File size: 10,108 Bytes
be46cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import json
import os
from collections import OrderedDict, defaultdict
from math import ceil
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd

import datasets

logger = datasets.logging.get_logger(__name__)

_LICENSE = "GPL-3.0 license"

_CITATION = """\
@article{weedMap-2018,
    author={I. Sa, M. Popovic, R. Khanna, Z. Chen, P. Lottes, F. Liebisch, J. Nieto, C. Stachniss, A. Walter, and R. Siegwart}, 
    journal={MDPI Remote Sensing},
    title={WeedMap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming}, 
    year={2018},
    volume={10},
    number={9}, 
    doi={doi: 10.3390/rs10091423},
    month={Aug}}
}
"""

_HOMEPAGE = "https://projects.asl.ethz.ch/datasets/doku.php?id=weedmap:remotesensing2018weedmap"

_DESCRIPTION = """\
The WeedMap dataset is a comprehensive collection of multispectral images captured from sugar beet fields in Eschikon, Switzerland, and Rheinbach, Germany, using quadrotor UAVs equipped with RedEdge-M and Sequoia multispectral cameras. 
Spanning over five months, it comprises 129 directories with 18,746 image files. The dataset is divided into Orthomosaic and Tiles folders, featuring orthomosaic maps and their segmented tiles, respectively. 
Ground truth annotations are provided, detailing classifications such as background, crop, and weed in both color and indexed formats. This dataset, the largest publicly available for sugar beet fields with pixel-level ground truth, spans a total area of 16,554 square meters. 
It offers a detailed representation of the agricultural landscape, including a ground sample distance of about 1cm, facilitating high precision in weed detection research. This rich dataset supports the development of advanced deep learning models for semantic segmentation in precision agriculture, enhancing weed management practices​​​​.
"""

_URLS = {
    "RED_EDGE": "http://robotics.ethz.ch/~asl-datasets/2018-weedMap-dataset-release/Tiles/RedEdge.zip",
    "SEQUOIA": "http://robotics.ethz.ch/~asl-datasets/2018-weedMap-dataset-release/Tiles/Sequoia.zip",
}

WEEDMAP_CLASSES = OrderedDict(
    {
        0: "BACKGROUND",
        1: "CROP",
        2: "WEED",
    }
)

SEQUOIA_CHANNELS = ['CIR', 'G', 'NDVI', 'NIR', 'R', 'RE']
SEQUOIA_SPLIT = {
    "train": ["006", "007"],
    "test": ["005"],
}

REDEDGE_CHANNELS = ['B', 'CIR', 'G', 'NDVI', 'NIR', 'R', 'RE', "RGB"]
REDEDGE_SPLIT = {
    "train": ["000", "001", "002", "004"],
    "test": ["003"],
}


class WeedMapConfig(datasets.BuilderConfig):
    """BuilderConfig for WeedMap."""

    def __init__(self, data_url, **kwargs):
        """BuilderConfig for WeedMap.

        Args:
            data_url: `string`, url to download the zip file from.
            **kwargs: keyword arguments forwarded to super.
        """
        super(WeedMapConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.data_url = data_url

class WeedMap(datasets.GeneratorBasedBuilder):
    """Remote Sensing 2018 Weed Map Dataset."""

    BUILDER_CONFIGS = [
        WeedMapConfig(
            name="red_edge",
            description="weedmap dataset with the subset generated by the Red Edge sensor",
            data_url=_URLS["RED_EDGE"],)
        ,
        WeedMapConfig(
            name="sequoia",
            description="weedmap dataset with the subset generated by the Sequoia sensor",
            data_url=_URLS["SEQUOIA"],)
    ]

    DEFAULT_CONFIG_NAME = "red_edge"

    def _info(self):
        if self.config.name == "red_edge":
            features = datasets.Features(
                {
                    "B": datasets.Image(),
                    "CIR": datasets.Image(),
                    "G": datasets.Image(),
                    "NDVI": datasets.Image(),
                    "NIR": datasets.Image(),
                    "R": datasets.Image(),
                    "RE": datasets.Image(),
                    "RGB": datasets.Image(),
                    "annotation": datasets.Image(),
                }
            )
        elif self.config.name == "sequoia":
            features = datasets.Features(
                {
                    "CIR": datasets.Image(),
                    "G": datasets.Image(),
                    "NDVI": datasets.Image(),
                    "NIR": datasets.Image(),
                    "R": datasets.Image(),
                    "RE": datasets.Image(),
                    "annotation": datasets.Image(),
                }
            )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # use the datasets.DownloadManager().download_and_extract() method to download the data
        # in testing time, the data will be downloaded in the default cache directory, which is
        # ~/.cache/huggingface/datasets

        def images_and_masks(images_dict, masks):
            for image_dict, mask in zip(images_dict, masks):
                yield image_dict, mask

        if self.config.name == "red_edge":
            data_dir = dl_manager.download_and_extract(_URLS["RED_EDGE"])
            files_path = dl_manager.iter_files(data_dir)
            train_image_files, train_mask_files = create_list_paths(files_path, subset="red_edge", split_section="train")
            test_image_files, test_mask_files = create_list_paths(files_path, subset="red_edge", split_section="test")


        elif self.config.name == "sequoia":
            data_dir = dl_manager.download_and_extract(_URLS["SEQUOIA"])
            files_path = dl_manager.iter_files(data_dir)
            train_image_files, train_mask_files = create_list_paths(files_path, subset="sequoia", split_section="train")
            test_image_files, test_mask_files = create_list_paths(files_path, subset="sequoia", split_section="test")

        return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "data": images_and_masks(train_image_files, train_mask_files),
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "data": images_and_masks(test_image_files, test_mask_files),
                    },
                ),
            ]     

    def _generate_examples(self, data):

        """Yields examples."""
        if self.config.name == "red_edge":
            for idx, (img_path, msk_path) in enumerate(data):
                print("")
                print("")
                print("")
                print(img_path["B"])
                print("")
                print("")
                print("")
                yield idx, {
                    "B": img_path["B"],
                    "CIR": img_path["CIR"],
                    "G": img_path["G"],
                    "NDVI": img_path["NDVI"],
                    "NIR": img_path["NIR"],
                    "R": img_path["R"],
                    "RE": img_path["RE"],
                    "RGB": img_path["RGB"],
                    "annotation": msk_path,
                }

        elif self.config.name == "sequoia":
            for idx, (img_path, msk_path) in enumerate(data):
                yield idx, {
                    "CIR": img_path["CIR"],
                    "G": img_path["G"],
                    "NDVI": img_path["NDVI"],
                    "NIR": img_path["NIR"],
                    "R": img_path["R"],
                    "RE": img_path["RE"],
                    "annotation": msk_path,
                }
            
def create_list_paths(total_files_path, subset="red_edge", split_section="train"):
    """
    Create a list of paths for the images and masks.

    Args:
        total_files_path (list): A list of file paths.
        subset (str, optional): The subset to filter the files. Defaults to "red_edge".
        split_section (str, optional): The split section to filter the files. Defaults to "train".

    Returns:
        tuple or list: If split_section is "train", returns a tuple containing train_image_files, train_mask_files,
                        val_image_files, val_mask_files. Otherwise, returns a list containing split_image_files and
                        split_mask_files.
    """
    if subset == "red_edge":
        subset_dict = REDEDGE_SPLIT

    elif subset == "sequoia":
        subset_dict = SEQUOIA_SPLIT

    # multi filter
    split_files_path = [
        file_path for file_path in total_files_path
        if (
            (not ".DS_Store" in file_path) and  # don't take account trash files
            ("GroundTruth_color.png" in file_path or  # if the image is a color mask, save the path
            file_path.split("/")[-4] in subset_dict[split_section]  # if the image is in the correct split folder, save the path
            )
        )
                        ]

    split_mask_files = []
    split_image_files = dict()

    # separate every tile by channel name
    for file in split_files_path:
        if "tile" in file:
            image_channel_name = file.split("/")[-2]
            split_image_files.setdefault(image_channel_name, [])
            split_image_files[image_channel_name].append(file)
        else:
            split_mask_files.append(file)

    # sorted the image and mask files by name
    for key, image_paths_channel in split_image_files.items():
        split_image_files[key] = sorted(image_paths_channel, key=lambda path_file: (str(path_file).split("/")[-4], str(path_file).split("/")[-1]))
    split_mask_files = sorted(split_mask_files, key=lambda path_file: (str(path_file).split("/")[-4], str(path_file).split("/")[-1]))

    split_image_files_ld = [dict(zip(split_image_files, t)) for t in zip(*split_image_files.values())]

    return split_image_files_ld, split_mask_files