ucalyptus commited on
Commit
0b08271
·
verified ·
1 Parent(s): 0f87879

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - question-answering
4
+ - table-question-answering
5
+ - text-generation
6
+ - text2text-generation
7
+ language:
8
+ - en
9
+ tags:
10
+ - text2sql
11
+ - text-to-sql
12
+ - database
13
+ - llm
14
+ - llama
15
+ pretty_name: birdbench
16
+ size_categories:
17
+ - 100M<n<1B
18
+ ---
19
+ ## BirdBench Dataset in DuckDB format
20
+
21
+ BirdBench is a benchmark for text-to-SQL capabilities, now available in DuckDB format for improved performance and usability.
22
+
23
+ ## About BirdBench
24
+
25
+ BirdBench is a comprehensive benchmark dataset for evaluating text-to-SQL capabilities of language models. It features a diverse collection of databases spanning various domains including:
26
+
27
+ - Business and finance
28
+ - Entertainment and media
29
+ - Sports and recreation
30
+ - Health and medicine
31
+ - Education
32
+ - Travel and geography
33
+ - And many more
34
+
35
+ ## Why DuckDB?
36
+
37
+ This repository contains the BirdBench dataset converted from SQLite to DuckDB format, which offers several advantages:
38
+
39
+ - **Performance**: DuckDB is significantly faster for analytical queries
40
+ - **Integration**: Better integration with Python data science tools
41
+ - **Features**: Support for vectorized operations and advanced analytical functions
42
+ - **Compatibility**: Works well in environments where SQLite might have limitations
43
+
44
+ ## Dataset Structure
45
+
46
+ The dataset maintains the original BirdBench structure, with both training and validation databases converted to DuckDB format:
47
+
48
+ - `/train` - Contains training databases
49
+ - `/validation` - Contains validation databases
50
+
51
+ Each database preserves the original schema and data from the SQLite version.
52
+
53
+ ## Usage
54
+
55
+ ### Loading a database
56
+
57
+ ```python
58
+ import duckdb
59
+
60
+ # Connect to a database
61
+ conn = duckdb.connect('path/to/database.duckdb')
62
+
63
+ # List tables
64
+ tables = conn.execute('SELECT name FROM sqlite_master WHERE type="table"').fetchall()
65
+ print(tables)
66
+
67
+ # Run a query
68
+ result = conn.execute('SELECT * FROM your_table LIMIT 5').fetchall()
69
+ print(result)