./dataloader/dataloader_MGSV_EC_feature.py).
|
95 |
+
- Feature file paths are not stored in the CSV. Instead, users should specify the base directories via the following arguments:
|
96 |
+
- frame_frozen_feature_path: `[Your data feature path]/vit_feature1`
|
97 |
+
- music_frozen_feature_path: `[Your data feature path]/ast_feature2p5`
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
---
|
104 |
+
|
105 |
+
### 📖 Citation
|
106 |
+
|
107 |
+
If you use this dataset in your research, please cite:
|
108 |
+
|
109 |
+
```bibtex
|
110 |
+
@article{xin2024mgsv,
|
111 |
+
title={Music Grounding by Short Video},
|
112 |
+
author={Xin, Zijie and Wang, Minquan and Liu, Jingyu and Chen, Quan and Ma, Ye and Jiang, Peng and Li, Xirong},
|
113 |
+
journal={arXiv preprint arXiv:2408.16990},
|
114 |
+
year={2024}
|
115 |
+
}
|
116 |
+
```
|
117 |
+
|
118 |
+
### 📜 License
|
119 |
+
|
120 |
+
License: **CC BY-NC 4.0**
|
121 |
+
It is intended **for non-commercial academic research and educational purposes only**.
|
122 |
+
For commercial licensing or any use beyond research, please contact the authors.
|
123 |
+
|
124 |
+
📥 **Raw Vidoes/Music-tracks Access**
|
125 |
+
The raw video and music files are not publicly available due to copyright and privacy constraints.
|
126 |
+
Researchers interested in obtaining the full media content can contact **Kuaishou Technology** at: [[email protected]](mailto:[email protected]).
|
127 |
+
|
128 |
+
📬 **Contact for Issues**
|
129 |
+
For any dataset-related questions or problems (e.g., corrupted files or loading errors), please reach out to: [[email protected]](mailto:[email protected])
|
130 |
+
|
dataloader/data_dataloaders_feature.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import DataLoader
|
3 |
+
from dataloaders.dataloader_MGSV_EC_feature import MGSV_EC_DataLoader
|
4 |
+
|
5 |
+
|
6 |
+
def dataloader_MGSV_EC_train(args):
|
7 |
+
MGSV_EC_trainset = MGSV_EC_DataLoader(
|
8 |
+
csv_path=args.train_csv,
|
9 |
+
args=args,
|
10 |
+
)
|
11 |
+
train_sampler = torch.utils.data.distributed.DistributedSampler(MGSV_EC_trainset, num_replicas=args.world_size, rank=args.rank)
|
12 |
+
dataloader = DataLoader(
|
13 |
+
MGSV_EC_trainset,
|
14 |
+
batch_size=args.batch_size_train // args.gpu_num,
|
15 |
+
num_workers=args.num_workers,
|
16 |
+
shuffle=(train_sampler is None),
|
17 |
+
sampler=train_sampler,
|
18 |
+
drop_last=True,
|
19 |
+
pin_memory=True,
|
20 |
+
)
|
21 |
+
return dataloader, len(MGSV_EC_trainset), train_sampler
|
22 |
+
|
23 |
+
def dataloader_MGSV_EC_val(args):
|
24 |
+
MGSV_EC_valset = MGSV_EC_DataLoader(
|
25 |
+
csv_path=args.val_csv,
|
26 |
+
args=args,
|
27 |
+
)
|
28 |
+
val_sampler = torch.utils.data.distributed.DistributedSampler(MGSV_EC_valset, num_replicas=args.world_size, rank=args.rank)
|
29 |
+
dataloader = DataLoader(
|
30 |
+
MGSV_EC_valset,
|
31 |
+
batch_size=args.batch_size_val // args.gpu_num,
|
32 |
+
num_workers=args.num_workers,
|
33 |
+
shuffle=(val_sampler is None),
|
34 |
+
sampler=val_sampler,
|
35 |
+
drop_last=False,
|
36 |
+
)
|
37 |
+
return dataloader, len(MGSV_EC_valset), val_sampler
|
38 |
+
|
39 |
+
def dataloader_MGSV_EC_test(args):
|
40 |
+
MGSV_EC_testset = MGSV_EC_DataLoader(
|
41 |
+
csv_path=args.val_csv,
|
42 |
+
args=args,
|
43 |
+
)
|
44 |
+
test_sampler = torch.utils.data.distributed.DistributedSampler(MGSV_EC_testset, num_replicas=args.world_size, rank=args.rank)
|
45 |
+
dataloader = DataLoader(
|
46 |
+
MGSV_EC_testset,
|
47 |
+
batch_size=args.batch_size_val // args.gpu_num,
|
48 |
+
num_workers=args.num_workers,
|
49 |
+
shuffle=(test_sampler is None),
|
50 |
+
sampler=test_sampler,
|
51 |
+
drop_last=False,
|
52 |
+
)
|
53 |
+
return dataloader, len(MGSV_EC_testset), test_sampler
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
DATALOADER_DICT = {}
|
58 |
+
DATALOADER_DICT["kuai50k_uni"] = {
|
59 |
+
"train": dataloader_MGSV_EC_train,
|
60 |
+
"val": dataloader_MGSV_EC_val,
|
61 |
+
"test": dataloader_MGSV_EC_test
|
62 |
+
}
|
63 |
+
# DATALOADER_DICT["kuai50k_vmr"] = {
|
64 |
+
# "train": dataloader_MGSV_EC_train,
|
65 |
+
# "val": dataloader_MGSV_EC_val,
|
66 |
+
# "test": dataloader_MGSV_EC_test
|
67 |
+
# }
|
68 |
+
# DATALOADER_DICT["kuai50k_mr"] = {
|
69 |
+
# "train": dataloader_MGSV_EC_train,
|
70 |
+
# "val": dataloader_MGSV_EC_val,
|
71 |
+
# "test": dataloader_MGSV_EC_test
|
72 |
+
# }
|
dataloader/dataloader_MGSV_EC_feature.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from torch.utils.data import Dataset
|
3 |
+
import torch
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
class MGSV_EC_DataLoader(Dataset):
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
csv_path,
|
10 |
+
args=None,
|
11 |
+
):
|
12 |
+
self.args = args
|
13 |
+
self.csv_data = pd.read_csv(csv_path)
|
14 |
+
|
15 |
+
def __len__(self):
|
16 |
+
return len(self.csv_data)
|
17 |
+
|
18 |
+
def get_cw_propotion(self, gt_spans, max_m_duration):
|
19 |
+
'''
|
20 |
+
Inputs:
|
21 |
+
gt_spans: [1, 2]
|
22 |
+
max_m_duration: float
|
23 |
+
'''
|
24 |
+
gt_spans[:, 1] = torch.clamp(gt_spans[:, 1], max=max_m_duration)
|
25 |
+
center_propotion = (gt_spans[:, 0] + gt_spans[:, 1]) / 2.0 / max_m_duration # [1]
|
26 |
+
width_propotion = (gt_spans[:, 1] - gt_spans[:, 0]) / max_m_duration # [1]
|
27 |
+
return torch.stack([center_propotion, width_propotion], dim=-1) # [1, 2]
|
28 |
+
|
29 |
+
def __getitem__(self, idx):
|
30 |
+
# id
|
31 |
+
video_id = self.csv_data['video_id'].to_numpy()[idx]
|
32 |
+
music_id = self.csv_data['music_id'].to_numpy()[idx]
|
33 |
+
# duration
|
34 |
+
# v_duration = self.csv_data['video_total_duration'].to_numpy()[idx]
|
35 |
+
m_duration = self.csv_data['music_total_duration'].to_numpy()[idx]
|
36 |
+
m_duration = float(m_duration)
|
37 |
+
# video moment st, ed
|
38 |
+
video_start_time = self.csv_data['video_start'].to_numpy()[idx]
|
39 |
+
video_end_time = self.csv_data['video_end'].to_numpy()[idx]
|
40 |
+
# music moment
|
41 |
+
music_start_time = self.csv_data['music_start'].to_numpy()[idx]
|
42 |
+
music_end_time = self.csv_data['music_end'].to_numpy()[idx]
|
43 |
+
gt_windows_list = [(music_start_time, music_end_time)]
|
44 |
+
gt_windows = torch.Tensor(gt_windows_list) # [1, 2]
|
45 |
+
# time map
|
46 |
+
meta_map = {
|
47 |
+
"video_id": str(video_id),
|
48 |
+
"music_id": str(music_id),
|
49 |
+
"v_duration": torch.tensor(video_end_time - video_start_time),
|
50 |
+
"m_duration": torch.tensor(m_duration),
|
51 |
+
"gt_moment": gt_windows, # [1, 2]
|
52 |
+
}
|
53 |
+
# target spans
|
54 |
+
spans_target = self.get_cw_propotion(gt_windows, self.args.max_m_duration) # [1, 2]
|
55 |
+
|
56 |
+
# extract features
|
57 |
+
video_feature_path = os.path.join(self.args.frame_frozen_feature_path, 'vit_feature', f'{video_id}.pt')
|
58 |
+
video_mask_path = os.path.join(self.args.frame_frozen_feature_path, 'vit_mask', f'{video_id}.pt')
|
59 |
+
frame_feats = torch.load(video_feature_path, map_location='cpu')
|
60 |
+
frame_mask = torch.load(video_mask_path, map_location='cpu')
|
61 |
+
frame_feats = frame_feats.masked_fill(frame_mask.unsqueeze(-1) == 0, 0) # [bs, max_frame_num, 512]
|
62 |
+
|
63 |
+
music_feature_path = os.path.join(self.args.music_frozen_feature_path, 'ast_feature', f'{music_id}.pt')
|
64 |
+
music_mask_path = os.path.join(self.args.music_frozen_feature_path, 'ast_mask', f'{music_id}.pt')
|
65 |
+
segment_feats = torch.load(music_feature_path, map_location='cpu')
|
66 |
+
segment_mask = torch.load(music_mask_path, map_location='cpu')
|
67 |
+
segment_feats = segment_feats.masked_fill(segment_mask.unsqueeze(-1) == 0, 0) # [bs, max_snippet_num, 768]
|
68 |
+
|
69 |
+
data_map = {
|
70 |
+
"frame_feats": frame_feats,
|
71 |
+
"frame_mask": frame_mask,
|
72 |
+
"segment_feats": segment_feats,
|
73 |
+
"segment_mask": segment_mask,
|
74 |
+
}
|
75 |
+
return data_map, meta_map, spans_target
|
dataset/MGSV-EC/test_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/MGSV-EC/train_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/MGSV-EC/val_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|