nyxrobotics commited on
Commit
b2cfa3d
·
1 Parent(s): e9a4aaa

Parameter tuning

Browse files
Files changed (1) hide show
  1. modules/maskrcnn_train.sh +55 -43
modules/maskrcnn_train.sh CHANGED
@@ -1,7 +1,36 @@
1
  #!/bin/bash
2
 
3
- # Set whether to use GPU tuning or not
4
- USE_GPU_TUNING=true
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  # Get script dir
7
  SCRIPT_DIR=$(cd $(dirname $0); pwd)
@@ -32,7 +61,7 @@ if [ ! -f "$COCO_CONFIG_FILE" ]; then
32
  fi
33
 
34
  # Download the base config file if it doesn't exist
35
- if [ ! -f "$BASE_CONFIG_FILE" ];then
36
  echo "Downloading Base-RCNN-FPN.yaml configuration file..."
37
  wget $BASE_CONFIG_URL -O $BASE_CONFIG_FILE
38
  fi
@@ -43,44 +72,28 @@ if [ ! -f "$TRAIN_NET_FILE" ]; then
43
  wget $TRAIN_NET_URL -O $TRAIN_NET_FILE
44
  fi
45
 
46
- # Default values
47
- IMS_PER_BATCH=2
48
- BATCH_SIZE_PER_IMAGE=512
49
- BASE_LR=0.00025
50
-
51
- # If USE_GPU_TUNING is true, adjust parameters based on GPU memory
52
- if [ "$USE_GPU_TUNING" = true ]; then
53
- # Get the GPU memory in MB
54
- GPU_MEMORY=$(nvidia-smi --query-gpu=memory.total --format=csv,noheader,nounits | head -n 1)
55
-
56
- # Set the batch size and learning rate based on GPU memory
57
- if [ "$GPU_MEMORY" -ge 24576 ]; then
58
- IMS_PER_BATCH=8 # For 24GB+ GPUs
59
- BATCH_SIZE_PER_IMAGE=512
60
- elif [ "$GPU_MEMORY" -ge 12288 ]; then
61
- IMS_PER_BATCH=4 # For 12GB+ GPUs
62
- BATCH_SIZE_PER_IMAGE=256
63
- else
64
- IMS_PER_BATCH=2 # For smaller GPUs
65
- BATCH_SIZE_PER_IMAGE=128
66
- fi
67
-
68
- # Adjust learning rate based on batch size
69
- BASE_LR=$(echo "0.00025 * $IMS_PER_BATCH / 2" | bc -l)
70
- fi
71
-
72
- # Function to extract the number of classes from COCO annotation and run training
73
  python3 - <<END
74
  import os
75
  import json
76
  from detectron2.data.datasets import register_coco_instances
77
  from detectron2.data import DatasetCatalog
 
 
78
 
79
- # Paths
80
  train_annotation = "$TRAIN_ANNOTATION"
81
  train_image_dir = "$TRAIN_IMAGE_DIR"
82
  val_annotation = "$VAL_ANNOTATION"
83
  val_image_dir = "$VAL_IMAGE_DIR"
 
 
 
 
 
 
 
 
84
 
85
  # Load the COCO annotation file to detect number of classes
86
  with open(train_annotation, 'r') as f:
@@ -98,25 +111,24 @@ register_coco_instances("coco_roboone_val", {}, val_annotation, val_image_dir)
98
  print("Datasets registered successfully.")
99
  print("Available datasets:", DatasetCatalog.list())
100
 
101
- # Import necessary modules for training
102
- from detectron2.engine import DefaultTrainer
103
- from detectron2.config import get_cfg
104
-
105
  # Set up configuration
106
  cfg = get_cfg()
107
- cfg.merge_from_file("$COCO_CONFIG_FILE")
108
  cfg.DATASETS.TRAIN = ("coco_roboone_train",)
109
  cfg.DATASETS.TEST = ("coco_roboone_val",)
110
- cfg.SOLVER.IMS_PER_BATCH = $IMS_PER_BATCH
111
- cfg.SOLVER.BASE_LR = $BASE_LR
112
- cfg.SOLVER.MAX_ITER = 1000
113
- cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = $BATCH_SIZE_PER_IMAGE
114
- cfg.MODEL.ROI_HEADS.NUM_CLASSES = num_classes # Automatically set based on dataset
115
- cfg.OUTPUT_DIR = "$OUTPUT_DIR"
 
 
 
116
 
117
  # Train the model
118
  trainer = DefaultTrainer(cfg)
119
- trainer.resume_or_load(resume=False)
120
  trainer.train()
121
 
122
  print("Mask R-CNN training completed.")
 
1
  #!/bin/bash
2
 
3
+ # Parameters
4
+ USE_GPU_TUNING=true # Set this to true to enable GPU tuning
5
+ RESUME_TRAINING=false # Set this to true to resume training from last checkpoint
6
+ MAX_ITER=100000 # Default maximum iterations
7
+ CHECKPOINT_PERIOD=$(($MAX_ITER / 10)) # Set to 10% of MAX_ITER
8
+
9
+ # Default values
10
+ IMS_PER_BATCH=2
11
+ BATCH_SIZE_PER_IMAGE=512
12
+ BASE_LR=0.00025
13
+
14
+ # If USE_GPU_TUNING is true, adjust parameters based on GPU memory
15
+ if [ "$USE_GPU_TUNING" = true ]; then
16
+ # Get the GPU memory in MB
17
+ GPU_MEMORY=$(nvidia-smi --query-gpu=memory.total --format=csv,noheader,nounits | head -n 1)
18
+
19
+ # Set the batch size and learning rate based on GPU memory
20
+ if [ "$GPU_MEMORY" -ge 24576 ]; then
21
+ IMS_PER_BATCH=8 # For 24GB+ GPUs
22
+ BATCH_SIZE_PER_IMAGE=512
23
+ elif [ "$GPU_MEMORY" -ge 12288 ]; then
24
+ IMS_PER_BATCH=4 # For 12GB+ GPUs
25
+ BATCH_SIZE_PER_IMAGE=256
26
+ else
27
+ IMS_PER_BATCH=2 # For smaller GPUs
28
+ BATCH_SIZE_PER_IMAGE=128
29
+ fi
30
+
31
+ # Adjust learning rate based on batch size
32
+ BASE_LR=$(echo "0.00025 * $IMS_PER_BATCH / 2" | bc -l)
33
+ fi
34
 
35
  # Get script dir
36
  SCRIPT_DIR=$(cd $(dirname $0); pwd)
 
61
  fi
62
 
63
  # Download the base config file if it doesn't exist
64
+ if [ ! -f "$BASE_CONFIG_FILE" ]; then
65
  echo "Downloading Base-RCNN-FPN.yaml configuration file..."
66
  wget $BASE_CONFIG_URL -O $BASE_CONFIG_FILE
67
  fi
 
72
  wget $TRAIN_NET_URL -O $TRAIN_NET_FILE
73
  fi
74
 
75
+ # Python script to configure and run the training
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  python3 - <<END
77
  import os
78
  import json
79
  from detectron2.data.datasets import register_coco_instances
80
  from detectron2.data import DatasetCatalog
81
+ from detectron2.engine import DefaultTrainer
82
+ from detectron2.config import get_cfg
83
 
84
+ # Paths from Bash script
85
  train_annotation = "$TRAIN_ANNOTATION"
86
  train_image_dir = "$TRAIN_IMAGE_DIR"
87
  val_annotation = "$VAL_ANNOTATION"
88
  val_image_dir = "$VAL_IMAGE_DIR"
89
+ resume_training = $([ "$RESUME_TRAINING" = true ] && echo True || echo False) # Convert bash boolean to Python boolean
90
+ max_iter = $MAX_ITER
91
+ checkpoint_period = $CHECKPOINT_PERIOD
92
+ output_dir = "$OUTPUT_DIR"
93
+ coco_config_file = "$COCO_CONFIG_FILE"
94
+ ims_per_batch = $IMS_PER_BATCH
95
+ batch_size_per_image = $BATCH_SIZE_PER_IMAGE
96
+ base_lr = $BASE_LR
97
 
98
  # Load the COCO annotation file to detect number of classes
99
  with open(train_annotation, 'r') as f:
 
111
  print("Datasets registered successfully.")
112
  print("Available datasets:", DatasetCatalog.list())
113
 
 
 
 
 
114
  # Set up configuration
115
  cfg = get_cfg()
116
+ cfg.merge_from_file(coco_config_file)
117
  cfg.DATASETS.TRAIN = ("coco_roboone_train",)
118
  cfg.DATASETS.TEST = ("coco_roboone_val",)
119
+ cfg.MODEL.ROI_HEADS.NUM_CLASSES = num_classes
120
+ cfg.OUTPUT_DIR = output_dir
121
+
122
+ # Set solver parameters
123
+ cfg.SOLVER.MAX_ITER = max_iter
124
+ cfg.SOLVER.CHECKPOINT_PERIOD = checkpoint_period
125
+ cfg.SOLVER.IMS_PER_BATCH = ims_per_batch
126
+ cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = batch_size_per_image
127
+ cfg.SOLVER.BASE_LR = base_lr
128
 
129
  # Train the model
130
  trainer = DefaultTrainer(cfg)
131
+ trainer.resume_or_load(resume=resume_training)
132
  trainer.train()
133
 
134
  print("Mask R-CNN training completed.")