# ----------------------------------------------------------------------------- # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # ----------------------------------------------------------------------------- import argparse import matplotlib import matplotlib.pyplot as plt import numpy as np import os import pickle as pkl import plotly.graph_objs as go import plotly.io as pio from tqdm import tqdm matplotlib.use("agg") class Pose(): """ A class of operations on camera poses (numpy arrays with shape [...,3,4]). Each [3,4] camera pose takes the form of [R|t]. """ def __call__(self, R=None, t=None): """ Construct a camera pose from the given rotation matrix R and/or translation vector t. Args: R: Rotation matrix [...,3,3] or None t: Translation vector [...,3] or None Returns: pose: Camera pose matrix [...,3,4] """ assert R is not None or t is not None if R is None: if not isinstance(t, np.ndarray): t = np.array(t) R = np.eye(3, device=t.device).repeat(*t.shape[:-1], 1, 1) elif t is None: if not isinstance(R, np.ndarray): R = np.array(R) t = np.zeros(R.shape[:-1], device=R.device) else: if not isinstance(R, np.ndarray): R = np.array(R) if not isinstance(t, np.ndarray): t = np.tensor(t) assert R.shape[:-1] == t.shape and R.shape[-2:] == (3, 3) R = R.astype(np.float32) t = t.astype(np.float32) pose = np.concatenate([R, t[..., None]], axis=-1) # [...,3,4] assert pose.shape[-2:] == (3, 4) return pose def invert(self, pose, use_inverse=False): """ Invert a camera pose. Args: pose: Camera pose matrix [...,3,4] use_inverse: Whether to use matrix inverse instead of transpose Returns: pose_inv: Inverted camera pose matrix [...,3,4] """ R, t = pose[..., :3], pose[..., 3:] R_inv = R.inverse() if use_inverse else R.transpose(0, 2, 1) t_inv = (-R_inv @ t)[..., 0] pose_inv = self(R=R_inv, t=t_inv) return pose_inv def compose(self, pose_list): """ Compose a sequence of poses together. pose_new(x) = poseN o ... o pose2 o pose1(x) Args: pose_list: List of camera poses to compose Returns: pose_new: Composed camera pose """ pose_new = pose_list[0] for pose in pose_list[1:]: pose_new = self.compose_pair(pose_new, pose) return pose_new def compose_pair(self, pose_a, pose_b): """ Compose two poses together. pose_new(x) = pose_b o pose_a(x) Args: pose_a: First camera pose pose_b: Second camera pose Returns: pose_new: Composed camera pose """ R_a, t_a = pose_a[..., :3], pose_a[..., 3:] R_b, t_b = pose_b[..., :3], pose_b[..., 3:] R_new = R_b @ R_a t_new = (R_b @ t_a + t_b)[..., 0] pose_new = self(R=R_new, t=t_new) return pose_new def scale_center(self, pose, scale): """ Scale the camera center from the origin. 0 = R@c+t --> c = -R^T@t (camera center in world coordinates) 0 = R@(sc)+t' --> t' = -R@(sc) = -R@(-R^T@st) = st Args: pose: Camera pose to scale scale: Scale factor Returns: pose_new: Scaled camera pose """ R, t = pose[..., :3], pose[..., 3:] pose_new = np.concatenate([R, t * scale], axis=-1) return pose_new def to_hom(X): """Get homogeneous coordinates of the input by appending ones.""" X_hom = np.concatenate([X, np.ones_like(X[..., :1])], axis=-1) return X_hom def cam2world(X, pose): """Transform points from camera to world coordinates.""" X_hom = to_hom(X) pose_inv = Pose().invert(pose) return X_hom @ pose_inv.transpose(0, 2, 1) def get_camera_mesh(pose, depth=1): """ Create a camera mesh visualization. Args: pose: Camera pose matrix depth: Size of the camera frustum Returns: vertices: Camera mesh vertices faces: Camera mesh faces wireframe: Camera wireframe vertices """ vertices = np.array([[-0.5, -0.5, 1], [0.5, -0.5, 1], [0.5, 0.5, 1], [-0.5, 0.5, 1], [0, 0, 0]]) * depth # [6,3] faces = np.array([[0, 1, 2], [0, 2, 3], [0, 1, 4], [1, 2, 4], [2, 3, 4], [3, 0, 4]]) # [6,3] vertices = cam2world(vertices[None], pose) # [N,6,3] wireframe = vertices[:, [0, 1, 2, 3, 0, 4, 1, 2, 4, 3]] # [N,10,3] return vertices, faces, wireframe def merge_xyz_indicators_plotly(xyz): """Merge xyz coordinate indicators for plotly visualization.""" xyz = xyz[:, [[-1, 0], [-1, 1], [-1, 2]]] # [N,3,2,3] xyz_0, xyz_1 = unbind_np(xyz, axis=2) # [N,3,3] xyz_dummy = xyz_0 * np.nan xyz_merged = np.stack([xyz_0, xyz_1, xyz_dummy], axis=2) # [N,3,3,3] xyz_merged = xyz_merged.reshape(-1, 3) return xyz_merged def get_xyz_indicators(pose, length=0.1): """Get xyz coordinate axis indicators for a camera pose.""" xyz = np.eye(4, 3)[None] * length xyz = cam2world(xyz, pose) return xyz def merge_wireframes_plotly(wireframe): """Merge camera wireframes for plotly visualization.""" wf_dummy = wireframe[:, :1] * np.nan wireframe_merged = np.concatenate([wireframe, wf_dummy], axis=1).reshape(-1, 3) return wireframe_merged def merge_meshes(vertices, faces): """Merge multiple camera meshes into a single mesh.""" mesh_N, vertex_N = vertices.shape[:2] faces_merged = np.concatenate([faces + i * vertex_N for i in range(mesh_N)], axis=0) vertices_merged = vertices.reshape(-1, vertices.shape[-1]) return vertices_merged, faces_merged def unbind_np(array, axis=0): """Split numpy array along specified axis into list.""" if axis == 0: return [array[i, :] for i in range(array.shape[0])] elif axis == 1 or (len(array.shape) == 2 and axis == -1): return [array[:, j] for j in range(array.shape[1])] elif axis == 2 or (len(array.shape) == 3 and axis == -1): return [array[:, :, j] for j in range(array.shape[2])] else: raise ValueError("Invalid axis. Use 0 for rows or 1 for columns.") def plotly_visualize_pose(poses, vis_depth=0.5, xyz_length=0.5, center_size=2, xyz_width=5, mesh_opacity=0.05): """ Create plotly visualization traces for camera poses. Args: poses: Camera poses to visualize [N,3,4] vis_depth: Size of camera frustum visualization xyz_length: Length of coordinate axis indicators center_size: Size of camera center markers xyz_width: Width of coordinate axis lines mesh_opacity: Opacity of camera frustum mesh Returns: plotly_traces: List of plotly visualization traces """ N = len(poses) centers_cam = np.zeros([N, 1, 3]) centers_world = cam2world(centers_cam, poses) centers_world = centers_world[:, 0] # Get the camera wireframes. vertices, faces, wireframe = get_camera_mesh(poses, depth=vis_depth) xyz = get_xyz_indicators(poses, length=xyz_length) vertices_merged, faces_merged = merge_meshes(vertices, faces) wireframe_merged = merge_wireframes_plotly(wireframe) xyz_merged = merge_xyz_indicators_plotly(xyz) # Break up (x,y,z) coordinates. wireframe_x, wireframe_y, wireframe_z = unbind_np(wireframe_merged, axis=-1) xyz_x, xyz_y, xyz_z = unbind_np(xyz_merged, axis=-1) centers_x, centers_y, centers_z = unbind_np(centers_world, axis=-1) vertices_x, vertices_y, vertices_z = unbind_np(vertices_merged, axis=-1) # Set the color map for the camera trajectory and the xyz indicators. color_map = plt.get_cmap("gist_rainbow") # red -> yellow -> green -> blue -> purple center_color = [] faces_merged_color = [] wireframe_color = [] xyz_color = [] x_color, y_color, z_color = *np.eye(3).T, for i in range(N): # Set the camera pose colors (with a smooth gradient color map). r, g, b, _ = color_map(i / (N - 1)) rgb = np.array([r, g, b]) * 0.8 wireframe_color += [rgb] * 11 center_color += [rgb] faces_merged_color += [rgb] * 6 xyz_color += [x_color] * 3 + [y_color] * 3 + [z_color] * 3 # Plot in plotly. plotly_traces = [ go.Scatter3d(x=wireframe_x, y=wireframe_y, z=wireframe_z, mode="lines", line=dict(color=wireframe_color, width=1)), go.Scatter3d(x=xyz_x, y=xyz_y, z=xyz_z, mode="lines", line=dict(color=xyz_color, width=xyz_width)), go.Scatter3d(x=centers_x, y=centers_y, z=centers_z, mode="markers", marker=dict(color=center_color, size=center_size, opacity=1)), go.Mesh3d(x=vertices_x, y=vertices_y, z=vertices_z, i=[f[0] for f in faces_merged], j=[f[1] for f in faces_merged], k=[f[2] for f in faces_merged], facecolor=faces_merged_color, opacity=mesh_opacity), ] return plotly_traces def write_html(poses, file, dset, vis_depth=1, xyz_length=0.2, center_size=0.01, xyz_width=2): """Write camera pose visualization to HTML file.""" if dset == "lightspeed": xyz_length = xyz_length / 3 xyz_width = xyz_width vis_depth = vis_depth / 3 center_size *= 3 traces_poses = plotly_visualize_pose(poses, vis_depth=vis_depth, xyz_length=xyz_length, center_size=center_size, xyz_width=xyz_width, mesh_opacity=0.05) traces_all2 = traces_poses layout2 = go.Layout(scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False), dragmode="orbit", aspectratio=dict(x=1, y=1, z=1), aspectmode="data"), height=400, width=600, showlegend=False) fig2 = go.Figure(data=traces_all2, layout=layout2) html_str2 = pio.to_html(fig2, full_html=False) file.write(html_str2) def viz_poses(i, seq, file, dset, dset_parent): """Visualize camera poses for a sequence and write to HTML file.""" if "/" in seq: seq = "_".join(seq.split("/")) if "mp4" in seq: seq = seq[:-4] file.write(f"{i} {seq}
") if dset == "dynpose_100k": with open(f"{dset_parent}/cameras/{seq}.pkl", "rb") as f: poses = pkl.load(f)["poses"] else: with open(f"{dset_parent}/poses.pkl", "rb") as f: poses = pkl.load(f)[seq] write_html(poses, file, dset) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--dset", type=str, default="dynpose_100k", choices=["dynpose_100k", "lightspeed"]) parser.add_argument("--dset_parent", type=str, default=".") args = parser.parse_args() outdir = f"pose_viz/{args.dset}" os.makedirs(outdir, exist_ok=True) split_size = 6 # to avoid poses disappearing viz_list = f"{args.dset_parent}/viz_list.txt" seqs = open(viz_list).read().split() for j in tqdm(range(int(np.ceil(len(seqs)/split_size)))): with open(f"{outdir}/index_{str(j)}.html", "w") as file: for i, seq in enumerate(tqdm(seqs[j*split_size:j*split_size+split_size])): viz_poses(i, seq, file, args.dset, args.dset_parent)