Shreshth Gandhi
commited on
Commit
·
c17073b
1
Parent(s):
963e940
Update notebook
Browse files- tutorials/loading_data.ipynb +141 -235
tutorials/loading_data.ipynb
CHANGED
@@ -2,326 +2,232 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "markdown",
|
5 |
-
"id": "
|
6 |
"metadata": {},
|
7 |
"source": [
|
8 |
-
"# Tutorial: Creating an AnnData
|
9 |
-
"This notebook demonstrates how to create an `AnnData` object using the Tahoe-100M dataset on Hugging Face."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
]
|
11 |
},
|
12 |
{
|
13 |
"cell_type": "code",
|
14 |
-
"execution_count":
|
15 |
-
"id": "
|
16 |
"metadata": {},
|
17 |
"outputs": [],
|
18 |
-
"source":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
-
"execution_count":
|
23 |
-
"id": "
|
24 |
"metadata": {},
|
25 |
-
"outputs": [
|
26 |
-
{
|
27 |
-
"name": "stderr",
|
28 |
-
"output_type": "stream",
|
29 |
-
"text": [
|
30 |
-
"/usr/lib/python3/dist-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
31 |
-
" from .autonotebook import tqdm as notebook_tqdm\n"
|
32 |
-
]
|
33 |
-
}
|
34 |
-
],
|
35 |
"source": [
|
36 |
"from datasets import load_dataset\n",
|
37 |
"from scipy.sparse import csr_matrix\n",
|
38 |
"import anndata\n",
|
39 |
-
"import pandas as pd"
|
|
|
40 |
]
|
41 |
},
|
42 |
{
|
43 |
"cell_type": "markdown",
|
44 |
-
"id": "
|
45 |
"metadata": {},
|
46 |
"source": [
|
47 |
-
"## Helper
|
48 |
-
"Define a function to construct the AnnData object from a data generator."
|
49 |
]
|
50 |
},
|
51 |
{
|
52 |
"cell_type": "code",
|
53 |
-
"execution_count":
|
54 |
-
"id": "
|
55 |
"metadata": {},
|
56 |
"outputs": [],
|
57 |
"source": [
|
58 |
-
"
|
59 |
-
"def create_anndata_from_generator(generator, gene_vocab, sample_size=None):\n",
|
60 |
-
" sorted_vocab_items = sorted(gene_vocab.items())\n",
|
61 |
-
" token_ids, gene_names = zip(*sorted_vocab_items)\n",
|
62 |
-
" token_id_to_col_idx = {token_id: idx for idx, token_id in enumerate(token_ids)}\n",
|
63 |
-
"\n",
|
64 |
-
" data, indices, indptr = [], [], [0]\n",
|
65 |
-
" obs_data = []\n",
|
66 |
-
"\n",
|
67 |
-
" for i, cell in enumerate(generator):\n",
|
68 |
-
" if sample_size is not None and i >= sample_size:\n",
|
69 |
-
" break\n",
|
70 |
-
" genes = cell['genes']\n",
|
71 |
-
" expressions = cell['expressions']\n",
|
72 |
-
" if expressions[0] < 0: \n",
|
73 |
-
" genes = genes[1:]\n",
|
74 |
-
" expressions = expressions[1:]\n",
|
75 |
-
"\n",
|
76 |
-
" col_indices = [token_id_to_col_idx[gene] for gene in genes if gene in token_id_to_col_idx]\n",
|
77 |
-
" valid_expressions = [expr for gene, expr in zip(genes, expressions) if gene in token_id_to_col_idx]\n",
|
78 |
-
"\n",
|
79 |
-
" data.extend(valid_expressions)\n",
|
80 |
-
" indices.extend(col_indices)\n",
|
81 |
-
" indptr.append(len(data))\n",
|
82 |
-
"\n",
|
83 |
-
" obs_entry = {k: v for k, v in cell.items() if k not in ['genes', 'expressions']}\n",
|
84 |
-
" obs_data.append(obs_entry)\n",
|
85 |
-
"\n",
|
86 |
-
" expr_matrix = csr_matrix((data, indices, indptr), shape=(len(indptr) - 1, len(gene_names)))\n",
|
87 |
-
" obs_df = pd.DataFrame(obs_data)\n",
|
88 |
-
"\n",
|
89 |
-
" adata = anndata.AnnData(X=expr_matrix, obs=obs_df)\n",
|
90 |
-
" adata.var.index = pd.Index(gene_names, name='ensembl_id')\n",
|
91 |
-
"\n",
|
92 |
-
" return adata\n"
|
93 |
]
|
94 |
},
|
95 |
{
|
96 |
"cell_type": "markdown",
|
97 |
-
"id": "
|
98 |
"metadata": {},
|
99 |
"source": [
|
100 |
-
"## Load Tahoe-100M
|
101 |
]
|
102 |
},
|
103 |
{
|
104 |
"cell_type": "code",
|
105 |
-
"execution_count":
|
106 |
-
"id": "
|
107 |
"metadata": {},
|
108 |
"outputs": [],
|
109 |
"source": [
|
110 |
-
"
|
111 |
-
"# Stream the main dataset\n",
|
112 |
-
"tahoe_100m_ds = load_dataset(\"vevotx/Tahoe-100M\", streaming=True, split=\"train\")\n"
|
113 |
]
|
114 |
},
|
115 |
{
|
116 |
"cell_type": "markdown",
|
117 |
-
"id": "
|
118 |
"metadata": {},
|
119 |
"source": [
|
120 |
-
"## Load
|
121 |
]
|
122 |
},
|
123 |
{
|
124 |
"cell_type": "code",
|
125 |
-
"execution_count":
|
126 |
-
"id": "
|
127 |
"metadata": {},
|
128 |
"outputs": [],
|
129 |
"source": [
|
130 |
-
"\n",
|
131 |
"gene_metadata = load_dataset(\"vevotx/Tahoe-100M\", name=\"gene_metadata\", split=\"train\")\n",
|
132 |
-
"gene_vocab = {entry[\"token_id\"]: entry[\"ensembl_id\"] for entry in gene_metadata}
|
133 |
]
|
134 |
},
|
135 |
{
|
136 |
"cell_type": "markdown",
|
137 |
-
"id": "
|
138 |
"metadata": {},
|
139 |
"source": [
|
140 |
-
"## Create AnnData
|
141 |
]
|
142 |
},
|
143 |
{
|
144 |
"cell_type": "code",
|
145 |
-
"execution_count":
|
146 |
-
"id": "
|
147 |
"metadata": {},
|
148 |
-
"outputs": [
|
149 |
-
{
|
150 |
-
"name": "stderr",
|
151 |
-
"output_type": "stream",
|
152 |
-
"text": [
|
153 |
-
"/usr/lib/python3/dist-packages/anndata/_core/aligned_df.py:68: ImplicitModificationWarning: Transforming to str index.\n",
|
154 |
-
" warnings.warn(\"Transforming to str index.\", ImplicitModificationWarning)\n"
|
155 |
-
]
|
156 |
-
},
|
157 |
-
{
|
158 |
-
"data": {
|
159 |
-
"text/plain": [
|
160 |
-
"AnnData object with n_obs × n_vars = 1000 × 62710\n",
|
161 |
-
" obs: 'drug', 'sample', 'BARCODE_SUB_LIB_ID', 'cell_line_id', 'moa-fine', 'canonical_smiles', 'pubchem_cid', 'plate'"
|
162 |
-
]
|
163 |
-
},
|
164 |
-
"execution_count": 6,
|
165 |
-
"metadata": {},
|
166 |
-
"output_type": "execute_result"
|
167 |
-
}
|
168 |
-
],
|
169 |
"source": [
|
170 |
-
"\n",
|
171 |
"adata = create_anndata_from_generator(tahoe_100m_ds, gene_vocab, sample_size=1000)\n",
|
172 |
-
"adata
|
173 |
]
|
174 |
},
|
175 |
{
|
176 |
"cell_type": "markdown",
|
177 |
-
"id": "
|
178 |
"metadata": {},
|
179 |
"source": [
|
180 |
-
"## Inspect
|
181 |
]
|
182 |
},
|
183 |
{
|
184 |
"cell_type": "code",
|
185 |
-
"execution_count":
|
186 |
-
"id": "
|
187 |
"metadata": {},
|
188 |
-
"outputs": [
|
189 |
-
{
|
190 |
-
"data": {
|
191 |
-
"text/html": [
|
192 |
-
"<div>\n",
|
193 |
-
"<style scoped>\n",
|
194 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
195 |
-
" vertical-align: middle;\n",
|
196 |
-
" }\n",
|
197 |
-
"\n",
|
198 |
-
" .dataframe tbody tr th {\n",
|
199 |
-
" vertical-align: top;\n",
|
200 |
-
" }\n",
|
201 |
-
"\n",
|
202 |
-
" .dataframe thead th {\n",
|
203 |
-
" text-align: right;\n",
|
204 |
-
" }\n",
|
205 |
-
"</style>\n",
|
206 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
207 |
-
" <thead>\n",
|
208 |
-
" <tr style=\"text-align: right;\">\n",
|
209 |
-
" <th></th>\n",
|
210 |
-
" <th>drug</th>\n",
|
211 |
-
" <th>sample</th>\n",
|
212 |
-
" <th>BARCODE_SUB_LIB_ID</th>\n",
|
213 |
-
" <th>cell_line_id</th>\n",
|
214 |
-
" <th>moa-fine</th>\n",
|
215 |
-
" <th>canonical_smiles</th>\n",
|
216 |
-
" <th>pubchem_cid</th>\n",
|
217 |
-
" <th>plate</th>\n",
|
218 |
-
" </tr>\n",
|
219 |
-
" </thead>\n",
|
220 |
-
" <tbody>\n",
|
221 |
-
" <tr>\n",
|
222 |
-
" <th>0</th>\n",
|
223 |
-
" <td>8-Hydroxyquinoline</td>\n",
|
224 |
-
" <td>smp_1783</td>\n",
|
225 |
-
" <td>01_001_052-lib_1105</td>\n",
|
226 |
-
" <td>CVCL_0480</td>\n",
|
227 |
-
" <td>unclear</td>\n",
|
228 |
-
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
229 |
-
" <td>1923.0</td>\n",
|
230 |
-
" <td>plate4</td>\n",
|
231 |
-
" </tr>\n",
|
232 |
-
" <tr>\n",
|
233 |
-
" <th>1</th>\n",
|
234 |
-
" <td>8-Hydroxyquinoline</td>\n",
|
235 |
-
" <td>smp_1783</td>\n",
|
236 |
-
" <td>01_001_105-lib_1105</td>\n",
|
237 |
-
" <td>CVCL_0546</td>\n",
|
238 |
-
" <td>unclear</td>\n",
|
239 |
-
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
240 |
-
" <td>1923.0</td>\n",
|
241 |
-
" <td>plate4</td>\n",
|
242 |
-
" </tr>\n",
|
243 |
-
" <tr>\n",
|
244 |
-
" <th>2</th>\n",
|
245 |
-
" <td>8-Hydroxyquinoline</td>\n",
|
246 |
-
" <td>smp_1783</td>\n",
|
247 |
-
" <td>01_001_165-lib_1105</td>\n",
|
248 |
-
" <td>CVCL_1717</td>\n",
|
249 |
-
" <td>unclear</td>\n",
|
250 |
-
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
251 |
-
" <td>1923.0</td>\n",
|
252 |
-
" <td>plate4</td>\n",
|
253 |
-
" </tr>\n",
|
254 |
-
" <tr>\n",
|
255 |
-
" <th>3</th>\n",
|
256 |
-
" <td>8-Hydroxyquinoline</td>\n",
|
257 |
-
" <td>smp_1783</td>\n",
|
258 |
-
" <td>01_003_094-lib_1105</td>\n",
|
259 |
-
" <td>CVCL_1717</td>\n",
|
260 |
-
" <td>unclear</td>\n",
|
261 |
-
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
262 |
-
" <td>1923.0</td>\n",
|
263 |
-
" <td>plate4</td>\n",
|
264 |
-
" </tr>\n",
|
265 |
-
" <tr>\n",
|
266 |
-
" <th>4</th>\n",
|
267 |
-
" <td>8-Hydroxyquinoline</td>\n",
|
268 |
-
" <td>smp_1783</td>\n",
|
269 |
-
" <td>01_003_164-lib_1105</td>\n",
|
270 |
-
" <td>CVCL_1056</td>\n",
|
271 |
-
" <td>unclear</td>\n",
|
272 |
-
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
273 |
-
" <td>1923.0</td>\n",
|
274 |
-
" <td>plate4</td>\n",
|
275 |
-
" </tr>\n",
|
276 |
-
" </tbody>\n",
|
277 |
-
"</table>\n",
|
278 |
-
"</div>"
|
279 |
-
],
|
280 |
-
"text/plain": [
|
281 |
-
" drug sample BARCODE_SUB_LIB_ID cell_line_id moa-fine \\\n",
|
282 |
-
"0 8-Hydroxyquinoline smp_1783 01_001_052-lib_1105 CVCL_0480 unclear \n",
|
283 |
-
"1 8-Hydroxyquinoline smp_1783 01_001_105-lib_1105 CVCL_0546 unclear \n",
|
284 |
-
"2 8-Hydroxyquinoline smp_1783 01_001_165-lib_1105 CVCL_1717 unclear \n",
|
285 |
-
"3 8-Hydroxyquinoline smp_1783 01_003_094-lib_1105 CVCL_1717 unclear \n",
|
286 |
-
"4 8-Hydroxyquinoline smp_1783 01_003_164-lib_1105 CVCL_1056 unclear \n",
|
287 |
-
"\n",
|
288 |
-
" canonical_smiles pubchem_cid plate \n",
|
289 |
-
"0 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
290 |
-
"1 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
291 |
-
"2 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
292 |
-
"3 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
293 |
-
"4 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 "
|
294 |
-
]
|
295 |
-
},
|
296 |
-
"execution_count": 7,
|
297 |
-
"metadata": {},
|
298 |
-
"output_type": "execute_result"
|
299 |
-
}
|
300 |
-
],
|
301 |
"source": [
|
302 |
"adata.obs.head()"
|
303 |
]
|
304 |
-
}
|
305 |
-
],
|
306 |
-
"metadata": {
|
307 |
-
"kernelspec": {
|
308 |
-
"display_name": "Python 3 (ipykernel)",
|
309 |
-
"language": "python",
|
310 |
-
"name": "python3"
|
311 |
},
|
312 |
-
|
313 |
-
"
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
"
|
322 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
}
|
324 |
-
|
|
|
325 |
"nbformat": 4,
|
326 |
"nbformat_minor": 5
|
327 |
}
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "markdown",
|
5 |
+
"id": "b68cf1d8",
|
6 |
"metadata": {},
|
7 |
"source": [
|
8 |
+
"# Tutorial: Creating an AnnData Object from Tahoe-100M Dataset\n",
|
9 |
+
"This notebook demonstrates step-by-step how to create an `AnnData` object using the Tahoe-100M dataset hosted on Hugging Face. We'll also enrich the metadata with additional information."
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "markdown",
|
14 |
+
"id": "fc9a7282",
|
15 |
+
"metadata": {},
|
16 |
+
"source": [
|
17 |
+
"## Install Required Libraries"
|
18 |
]
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
+
"execution_count": null,
|
23 |
+
"id": "21bab5b0",
|
24 |
"metadata": {},
|
25 |
"outputs": [],
|
26 |
+
"source": [
|
27 |
+
"!pip install datasets anndata scipy pandas pubchempy"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "markdown",
|
32 |
+
"id": "7e9bf44e",
|
33 |
+
"metadata": {},
|
34 |
+
"source": [
|
35 |
+
"## Import Libraries"
|
36 |
+
]
|
37 |
},
|
38 |
{
|
39 |
"cell_type": "code",
|
40 |
+
"execution_count": null,
|
41 |
+
"id": "a7589c73",
|
42 |
"metadata": {},
|
43 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
"source": [
|
45 |
"from datasets import load_dataset\n",
|
46 |
"from scipy.sparse import csr_matrix\n",
|
47 |
"import anndata\n",
|
48 |
+
"import pandas as pd\n",
|
49 |
+
"import pubchempy as pcp"
|
50 |
]
|
51 |
},
|
52 |
{
|
53 |
"cell_type": "markdown",
|
54 |
+
"id": "f31cd11c",
|
55 |
"metadata": {},
|
56 |
"source": [
|
57 |
+
"## Helper Function"
|
|
|
58 |
]
|
59 |
},
|
60 |
{
|
61 |
"cell_type": "code",
|
62 |
+
"execution_count": null,
|
63 |
+
"id": "f4391697",
|
64 |
"metadata": {},
|
65 |
"outputs": [],
|
66 |
"source": [
|
67 |
+
"# Insert create_anndata_from_generator function provided earlier here"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
]
|
69 |
},
|
70 |
{
|
71 |
"cell_type": "markdown",
|
72 |
+
"id": "0cf683cd",
|
73 |
"metadata": {},
|
74 |
"source": [
|
75 |
+
"## Load Tahoe-100M Dataset"
|
76 |
]
|
77 |
},
|
78 |
{
|
79 |
"cell_type": "code",
|
80 |
+
"execution_count": null,
|
81 |
+
"id": "80eb5104",
|
82 |
"metadata": {},
|
83 |
"outputs": [],
|
84 |
"source": [
|
85 |
+
"tahoe_100m_ds = load_dataset('vevotx/Tahoe-100M', streaming=True, split='train')"
|
|
|
|
|
86 |
]
|
87 |
},
|
88 |
{
|
89 |
"cell_type": "markdown",
|
90 |
+
"id": "337f02f2",
|
91 |
"metadata": {},
|
92 |
"source": [
|
93 |
+
"## Load Gene Metadata"
|
94 |
]
|
95 |
},
|
96 |
{
|
97 |
"cell_type": "code",
|
98 |
+
"execution_count": null,
|
99 |
+
"id": "a0eeaa83",
|
100 |
"metadata": {},
|
101 |
"outputs": [],
|
102 |
"source": [
|
|
|
103 |
"gene_metadata = load_dataset(\"vevotx/Tahoe-100M\", name=\"gene_metadata\", split=\"train\")\n",
|
104 |
+
"gene_vocab = {entry[\"token_id\"]: entry[\"ensembl_id\"] for entry in gene_metadata}"
|
105 |
]
|
106 |
},
|
107 |
{
|
108 |
"cell_type": "markdown",
|
109 |
+
"id": "ded9c086",
|
110 |
"metadata": {},
|
111 |
"source": [
|
112 |
+
"## Create AnnData Object"
|
113 |
]
|
114 |
},
|
115 |
{
|
116 |
"cell_type": "code",
|
117 |
+
"execution_count": null,
|
118 |
+
"id": "6fb1d70d",
|
119 |
"metadata": {},
|
120 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
"source": [
|
|
|
122 |
"adata = create_anndata_from_generator(tahoe_100m_ds, gene_vocab, sample_size=1000)\n",
|
123 |
+
"adata"
|
124 |
]
|
125 |
},
|
126 |
{
|
127 |
"cell_type": "markdown",
|
128 |
+
"id": "c7c07f9e",
|
129 |
"metadata": {},
|
130 |
"source": [
|
131 |
+
"## Inspect Metadata (`adata.obs`)"
|
132 |
]
|
133 |
},
|
134 |
{
|
135 |
"cell_type": "code",
|
136 |
+
"execution_count": null,
|
137 |
+
"id": "15214a5c",
|
138 |
"metadata": {},
|
139 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
"source": [
|
141 |
"adata.obs.head()"
|
142 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
},
|
144 |
+
{
|
145 |
+
"cell_type": "markdown",
|
146 |
+
"id": "ec391116",
|
147 |
+
"metadata": {},
|
148 |
+
"source": [
|
149 |
+
"## Enrich with Sample Metadata"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": null,
|
155 |
+
"id": "657524c8",
|
156 |
+
"metadata": {},
|
157 |
+
"outputs": [],
|
158 |
+
"source": [
|
159 |
+
"sample_metadata = load_dataset(\"vevotx/Tahoe-100M\",\"sample_metadata\", split=\"train\").to_pandas()\n",
|
160 |
+
"adata.obs = pd.merge(adata.obs, sample_metadata.drop(columns=[\"drug\",\"plate\"]), on=\"sample\")\n",
|
161 |
+
"adata.obs.head()"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "markdown",
|
166 |
+
"id": "a1504ad7",
|
167 |
+
"metadata": {},
|
168 |
+
"source": [
|
169 |
+
"## Add Drug Metadata"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "code",
|
174 |
+
"execution_count": null,
|
175 |
+
"id": "741c8bcc",
|
176 |
+
"metadata": {},
|
177 |
+
"outputs": [],
|
178 |
+
"source": [
|
179 |
+
"drug_metadata = load_dataset(\"vevotx/Tahoe-100M\",\"drug_metadata\", split=\"train\").to_pandas()\n",
|
180 |
+
"adata.obs = pd.merge(adata.obs, drug_metadata.drop(columns=[\"canonical_smiles\",\"pubchem_cid\",\"moa-fine\"]), on=\"drug\")\n",
|
181 |
+
"adata.obs.head()"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "markdown",
|
186 |
+
"id": "d7eb71ff",
|
187 |
+
"metadata": {},
|
188 |
+
"source": [
|
189 |
+
"## Drug Info from PubChem"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"execution_count": null,
|
195 |
+
"id": "05d74c80",
|
196 |
+
"metadata": {},
|
197 |
+
"outputs": [],
|
198 |
+
"source": [
|
199 |
+
"drug_name = adata.obs[\"drug\"].values[0]\n",
|
200 |
+
"cid = int(float(adata.obs[\"pubchem_cid\"].values[0]))\n",
|
201 |
+
"compound = pcp.Compound.from_cid(cid)\n",
|
202 |
+
"\n",
|
203 |
+
"print(f\"Name: {drug_name}\")\n",
|
204 |
+
"print(f\"Synonyms: {compound.synonyms[:10]}\")\n",
|
205 |
+
"print(f\"Formula: {compound.molecular_formula}\")\n",
|
206 |
+
"print(f\"SMILES: {compound.isomeric_smiles}\")\n",
|
207 |
+
"print(f\"Mass: {compound.exact_mass}\")"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "markdown",
|
212 |
+
"id": "2dc7179c",
|
213 |
+
"metadata": {},
|
214 |
+
"source": [
|
215 |
+
"## Load Cell Line Metadata"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": null,
|
221 |
+
"id": "6519967a",
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [],
|
224 |
+
"source": [
|
225 |
+
"cell_line_metadata = load_dataset(\"vevotx/Tahoe-100M\",\"cell_line_metadata\", split=\"train\").to_pandas()\n",
|
226 |
+
"cell_line_metadata.head()"
|
227 |
+
]
|
228 |
}
|
229 |
+
],
|
230 |
+
"metadata": {},
|
231 |
"nbformat": 4,
|
232 |
"nbformat_minor": 5
|
233 |
}
|