File size: 9,648 Bytes
6d46163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f882d20
6d46163
058cca4
6d46163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f882d20
6d46163
 
 
f882d20
6d46163
 
 
 
 
 
 
 
 
 
 
f84677f
a107712
f84677f
6d46163
 
 
 
 
 
 
 
 
 
 
 
058cca4
6d46163
79b837d
6d46163
 
 
 
 
 
 
 
 
 
 
 
 
 
058cca4
79b837d
f61e329
12a9032
dc88717
1317898
6f57f9a
db175a2
43835b1
7fd49e0
ae3c9aa
d4e6b0a
1f600b8
47171df
5d8e04a
7ed7224
eb76869
245cac4
1654728
faeaee7
ca3fab9
54d8f81
5e882e5
464634e
a489261
3dfc5fe
f1e58a6
94729c2
7b1b445
c0ba5b6
a2fbf93
d7ff18b
2c7e4cc
3e8c307
dd93ac9
61ce714
e4a1b61
a5a6cde
2efc0ce
fb496b5
a67f117
7efd54a
52a1231
9a31a5e
08d3346
f3a032a
bcdb496
013e86d
d7145dd
0ecc661
949d842
019954c
950476b
3843659
cbe0206
d06b308
556a5e4
d2a2dd9
d3573c6
ad20d87
ce1903f
ea6160b
565e1d3
3d4d5ee
92a912e
05669cd
a6b1ddd
7b83dcd
d22c57b
86b9f14
41012a8
c57bc09
8695380
6f0adea
ad710e6
4a8bcae
a107712
9b0697c
5bf1be7
94a7bec
19e7c84
9a79104
ca9f2c2
4d3464b
d0c5b64
6461638
d6edf22
34e944c
2d7025d
2073eed
faf36ab
92047fd
ca6bbb1
f84677f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
---
license: mit
multilinguality:
  - multilingual
source_datasets:
  - original
task_categories:
  - text-classification
  - token-classification
  - question-answering
  - summarization
  - text-generation
task_ids:
  - sentiment-analysis
  - topic-classification
  - named-entity-recognition
  - language-modeling
  - text-scoring
  - multi-class-classification
  - multi-label-classification
  - extractive-qa
  - news-articles-summarization
---


# Bittensor Subnet 13 X (Twitter) Dataset

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>


## Dataset Description

- **Repository:** wavecreator22/x_dataset_108
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5C4ocMvKomsyb5WNeNqzBTPErtJ3AeyX81Y1dAYnDex66wBu

### Miner Data Compliance Agreement 

In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). 


### Dataset Summary

This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).

### Supported Tasks

The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example: 
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling

### Languages

Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.

## Dataset Structure

### Data Instances

Each instance represents a single tweet with the following fields:


### Data Fields

- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.

### Data Splits

This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.

## Dataset Creation

### Source Data

Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.

### Personal and Sensitive Information

All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.

## Considerations for Using the Data

### Social Impact and Biases

Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.

### Limitations

- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.

## Additional Information

### Licensing Information

The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.

### Citation Information

If you use this dataset in your research, please cite it as follows:

```
@misc{wavecreator222025datauniversex_dataset_108,
        title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
        author={wavecreator22},
        year={2025},
        url={https://huggingface.co/datasets/wavecreator22/x_dataset_108},
        }
```

### Contributions

To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.

## Dataset Statistics

[This section is automatically updated]

- **Total Instances:** 195096504
- **Date Range:** 2025-03-19T00:00:00Z to 2025-05-26T00:00:00Z
- **Last Updated:** 2025-05-28T12:30:25Z

### Data Distribution

- Tweets with hashtags: 13.88%
- Tweets without hashtags: 86.12%

### Top 10 Hashtags

For full statistics, please refer to the `stats.json` file in the repository.

| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | NULL | 168023398 | 86.12% |
| 2 | #tiktok | 998124 | 0.51% |
| 3 | #ad | 629902 | 0.32% |
| 4 | #pr | 472003 | 0.24% |
| 5 | #granhermano | 333912 | 0.17% |
| 6 | #amazon | 290847 | 0.15% |
| 7 | #yahooニュース | 289907 | 0.15% |
| 8 | #bbb25 | 278156 | 0.14% |
| 9 | #riyadh | 249773 | 0.13% |
| 10 | #lacasadelosfamososcol | 225517 | 0.12% |


## Update History

| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-04-21T16:59:34Z | 195096410 | 195096410 |
| 2025-04-22T15:03:45Z | 1 | 195096411 |
| 2025-04-22T15:50:51Z | 1 | 195096412 |
| 2025-04-23T09:05:55Z | 1 | 195096413 |
| 2025-04-24T02:41:59Z | 1 | 195096414 |
| 2025-04-24T19:55:31Z | 1 | 195096415 |
| 2025-04-25T12:56:37Z | 1 | 195096416 |
| 2025-04-26T05:57:40Z | 1 | 195096417 |
| 2025-04-26T22:58:42Z | 1 | 195096418 |
| 2025-04-27T15:59:45Z | 1 | 195096419 |
| 2025-04-28T09:00:57Z | 1 | 195096420 |
| 2025-04-29T02:02:22Z | 1 | 195096421 |
| 2025-04-29T19:03:26Z | 1 | 195096422 |
| 2025-04-30T12:04:27Z | 1 | 195096423 |
| 2025-05-01T05:06:14Z | 1 | 195096424 |
| 2025-05-01T22:07:28Z | 1 | 195096425 |
| 2025-05-01T23:09:44Z | 1 | 195096426 |
| 2025-05-02T16:33:57Z | 1 | 195096427 |
| 2025-05-03T09:36:50Z | 1 | 195096428 |
| 2025-05-04T02:39:26Z | 1 | 195096429 |
| 2025-05-04T20:12:05Z | 1 | 195096430 |
| 2025-05-05T13:14:32Z | 1 | 195096431 |
| 2025-05-06T06:17:09Z | 1 | 195096432 |
| 2025-05-07T00:18:47Z | 1 | 195096433 |
| 2025-05-07T17:20:53Z | 1 | 195096434 |
| 2025-05-08T10:22:38Z | 1 | 195096435 |
| 2025-05-08T11:25:06Z | 1 | 195096436 |
| 2025-05-09T04:27:01Z | 1 | 195096437 |
| 2025-05-09T21:28:43Z | 1 | 195096438 |
| 2025-05-10T14:30:27Z | 1 | 195096439 |
| 2025-05-11T07:31:58Z | 1 | 195096440 |
| 2025-05-12T00:33:56Z | 1 | 195096441 |
| 2025-05-12T17:35:59Z | 1 | 195096442 |
| 2025-05-13T10:49:06Z | 1 | 195096443 |
| 2025-05-14T03:51:41Z | 1 | 195096444 |
| 2025-05-14T20:54:00Z | 1 | 195096445 |
| 2025-05-14T21:57:11Z | 1 | 195096446 |
| 2025-05-17T12:28:50Z | 1 | 195096447 |
| 2025-05-18T05:47:19Z | 1 | 195096448 |
| 2025-05-20T10:22:02Z | 1 | 195096449 |
| 2025-05-21T03:26:58Z | 1 | 195096450 |
| 2025-05-21T20:29:11Z | 1 | 195096451 |
| 2025-05-22T13:31:06Z | 1 | 195096452 |
| 2025-05-23T06:33:05Z | 1 | 195096453 |
| 2025-05-23T23:34:53Z | 1 | 195096454 |
| 2025-05-25T08:59:29Z | 1 | 195096455 |
| 2025-05-25T11:11:15Z | 1 | 195096456 |
| 2025-05-26T12:30:57Z | 1 | 195096457 |
| 2025-05-26T13:31:49Z | 1 | 195096458 |
| 2025-05-26T14:33:03Z | 1 | 195096459 |
| 2025-05-26T15:34:26Z | 1 | 195096460 |
| 2025-05-26T16:35:45Z | 1 | 195096461 |
| 2025-05-26T17:37:28Z | 1 | 195096462 |
| 2025-05-26T18:38:20Z | 1 | 195096463 |
| 2025-05-26T19:39:05Z | 1 | 195096464 |
| 2025-05-26T20:39:46Z | 1 | 195096465 |
| 2025-05-26T21:40:31Z | 1 | 195096466 |
| 2025-05-26T22:41:15Z | 1 | 195096467 |
| 2025-05-26T23:41:59Z | 1 | 195096468 |
| 2025-05-27T00:42:41Z | 1 | 195096469 |
| 2025-05-27T01:43:32Z | 1 | 195096470 |
| 2025-05-27T02:44:30Z | 1 | 195096471 |
| 2025-05-27T03:45:28Z | 1 | 195096472 |
| 2025-05-27T04:46:39Z | 1 | 195096473 |
| 2025-05-27T05:47:39Z | 1 | 195096474 |
| 2025-05-27T06:49:02Z | 1 | 195096475 |
| 2025-05-27T07:50:48Z | 1 | 195096476 |
| 2025-05-27T08:52:39Z | 1 | 195096477 |
| 2025-05-27T09:54:33Z | 1 | 195096478 |
| 2025-05-27T10:57:01Z | 1 | 195096479 |
| 2025-05-27T11:58:30Z | 1 | 195096480 |
| 2025-05-27T13:00:08Z | 1 | 195096481 |
| 2025-05-27T14:01:45Z | 1 | 195096482 |
| 2025-05-27T15:03:27Z | 1 | 195096483 |
| 2025-05-27T16:05:10Z | 1 | 195096484 |
| 2025-05-27T17:06:45Z | 1 | 195096485 |
| 2025-05-27T18:08:28Z | 1 | 195096486 |
| 2025-05-27T19:09:52Z | 1 | 195096487 |
| 2025-05-27T20:10:48Z | 1 | 195096488 |
| 2025-05-27T21:11:43Z | 1 | 195096489 |
| 2025-05-27T22:12:29Z | 1 | 195096490 |
| 2025-05-27T23:13:17Z | 1 | 195096491 |
| 2025-05-28T00:14:02Z | 1 | 195096492 |
| 2025-05-28T01:14:49Z | 1 | 195096493 |
| 2025-05-28T02:15:36Z | 1 | 195096494 |
| 2025-05-28T03:16:38Z | 1 | 195096495 |
| 2025-05-28T04:17:55Z | 1 | 195096496 |
| 2025-05-28T05:18:58Z | 1 | 195096497 |
| 2025-05-28T06:20:04Z | 1 | 195096498 |
| 2025-05-28T07:21:35Z | 1 | 195096499 |
| 2025-05-28T08:23:14Z | 1 | 195096500 |
| 2025-05-28T09:24:52Z | 1 | 195096501 |
| 2025-05-28T10:26:24Z | 1 | 195096502 |
| 2025-05-28T11:28:18Z | 1 | 195096503 |
| 2025-05-28T12:30:25Z | 1 | 195096504 |