Commit
·
3aa6f4a
1
Parent(s):
6a5403b
Add yolo training
Browse files- modules/convert_labelme_nodata.sh +12 -3
- modules/labelme2yolo.sh +43 -0
- modules/yolov8_train.sh +66 -0
- setup/install_labelme2yolo.sh +3 -0
modules/convert_labelme_nodata.sh
CHANGED
@@ -6,9 +6,18 @@ TARGET_DIR=$SCRIPT_DIR/../export_annotated
|
|
6 |
|
7 |
# Process all JSON files in the target directory
|
8 |
for file in "$TARGET_DIR"/*.json; do
|
9 |
-
#
|
10 |
jq '.imageData = null' "$file" > tmp && mv tmp "$file"
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
done
|
13 |
|
14 |
-
echo "All files have been
|
|
|
6 |
|
7 |
# Process all JSON files in the target directory
|
8 |
for file in "$TARGET_DIR"/*.json; do
|
9 |
+
# Step 1: Set imageData to null
|
10 |
jq '.imageData = null' "$file" > tmp && mv tmp "$file"
|
11 |
+
|
12 |
+
# Step 2: Check if imagePath contains a subdirectory and modify it if needed
|
13 |
+
# jq '
|
14 |
+
# if .imagePath | contains("/") then
|
15 |
+
# .imagePath |= (split("/") | last)
|
16 |
+
# else
|
17 |
+
# .imagePath
|
18 |
+
# end' "$file" > tmp && mv tmp "$file"
|
19 |
+
|
20 |
+
echo "Processed: $file"
|
21 |
done
|
22 |
|
23 |
+
echo "All files have been processed."
|
modules/labelme2yolo.sh
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Get script dir
|
4 |
+
SCRIPT_DIR=$(cd $(dirname $0); pwd)
|
5 |
+
LABELME_DIR=$SCRIPT_DIR/../export_annotated
|
6 |
+
YOLO_DIR=$SCRIPT_DIR/../export_yolo
|
7 |
+
|
8 |
+
# Create necessary directories
|
9 |
+
# mkdir -p $YOLO_DIR/train
|
10 |
+
# mkdir -p $YOLO_DIR/val
|
11 |
+
|
12 |
+
# Clean train and val directories by removing all files
|
13 |
+
# rm -rf $YOLO_DIR/train/*
|
14 |
+
# rm -rf $YOLO_DIR/val/*
|
15 |
+
|
16 |
+
# Determine the number of files for validation (20%)
|
17 |
+
LABELME_FILES=$(find "$LABELME_DIR" -name "*.json")
|
18 |
+
|
19 |
+
# Copy labelme files and their corresponding images
|
20 |
+
echo "$LABELME_FILES" | while read -r lableme_file; do
|
21 |
+
cp "$lableme_file" "$YOLO_DIR/"
|
22 |
+
|
23 |
+
# Copy the corresponding image file (assuming it has the same base name)
|
24 |
+
image_file="${lableme_file%.json}.png" # Change the extension to match your images
|
25 |
+
if [[ -f "$image_file" ]]; then
|
26 |
+
cp "$image_file" "$YOLO_DIR/"
|
27 |
+
fi
|
28 |
+
done
|
29 |
+
|
30 |
+
# Automatically generate LABEL_LIST by extracting labels from all JSON files
|
31 |
+
LABEL_LIST=$(find "$LABELME_DIR" -name "*.json" -exec jq -r '.shapes[].label' {} + | sort | uniq | paste -sd "," -)
|
32 |
+
|
33 |
+
echo "Detected labels: $LABEL_LIST"
|
34 |
+
|
35 |
+
# Convert Labelme JSON to YOLO format for train and val
|
36 |
+
cd $YOLO_DIR
|
37 |
+
labelme2yolo --output_format bbox --json_dir $YOLO_DIR --val_size 0.1 --test_size 0.1 $LABEL_LIST
|
38 |
+
|
39 |
+
# Remove temporary labelme files and their corresponding images
|
40 |
+
find $YOLO_DIR -maxdepth 1 -name "*.json" -exec rm -f {} +
|
41 |
+
find $YOLO_DIR -maxdepth 1 -name "*.png" -exec rm -f {} +
|
42 |
+
|
43 |
+
echo "YOLO dataset conversion completed."
|
modules/yolov8_train.sh
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
SCRIPT_DIR=$(cd $(dirname $0); pwd)
|
4 |
+
# Parameters
|
5 |
+
YOLO_DATASET_DIR=$SCRIPT_DIR/../export_yolo/YOLODataset
|
6 |
+
MODEL="yolov8n.pt" # YOLOv8 model type
|
7 |
+
EPOCHS=1000
|
8 |
+
OUTPUT_DIR=$SCRIPT_DIR/../export_yolo/train_output
|
9 |
+
USE_GPU_TUNING=true
|
10 |
+
RESUME_TRAINING=false
|
11 |
+
|
12 |
+
mkdir -p $OUTPUT_DIR
|
13 |
+
|
14 |
+
# Install ImageMagick if not already installed
|
15 |
+
if ! command -v identify &> /dev/null
|
16 |
+
then
|
17 |
+
echo "ImageMagick not found. Installing..."
|
18 |
+
sudo apt install -y imagemagick
|
19 |
+
fi
|
20 |
+
|
21 |
+
# Automatically detect image size from the training images
|
22 |
+
IMG_SIZE=$(identify -format "%wx%h\n" $YOLO_DATASET_DIR/images/train/*.png | head -n 1 | cut -d 'x' -f 1)
|
23 |
+
|
24 |
+
# If USE_GPU_TUNING is true, adjust parameters based on GPU memory
|
25 |
+
if [ "$USE_GPU_TUNING" = true ]; then
|
26 |
+
# Get the GPU memory in MB
|
27 |
+
GPU_MEMORY=$(nvidia-smi --query-gpu=memory.total --format=csv,noheader,nounits | head -n 1)
|
28 |
+
|
29 |
+
# Set the batch size and learning rate based on GPU memory
|
30 |
+
if [ "$GPU_MEMORY" -ge 24576 ]; then
|
31 |
+
BATCH_SIZE=8 # For 24GB+ GPUs
|
32 |
+
BATCH_SIZE_PER_IMAGE=512
|
33 |
+
elif [ "$GPU_MEMORY" -ge 12288 ]; then
|
34 |
+
BATCH_SIZE=4 # For 12GB+ GPUs
|
35 |
+
BATCH_SIZE_PER_IMAGE=256
|
36 |
+
else
|
37 |
+
BATCH_SIZE=2 # For smaller GPUs
|
38 |
+
BATCH_SIZE_PER_IMAGE=128
|
39 |
+
fi
|
40 |
+
|
41 |
+
# Adjust learning rate based on batch size
|
42 |
+
BASE_LR=$(echo "0.00025 * $BATCH_SIZE / 2" | bc -l)
|
43 |
+
echo "GPU memory: $GPU_MEMORY MB"
|
44 |
+
echo "Batch size: $BATCH_SIZE, Batch size per image: $BATCH_SIZE_PER_IMAGE"
|
45 |
+
echo "Base learning rate: $BASE_LR"
|
46 |
+
fi
|
47 |
+
|
48 |
+
cd $OUTPUT_DIR
|
49 |
+
# Run training with the YOLO model
|
50 |
+
python3 - <<END
|
51 |
+
from ultralytics import YOLO
|
52 |
+
|
53 |
+
model = YOLO("$MODEL")
|
54 |
+
results = model.train(
|
55 |
+
data="$YOLO_DATASET_DIR/dataset.yaml",
|
56 |
+
model="$MODEL",
|
57 |
+
epochs=$EPOCHS,
|
58 |
+
batch=$BATCH_SIZE,
|
59 |
+
imgsz=$IMG_SIZE,
|
60 |
+
project="$OUTPUT_DIR",
|
61 |
+
name="train_results",
|
62 |
+
lr0=$BASE_LR,
|
63 |
+
resume=$([ "$RESUME_TRAINING" = true ] && echo True || echo False) # Convert bash boolean to Python boolean
|
64 |
+
)
|
65 |
+
print("YOLO training completed.")
|
66 |
+
END
|
setup/install_labelme2yolo.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
python3 -m pip install -U labelme2yolo
|
3 |
+
sudo apt install -y imagemagick
|