Shreshth Gandhi
commited on
Commit
·
67bec88
1
Parent(s):
0ff1204
Add notebook for loading data
Browse files- tutorials/loading_data.ipynb +329 -0
tutorials/loading_data.ipynb
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "ee3ff49b",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Tutorial: Creating an AnnData object from Tahoe-100M dataset\n",
|
9 |
+
"This notebook demonstrates how to create an `AnnData` object using the Tahoe-100M dataset on Hugging Face."
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 1,
|
15 |
+
"id": "4df26b4a",
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"# !pip install datasets anndata scipy pandas duckdb"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": 2,
|
25 |
+
"id": "f5566528",
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"name": "stderr",
|
30 |
+
"output_type": "stream",
|
31 |
+
"text": [
|
32 |
+
"/usr/lib/python3/dist-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
33 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
34 |
+
]
|
35 |
+
}
|
36 |
+
],
|
37 |
+
"source": [
|
38 |
+
"from datasets import load_dataset\n",
|
39 |
+
"from scipy.sparse import csr_matrix\n",
|
40 |
+
"import anndata\n",
|
41 |
+
"import pandas as pd"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "markdown",
|
46 |
+
"id": "601a878d",
|
47 |
+
"metadata": {},
|
48 |
+
"source": [
|
49 |
+
"## Helper function\n",
|
50 |
+
"Define a function to construct the AnnData object from a data generator."
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": 3,
|
56 |
+
"id": "e72e75ce",
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [],
|
59 |
+
"source": [
|
60 |
+
"\n",
|
61 |
+
"def create_anndata_from_generator(generator, gene_vocab, sample_size=None):\n",
|
62 |
+
" sorted_vocab_items = sorted(gene_vocab.items())\n",
|
63 |
+
" token_ids, gene_names = zip(*sorted_vocab_items)\n",
|
64 |
+
" token_id_to_col_idx = {token_id: idx for idx, token_id in enumerate(token_ids)}\n",
|
65 |
+
"\n",
|
66 |
+
" data, indices, indptr = [], [], [0]\n",
|
67 |
+
" obs_data = []\n",
|
68 |
+
"\n",
|
69 |
+
" for i, cell in enumerate(generator):\n",
|
70 |
+
" if sample_size is not None and i >= sample_size:\n",
|
71 |
+
" break\n",
|
72 |
+
" genes = cell['genes']\n",
|
73 |
+
" expressions = cell['expressions']\n",
|
74 |
+
" if expressions[0] < 0: \n",
|
75 |
+
" genes = genes[1:]\n",
|
76 |
+
" expressions = expressions[1:]\n",
|
77 |
+
"\n",
|
78 |
+
" col_indices = [token_id_to_col_idx[gene] for gene in genes if gene in token_id_to_col_idx]\n",
|
79 |
+
" valid_expressions = [expr for gene, expr in zip(genes, expressions) if gene in token_id_to_col_idx]\n",
|
80 |
+
"\n",
|
81 |
+
" data.extend(valid_expressions)\n",
|
82 |
+
" indices.extend(col_indices)\n",
|
83 |
+
" indptr.append(len(data))\n",
|
84 |
+
"\n",
|
85 |
+
" obs_entry = {k: v for k, v in cell.items() if k not in ['genes', 'expressions']}\n",
|
86 |
+
" obs_data.append(obs_entry)\n",
|
87 |
+
"\n",
|
88 |
+
" expr_matrix = csr_matrix((data, indices, indptr), shape=(len(indptr) - 1, len(gene_names)))\n",
|
89 |
+
" obs_df = pd.DataFrame(obs_data)\n",
|
90 |
+
"\n",
|
91 |
+
" adata = anndata.AnnData(X=expr_matrix, obs=obs_df)\n",
|
92 |
+
" adata.var.index = pd.Index(gene_names, name='ensembl_id')\n",
|
93 |
+
"\n",
|
94 |
+
" return adata\n"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "markdown",
|
99 |
+
"id": "3d3f44c4",
|
100 |
+
"metadata": {},
|
101 |
+
"source": [
|
102 |
+
"## Load Tahoe-100M dataset"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": 4,
|
108 |
+
"id": "66329f53",
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"\n",
|
113 |
+
"# Stream the main dataset\n",
|
114 |
+
"tahoe_100m_ds = load_dataset(\"vevotx/Tahoe-100M\", streaming=True, split=\"train\")\n"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "markdown",
|
119 |
+
"id": "4de64af6",
|
120 |
+
"metadata": {},
|
121 |
+
"source": [
|
122 |
+
"## Load gene metadata to construct gene vocabulary"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": 5,
|
128 |
+
"id": "482f8461",
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [],
|
131 |
+
"source": [
|
132 |
+
"\n",
|
133 |
+
"gene_metadata = load_dataset(\"vevotx/Tahoe-100M\", name=\"gene_metadata\", split=\"train\")\n",
|
134 |
+
"gene_vocab = {entry[\"token_id\"]: entry[\"ensembl_id\"] for entry in gene_metadata}\n"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"cell_type": "markdown",
|
139 |
+
"id": "18d80c71",
|
140 |
+
"metadata": {},
|
141 |
+
"source": [
|
142 |
+
"## Create AnnData object from dataset"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"cell_type": "code",
|
147 |
+
"execution_count": 6,
|
148 |
+
"id": "cf137497",
|
149 |
+
"metadata": {},
|
150 |
+
"outputs": [
|
151 |
+
{
|
152 |
+
"name": "stderr",
|
153 |
+
"output_type": "stream",
|
154 |
+
"text": [
|
155 |
+
"/usr/lib/python3/dist-packages/anndata/_core/aligned_df.py:68: ImplicitModificationWarning: Transforming to str index.\n",
|
156 |
+
" warnings.warn(\"Transforming to str index.\", ImplicitModificationWarning)\n"
|
157 |
+
]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"data": {
|
161 |
+
"text/plain": [
|
162 |
+
"AnnData object with n_obs × n_vars = 1000 × 62710\n",
|
163 |
+
" obs: 'drug', 'sample', 'BARCODE_SUB_LIB_ID', 'cell_line_id', 'moa-fine', 'canonical_smiles', 'pubchem_cid', 'plate'"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
"execution_count": 6,
|
167 |
+
"metadata": {},
|
168 |
+
"output_type": "execute_result"
|
169 |
+
}
|
170 |
+
],
|
171 |
+
"source": [
|
172 |
+
"\n",
|
173 |
+
"adata = create_anndata_from_generator(tahoe_100m_ds, gene_vocab, sample_size=1000)\n",
|
174 |
+
"adata\n"
|
175 |
+
]
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"cell_type": "markdown",
|
179 |
+
"id": "0069a2bb",
|
180 |
+
"metadata": {},
|
181 |
+
"source": [
|
182 |
+
"## Inspect metadata (`obs`)"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "code",
|
187 |
+
"execution_count": 7,
|
188 |
+
"id": "9a3180c0",
|
189 |
+
"metadata": {},
|
190 |
+
"outputs": [
|
191 |
+
{
|
192 |
+
"data": {
|
193 |
+
"text/html": [
|
194 |
+
"<div>\n",
|
195 |
+
"<style scoped>\n",
|
196 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
197 |
+
" vertical-align: middle;\n",
|
198 |
+
" }\n",
|
199 |
+
"\n",
|
200 |
+
" .dataframe tbody tr th {\n",
|
201 |
+
" vertical-align: top;\n",
|
202 |
+
" }\n",
|
203 |
+
"\n",
|
204 |
+
" .dataframe thead th {\n",
|
205 |
+
" text-align: right;\n",
|
206 |
+
" }\n",
|
207 |
+
"</style>\n",
|
208 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
209 |
+
" <thead>\n",
|
210 |
+
" <tr style=\"text-align: right;\">\n",
|
211 |
+
" <th></th>\n",
|
212 |
+
" <th>drug</th>\n",
|
213 |
+
" <th>sample</th>\n",
|
214 |
+
" <th>BARCODE_SUB_LIB_ID</th>\n",
|
215 |
+
" <th>cell_line_id</th>\n",
|
216 |
+
" <th>moa-fine</th>\n",
|
217 |
+
" <th>canonical_smiles</th>\n",
|
218 |
+
" <th>pubchem_cid</th>\n",
|
219 |
+
" <th>plate</th>\n",
|
220 |
+
" </tr>\n",
|
221 |
+
" </thead>\n",
|
222 |
+
" <tbody>\n",
|
223 |
+
" <tr>\n",
|
224 |
+
" <th>0</th>\n",
|
225 |
+
" <td>8-Hydroxyquinoline</td>\n",
|
226 |
+
" <td>smp_1783</td>\n",
|
227 |
+
" <td>01_001_052-lib_1105</td>\n",
|
228 |
+
" <td>CVCL_0480</td>\n",
|
229 |
+
" <td>unclear</td>\n",
|
230 |
+
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
231 |
+
" <td>1923.0</td>\n",
|
232 |
+
" <td>plate4</td>\n",
|
233 |
+
" </tr>\n",
|
234 |
+
" <tr>\n",
|
235 |
+
" <th>1</th>\n",
|
236 |
+
" <td>8-Hydroxyquinoline</td>\n",
|
237 |
+
" <td>smp_1783</td>\n",
|
238 |
+
" <td>01_001_105-lib_1105</td>\n",
|
239 |
+
" <td>CVCL_0546</td>\n",
|
240 |
+
" <td>unclear</td>\n",
|
241 |
+
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
242 |
+
" <td>1923.0</td>\n",
|
243 |
+
" <td>plate4</td>\n",
|
244 |
+
" </tr>\n",
|
245 |
+
" <tr>\n",
|
246 |
+
" <th>2</th>\n",
|
247 |
+
" <td>8-Hydroxyquinoline</td>\n",
|
248 |
+
" <td>smp_1783</td>\n",
|
249 |
+
" <td>01_001_165-lib_1105</td>\n",
|
250 |
+
" <td>CVCL_1717</td>\n",
|
251 |
+
" <td>unclear</td>\n",
|
252 |
+
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
253 |
+
" <td>1923.0</td>\n",
|
254 |
+
" <td>plate4</td>\n",
|
255 |
+
" </tr>\n",
|
256 |
+
" <tr>\n",
|
257 |
+
" <th>3</th>\n",
|
258 |
+
" <td>8-Hydroxyquinoline</td>\n",
|
259 |
+
" <td>smp_1783</td>\n",
|
260 |
+
" <td>01_003_094-lib_1105</td>\n",
|
261 |
+
" <td>CVCL_1717</td>\n",
|
262 |
+
" <td>unclear</td>\n",
|
263 |
+
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
264 |
+
" <td>1923.0</td>\n",
|
265 |
+
" <td>plate4</td>\n",
|
266 |
+
" </tr>\n",
|
267 |
+
" <tr>\n",
|
268 |
+
" <th>4</th>\n",
|
269 |
+
" <td>8-Hydroxyquinoline</td>\n",
|
270 |
+
" <td>smp_1783</td>\n",
|
271 |
+
" <td>01_003_164-lib_1105</td>\n",
|
272 |
+
" <td>CVCL_1056</td>\n",
|
273 |
+
" <td>unclear</td>\n",
|
274 |
+
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
275 |
+
" <td>1923.0</td>\n",
|
276 |
+
" <td>plate4</td>\n",
|
277 |
+
" </tr>\n",
|
278 |
+
" </tbody>\n",
|
279 |
+
"</table>\n",
|
280 |
+
"</div>"
|
281 |
+
],
|
282 |
+
"text/plain": [
|
283 |
+
" drug sample BARCODE_SUB_LIB_ID cell_line_id moa-fine \\\n",
|
284 |
+
"0 8-Hydroxyquinoline smp_1783 01_001_052-lib_1105 CVCL_0480 unclear \n",
|
285 |
+
"1 8-Hydroxyquinoline smp_1783 01_001_105-lib_1105 CVCL_0546 unclear \n",
|
286 |
+
"2 8-Hydroxyquinoline smp_1783 01_001_165-lib_1105 CVCL_1717 unclear \n",
|
287 |
+
"3 8-Hydroxyquinoline smp_1783 01_003_094-lib_1105 CVCL_1717 unclear \n",
|
288 |
+
"4 8-Hydroxyquinoline smp_1783 01_003_164-lib_1105 CVCL_1056 unclear \n",
|
289 |
+
"\n",
|
290 |
+
" canonical_smiles pubchem_cid plate \n",
|
291 |
+
"0 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
292 |
+
"1 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
293 |
+
"2 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
294 |
+
"3 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
295 |
+
"4 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 "
|
296 |
+
]
|
297 |
+
},
|
298 |
+
"execution_count": 7,
|
299 |
+
"metadata": {},
|
300 |
+
"output_type": "execute_result"
|
301 |
+
}
|
302 |
+
],
|
303 |
+
"source": [
|
304 |
+
"adata.obs.head()"
|
305 |
+
]
|
306 |
+
}
|
307 |
+
],
|
308 |
+
"metadata": {
|
309 |
+
"kernelspec": {
|
310 |
+
"display_name": "Python 3 (ipykernel)",
|
311 |
+
"language": "python",
|
312 |
+
"name": "python3"
|
313 |
+
},
|
314 |
+
"language_info": {
|
315 |
+
"codemirror_mode": {
|
316 |
+
"name": "ipython",
|
317 |
+
"version": 3
|
318 |
+
},
|
319 |
+
"file_extension": ".py",
|
320 |
+
"mimetype": "text/x-python",
|
321 |
+
"name": "python",
|
322 |
+
"nbconvert_exporter": "python",
|
323 |
+
"pygments_lexer": "ipython3",
|
324 |
+
"version": "3.11.10"
|
325 |
+
}
|
326 |
+
},
|
327 |
+
"nbformat": 4,
|
328 |
+
"nbformat_minor": 5
|
329 |
+
}
|