File size: 9,648 Bytes
6d46163 f882d20 6d46163 058cca4 6d46163 f882d20 6d46163 f882d20 6d46163 f84677f a107712 f84677f 6d46163 058cca4 6d46163 79b837d 6d46163 058cca4 79b837d f61e329 12a9032 dc88717 1317898 6f57f9a db175a2 43835b1 7fd49e0 ae3c9aa d4e6b0a 1f600b8 47171df 5d8e04a 7ed7224 eb76869 245cac4 1654728 faeaee7 ca3fab9 54d8f81 5e882e5 464634e a489261 3dfc5fe f1e58a6 94729c2 7b1b445 c0ba5b6 a2fbf93 d7ff18b 2c7e4cc 3e8c307 dd93ac9 61ce714 e4a1b61 a5a6cde 2efc0ce fb496b5 a67f117 7efd54a 52a1231 9a31a5e 08d3346 f3a032a bcdb496 013e86d d7145dd 0ecc661 949d842 019954c 950476b 3843659 cbe0206 d06b308 556a5e4 d2a2dd9 d3573c6 ad20d87 ce1903f ea6160b 565e1d3 3d4d5ee 92a912e 05669cd a6b1ddd 7b83dcd d22c57b 86b9f14 41012a8 c57bc09 8695380 6f0adea ad710e6 4a8bcae a107712 9b0697c 5bf1be7 94a7bec 19e7c84 9a79104 ca9f2c2 4d3464b d0c5b64 6461638 d6edf22 34e944c 2d7025d 2073eed faf36ab 92047fd ca6bbb1 f84677f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** wavecreator22/x_dataset_108
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5C4ocMvKomsyb5WNeNqzBTPErtJ3AeyX81Y1dAYnDex66wBu
### Miner Data Compliance Agreement
In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md).
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{wavecreator222025datauniversex_dataset_108,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={wavecreator22},
year={2025},
url={https://huggingface.co/datasets/wavecreator22/x_dataset_108},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 195096504
- **Date Range:** 2025-03-19T00:00:00Z to 2025-05-26T00:00:00Z
- **Last Updated:** 2025-05-28T12:30:25Z
### Data Distribution
- Tweets with hashtags: 13.88%
- Tweets without hashtags: 86.12%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | NULL | 168023398 | 86.12% |
| 2 | #tiktok | 998124 | 0.51% |
| 3 | #ad | 629902 | 0.32% |
| 4 | #pr | 472003 | 0.24% |
| 5 | #granhermano | 333912 | 0.17% |
| 6 | #amazon | 290847 | 0.15% |
| 7 | #yahooニュース | 289907 | 0.15% |
| 8 | #bbb25 | 278156 | 0.14% |
| 9 | #riyadh | 249773 | 0.13% |
| 10 | #lacasadelosfamososcol | 225517 | 0.12% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-04-21T16:59:34Z | 195096410 | 195096410 |
| 2025-04-22T15:03:45Z | 1 | 195096411 |
| 2025-04-22T15:50:51Z | 1 | 195096412 |
| 2025-04-23T09:05:55Z | 1 | 195096413 |
| 2025-04-24T02:41:59Z | 1 | 195096414 |
| 2025-04-24T19:55:31Z | 1 | 195096415 |
| 2025-04-25T12:56:37Z | 1 | 195096416 |
| 2025-04-26T05:57:40Z | 1 | 195096417 |
| 2025-04-26T22:58:42Z | 1 | 195096418 |
| 2025-04-27T15:59:45Z | 1 | 195096419 |
| 2025-04-28T09:00:57Z | 1 | 195096420 |
| 2025-04-29T02:02:22Z | 1 | 195096421 |
| 2025-04-29T19:03:26Z | 1 | 195096422 |
| 2025-04-30T12:04:27Z | 1 | 195096423 |
| 2025-05-01T05:06:14Z | 1 | 195096424 |
| 2025-05-01T22:07:28Z | 1 | 195096425 |
| 2025-05-01T23:09:44Z | 1 | 195096426 |
| 2025-05-02T16:33:57Z | 1 | 195096427 |
| 2025-05-03T09:36:50Z | 1 | 195096428 |
| 2025-05-04T02:39:26Z | 1 | 195096429 |
| 2025-05-04T20:12:05Z | 1 | 195096430 |
| 2025-05-05T13:14:32Z | 1 | 195096431 |
| 2025-05-06T06:17:09Z | 1 | 195096432 |
| 2025-05-07T00:18:47Z | 1 | 195096433 |
| 2025-05-07T17:20:53Z | 1 | 195096434 |
| 2025-05-08T10:22:38Z | 1 | 195096435 |
| 2025-05-08T11:25:06Z | 1 | 195096436 |
| 2025-05-09T04:27:01Z | 1 | 195096437 |
| 2025-05-09T21:28:43Z | 1 | 195096438 |
| 2025-05-10T14:30:27Z | 1 | 195096439 |
| 2025-05-11T07:31:58Z | 1 | 195096440 |
| 2025-05-12T00:33:56Z | 1 | 195096441 |
| 2025-05-12T17:35:59Z | 1 | 195096442 |
| 2025-05-13T10:49:06Z | 1 | 195096443 |
| 2025-05-14T03:51:41Z | 1 | 195096444 |
| 2025-05-14T20:54:00Z | 1 | 195096445 |
| 2025-05-14T21:57:11Z | 1 | 195096446 |
| 2025-05-17T12:28:50Z | 1 | 195096447 |
| 2025-05-18T05:47:19Z | 1 | 195096448 |
| 2025-05-20T10:22:02Z | 1 | 195096449 |
| 2025-05-21T03:26:58Z | 1 | 195096450 |
| 2025-05-21T20:29:11Z | 1 | 195096451 |
| 2025-05-22T13:31:06Z | 1 | 195096452 |
| 2025-05-23T06:33:05Z | 1 | 195096453 |
| 2025-05-23T23:34:53Z | 1 | 195096454 |
| 2025-05-25T08:59:29Z | 1 | 195096455 |
| 2025-05-25T11:11:15Z | 1 | 195096456 |
| 2025-05-26T12:30:57Z | 1 | 195096457 |
| 2025-05-26T13:31:49Z | 1 | 195096458 |
| 2025-05-26T14:33:03Z | 1 | 195096459 |
| 2025-05-26T15:34:26Z | 1 | 195096460 |
| 2025-05-26T16:35:45Z | 1 | 195096461 |
| 2025-05-26T17:37:28Z | 1 | 195096462 |
| 2025-05-26T18:38:20Z | 1 | 195096463 |
| 2025-05-26T19:39:05Z | 1 | 195096464 |
| 2025-05-26T20:39:46Z | 1 | 195096465 |
| 2025-05-26T21:40:31Z | 1 | 195096466 |
| 2025-05-26T22:41:15Z | 1 | 195096467 |
| 2025-05-26T23:41:59Z | 1 | 195096468 |
| 2025-05-27T00:42:41Z | 1 | 195096469 |
| 2025-05-27T01:43:32Z | 1 | 195096470 |
| 2025-05-27T02:44:30Z | 1 | 195096471 |
| 2025-05-27T03:45:28Z | 1 | 195096472 |
| 2025-05-27T04:46:39Z | 1 | 195096473 |
| 2025-05-27T05:47:39Z | 1 | 195096474 |
| 2025-05-27T06:49:02Z | 1 | 195096475 |
| 2025-05-27T07:50:48Z | 1 | 195096476 |
| 2025-05-27T08:52:39Z | 1 | 195096477 |
| 2025-05-27T09:54:33Z | 1 | 195096478 |
| 2025-05-27T10:57:01Z | 1 | 195096479 |
| 2025-05-27T11:58:30Z | 1 | 195096480 |
| 2025-05-27T13:00:08Z | 1 | 195096481 |
| 2025-05-27T14:01:45Z | 1 | 195096482 |
| 2025-05-27T15:03:27Z | 1 | 195096483 |
| 2025-05-27T16:05:10Z | 1 | 195096484 |
| 2025-05-27T17:06:45Z | 1 | 195096485 |
| 2025-05-27T18:08:28Z | 1 | 195096486 |
| 2025-05-27T19:09:52Z | 1 | 195096487 |
| 2025-05-27T20:10:48Z | 1 | 195096488 |
| 2025-05-27T21:11:43Z | 1 | 195096489 |
| 2025-05-27T22:12:29Z | 1 | 195096490 |
| 2025-05-27T23:13:17Z | 1 | 195096491 |
| 2025-05-28T00:14:02Z | 1 | 195096492 |
| 2025-05-28T01:14:49Z | 1 | 195096493 |
| 2025-05-28T02:15:36Z | 1 | 195096494 |
| 2025-05-28T03:16:38Z | 1 | 195096495 |
| 2025-05-28T04:17:55Z | 1 | 195096496 |
| 2025-05-28T05:18:58Z | 1 | 195096497 |
| 2025-05-28T06:20:04Z | 1 | 195096498 |
| 2025-05-28T07:21:35Z | 1 | 195096499 |
| 2025-05-28T08:23:14Z | 1 | 195096500 |
| 2025-05-28T09:24:52Z | 1 | 195096501 |
| 2025-05-28T10:26:24Z | 1 | 195096502 |
| 2025-05-28T11:28:18Z | 1 | 195096503 |
| 2025-05-28T12:30:25Z | 1 | 195096504 |
|