|
#!/bin/bash |
|
|
|
SCRIPT_DIR=$(cd $(dirname $0); pwd) |
|
|
|
YOLO_DATASET_DIR=$SCRIPT_DIR/../export_yolo/YOLODataset |
|
MODEL="yolov8n.pt" |
|
EPOCHS=1000 |
|
SAVE_PERIOD=50 |
|
OUTPUT_DIR=$SCRIPT_DIR/../export_yolo/train_output |
|
USE_GPU_TUNING=true |
|
RESUME_TRAINING=false |
|
|
|
mkdir -p $OUTPUT_DIR/runs/tune |
|
|
|
|
|
if ! command -v identify &> /dev/null |
|
then |
|
echo "ImageMagick not found. Installing..." |
|
sudo apt install -y imagemagick |
|
fi |
|
|
|
|
|
IMG_SIZE=$(identify -format "%wx%h\n" $YOLO_DATASET_DIR/images/train/*.png | head -n 1 | cut -d 'x' -f 1) |
|
|
|
|
|
if [ "$USE_GPU_TUNING" = true ]; then |
|
|
|
GPU_MEMORY=$(nvidia-smi --query-gpu=memory.total --format=csv,noheader,nounits | head -n 1) |
|
|
|
|
|
if [ "$GPU_MEMORY" -ge 24576 ]; then |
|
BATCH_SIZE=8 |
|
BATCH_SIZE_PER_IMAGE=512 |
|
elif [ "$GPU_MEMORY" -ge 12288 ]; then |
|
BATCH_SIZE=4 |
|
BATCH_SIZE_PER_IMAGE=256 |
|
else |
|
BATCH_SIZE=2 |
|
BATCH_SIZE_PER_IMAGE=128 |
|
fi |
|
|
|
|
|
BASE_LR=$(echo "0.00025 * $BATCH_SIZE / 2" | bc -l) |
|
echo "GPU memory: $GPU_MEMORY MB" |
|
echo "Batch size: $BATCH_SIZE, Batch size per image: $BATCH_SIZE_PER_IMAGE" |
|
echo "Base learning rate: $BASE_LR" |
|
fi |
|
|
|
cd $OUTPUT_DIR |
|
|
|
python3 - <<END |
|
from ultralytics import YOLO |
|
import os |
|
import ray |
|
ray.init(ignore_reinit_error=True) |
|
|
|
# Hyperparameters and settings |
|
data_path = "$YOLO_DATASET_DIR/dataset.yaml" |
|
model_path = "$MODEL" |
|
img_size = $IMG_SIZE |
|
batch_size = $BATCH_SIZE |
|
epochs = $EPOCHS |
|
save_period = $SAVE_PERIOD |
|
output_dir = "$OUTPUT_DIR" |
|
resume_training = $([ "$RESUME_TRAINING" = true ] && echo True || echo False) # Convert bash boolean to Python boolean |
|
|
|
|
|
# Load the model |
|
model = YOLO(model_path) |
|
|
|
# Automatically tune hyper-parameters with Ray Tune |
|
print("Starting hyperparameter tuning...") |
|
tune_results = model.tune( |
|
data=data_path, |
|
batch=batch_size, |
|
imgsz=img_size, |
|
augment=True, |
|
multi_scale=True, |
|
rect=True, |
|
scale=0.8 |
|
) |
|
print("Tuning completed. Starting final training...") |
|
|
|
# Start final training after tuning |
|
results = model.train( |
|
data=data_path, |
|
epochs=epochs, |
|
save_period=save_period, |
|
patience=0, |
|
batch=batch_size, |
|
imgsz=img_size, |
|
project=output_dir, |
|
name="final_train_results", |
|
resume=resume_training, |
|
augment=True, |
|
multi_scale=True, |
|
rect=True, |
|
scale=0.8 |
|
) |
|
print("YOLO training completed.") |
|
END |
|
|