Datasets:

ArXiv:
License:
dp-bench / scripts /infer_microsoft.py
shinseung428's picture
update scripts and script README
cb40a1c
raw
history blame contribute delete
7.41 kB
import os
import json
import argparse
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential
from utils import read_file_paths, validate_json_save_path, load_json_file
CATEGORY_MAP = {
"Title": "heading1",
"SectionHeading": "heading1",
"footnote": "footnote",
"PageHeader": "header",
"PageFooter": "footer",
"Paragraph": "paragraph",
"Subheading": "heading1",
"SectionMarks": "paragraph",
"PageNumber": "paragraph"
}
class MicrosoftInference:
def __init__(
self,
save_path,
input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"]
):
"""Initialize the MicrosoftInference class
Args:
save_path (str): the json path to save the results
input_formats (list, optional): the supported file formats.
"""
MICROSOFT_API_KEY = os.getenv("MICROSOFT_API_KEY") or ""
MICROSOFT_ENDPOINT = os.getenv("MICROSOFT_ENDPOINT") or ""
if not all([MICROSOFT_API_KEY, MICROSOFT_ENDPOINT]):
raise ValueError("Please set the environment variables for Microsoft")
self.document_analysis_client = DocumentAnalysisClient(
endpoint=MICROSOFT_ENDPOINT, credential=AzureKeyCredential(MICROSOFT_API_KEY)
)
validate_json_save_path(save_path)
self.save_path = save_path
self.processed_data = load_json_file(save_path)
self.formats = input_formats
def post_process(self, data):
processed_dict = {}
for input_key in data.keys():
output_data = data[input_key]
processed_dict[input_key] = {
"elements": []
}
id_counter = 0
for par_elem in output_data["paragraphs"]:
category = par_elem["role"]
category = CATEGORY_MAP.get(category, "paragraph")
transcription = par_elem["content"]
coord = [[pt["x"], pt["y"]] for pt in par_elem["bounding_regions"][0]["polygon"]]
xy_coord = [{"x": x, "y": y} for x, y in coord]
data_dict = {
"coordinates": xy_coord,
"category": category,
"id": id_counter,
"content": {
"text": transcription,
"html": "",
"markdown": ""
}
}
processed_dict[input_key]["elements"].append(data_dict)
id_counter += 1
html_transcription = ""
for table_elem in output_data["tables"]:
coord = [[pt["x"], pt["y"]] for pt in table_elem["bounding_regions"][0]["polygon"]]
xy_coord = [{"x": x, "y": y} for x, y in coord]
category = "table"
html_transcription += "<table>"
# Create a matrix to represent the table
table_matrix = [
["" for _ in range(table_elem["column_count"])] for _ in range(table_elem["row_count"])
]
# Fill the matrix with table data
for cell in table_elem["cells"]:
row = cell["row_index"]
col = cell["column_index"]
rowspan = cell.get("row_span", 1)
colspan = cell.get("column_span", 1)
content = cell["content"]
# Insert content into the matrix, handle rowspan and colspan
for r in range(row, row + rowspan):
for c in range(col, col + colspan):
if r == row and c == col:
table_matrix[r][c] = f"<td rowspan='{rowspan}' colspan='{colspan}'>{content}</td>"
else:
# Mark cells covered by rowspan or colspan
table_matrix[r][c] = None
# Generate HTML from the matrix
for row in table_matrix:
html_transcription += "<tr>"
for cell in row:
if cell is not None:
html_transcription += f"{cell}"
html_transcription += "</tr>"
html_transcription += "</table>"
data_dict = {
"coordinates": xy_coord,
"category": category,
"id": id_counter,
"content": {
"text": "",
"html": html_transcription,
"markdown": ""
}
}
processed_dict[input_key]["elements"].append(data_dict)
id_counter += 1
for key in self.processed_data:
processed_dict[key] = self.processed_data[key]
return processed_dict
def infer(self, file_path):
"""Infer the layout of the documents in the given file path
Args:
file_path (str): the path to the file or directory containing the documents to process
"""
paths = read_file_paths(file_path, supported_formats=self.formats)
error_files = []
result_dict = {}
for idx, filepath in enumerate(paths):
print("({}/{}) {}".format(idx+1, len(paths), filepath))
filename = filepath.name
if filename in self.processed_data.keys():
print(f"'{filename}' is already in the loaded dictionary. Skipping this sample")
continue
input_data = open(filepath, "rb")
try:
poller = self.document_analysis_client.begin_analyze_document(
"prebuilt-layout", document=input_data
)
result = poller.result()
json_result = result.to_dict()
except Exception as e:
print(e)
print("Error processing document..")
error_files.append(filepath)
continue
result_dict[filename] = json_result
result_dict = self.post_process(result_dict)
with open(self.save_path, "w") as f:
json.dump(result_dict, f)
for error_file in error_files:
print(f"Error processing file: {error_file}")
print("Finished processing all documents")
print("Results saved to: {}".format(self.save_path))
print("Number of errors: {}".format(len(error_files)))
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument(
"--data_path",
type=str, default="", required=True,
help="Path containing the documents to process"
)
args.add_argument(
"--save_path",
type=str, default="", required=True,
help="Path to save the results"
)
args.add_argument(
"--input_formats",
type=list, default=[
".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"
],
help="Supported input file formats"
)
args = args.parse_args()
microsoft_inference = MicrosoftInference(
args.save_path,
input_formats=args.input_formats
)
microsoft_inference.infer(args.data_path)