--- license: other language: - en pretty_name: dynpose-100k size_categories: - 100K1,2](https://crockwell.github.io), [Joseph Tung3](https://jot-jt.github.io/), [Tsung-Yi Lin1](https://tsungyilin.info/), [Ming-Yu Liu1](https://mingyuliu.net/), [David F. Fouhey3](https://cs.nyu.edu/~fouhey/), [Chen-Hsuan Lin1](https://chenhsuanlin.bitbucket.io/) \ 1NVIDIA 2University of Michigan 3New York University [![Project Website](https://img.shields.io/static/v1?label=Project&message=Website&color=red)](https://research.nvidia.com/labs/dir/dynpose-100k) [![arXiv](https://img.shields.io/badge/arXiv-2504.17788-b31b1b.svg)](https://arxiv.org/abs/2504.17788) ![DynPose-100K Teaser](teaser.png) ## Overview DynPose-100K is a large-scale dataset of diverse, dynamic videos with camera annotations. We curate 100K videos containing dynamic content while ensuring cameras can be accurately estimated (including intrinsics and poses), addressing two key challenges: 1. Identifying videos suitable for camera estimation 2. Improving camera estimation algorithms for dynamic videos | Characteristic | Value | | --- | --- | | **Size** | 100K videos | | **Resolution** | 1280×720 (720p) | | **Annotation type** | Camera poses (world-to-camera), intrinsics | | **Format** | MP4 (videos), PKL (camera data), JPG (frames) | | **Frame rate** | 12 fps (extracted frames) | | **Storage** | ~200 GB (videos) + ~400 GB (frames) + 0.7 GB (annotations) | | **License** | NVIDIA License (for DynPose-100K) | ## DynPose-100K Download DynPose-100K contains diverse Internet videos annotated with state-of-the-art camera pose estimation. Videos were selected from 3.2M candidates through advanced filtering. ### 1. Camera annotation download (0.7 GB) ```bash git clone https://huggingface.co/datasets/nvidia/dynpose-100k cd dynpose-100k unzip dynpose_100k.zip export DYNPOSE_100K_ROOT=$(pwd)/dynpose_100k ``` ### 2. Video download (~200 GB for all videos at 720p) ```bash git clone https://github.com/snap-research/Panda-70M.git pip install -e Panda-70M/dataset_dataloading/video2dataset ``` - For experiments we use (1280, 720) video resolution rather than the default (640, 360). To download at this resolution (optional), modify [download size](https://github.com/snap-research/Panda-70M/blob/main/dataset_dataloading/video2dataset/video2dataset/configs/panda70m.yaml#L5) to 720 ```bash video2dataset --url_list="${DYNPOSE_100K_ROOT}/metadata.csv" --output_folder="${DYNPOSE_100K_ROOT}/video" \ --url_col="url" --caption_col="caption" --clip_col="timestamp" \ --save_additional_columns="[matching_score,desirable_filtering,shot_boundary_detection]" \ --config="video2dataset/video2dataset/configs/panda70m.yaml" ``` ### 3. Video frame extraction (~400 GB for 12 fps over all videos at 720p) ```bash python scripts/extract_frames.py --input_video_dir ${DYNPOSE_100K_ROOT}/video \ --output_frame_parent ${DYNPOSE_100K_ROOT}/frames-12fps \ --url_list ${DYNPOSE_100K_ROOT}/metadata.csv \ --uid_mapping ${DYNPOSE_100K_ROOT}/uid_mapping.csv ``` ### 4. Camera pose visualization Create a conda environment if you haven't done so: ```bash conda env create -f environment.yml conda activate dynpose-100k ``` Run the below under the `dynpose-100k` environment: ```bash python scripts/visualize_pose.py --dset dynpose_100k --dset_parent ${DYNPOSE_100K_ROOT} ``` ### Dataset structure ``` dynpose_100k ├── cameras | ├── 00011ee6-cbc1-4ec4-be6f-292bfa698fc6.pkl {uid} | ├── poses {camera poses (all frames) ([N',3,4])} | ├── intrinsics {camera intrinsic matrix ([3,3])} | ├── frame_idxs {corresponding frame indices ([N']), values within [0,N-1]} | ├── mean_reproj_error {average reprojection error from SfM ([N'])} | ├── num_points {number of reprojected points ([N'])} | ├── num_frames {number of video frames N (scalar)} | # where N' is number of registered frames | ├── 00031466-5496-46fa-a992-77772a118b17.pkl | ├── poses # camera poses (all frames) ([N',3,4]) | └── ... | └── ... ├── video | ├── 00011ee6-cbc1-4ec4-be6f-292bfa698fc6.mp4 {uid} | ├── 00031466-5496-46fa-a992-77772a118b17.mp4 | └── ... ├── frames-12fps | ├── 00011ee6-cbc1-4ec4-be6f-292bfa698fc6 {uid} | ├── 00001.jpg {frame id} | ├── 00002.jpg | └── ... | ├── 00031466-5496-46fa-a992-77772a118b17 | ├── 00001.jpg | └── ... | └── ... ├── metadata.csv {used to download video & extract frames} | ├── uid | ├── 00031466-5496-46fa-a992-77772a118b17 | └── ... ├── uid_mapping.csv {used to download video & extract frames} | ├── videoID,url,timestamp,caption,matching_score,desirable_filtering,shot_boundary_detection | ├── --106WvnIhc,https://www.youtube.com/watch?v=--106WvnIhc,"[['0:13:34.029', '0:13:40.035']]",['A man is swimming in a pool with an inflatable mattress.'],[0.44287109375],['desirable'],"[[['0:00:00.000', '0:00:05.989']]]" | └── ... ├── viz_list.txt {used as index for pose visualization} | ├── 004cd3b5-8af4-4613-97a0-c51363d80c31 {uid} | ├── 0c3e06ae-0d0e-4c41-999a-058b4ea6a831 | └── ... ``` ## LightSpeed Benchmark LightSpeed contains ground truth camera pose and is used to validate DynPose-100K's pose annotation method. Coming soon! ## FAQ **Q: What coordinate system do the camera poses use?** A: Camera poses are world-to-camera and follow OpenCV "RDF" convention (same as COLMAP): X axis points to the right, the Y axis to the bottom, and the Z axis to the front as seen from the image. **Q: How do I map between frame indices and camera poses?** A: The `frame_idxs` field in each camera PKL file contains the corresponding frame indices for the poses. **Q: How can I contribute to this dataset?** A: Please contact the authors for collaboration opportunities. ## Citation If you find this dataset useful in your research, please cite our paper: ```bibtex @inproceedings{rockwell2025dynpose, author = {Rockwell, Chris and Tung, Joseph and Lin, Tsung-Yi and Liu, Ming-Yu and Fouhey, David F. and Lin, Chen-Hsuan}, title = {Dynamic Camera Poses and Where to Find Them}, booktitle = {CVPR}, year = 2025 } ``` ## Acknowledgements We thank Gabriele Leone and the NVIDIA Lightspeed Content Tech team for sharing the original 3D assets and scene data for creating the Lightspeed benchmark. We thank Yunhao Ge, Zekun Hao, Yin Cui, Xiaohui Zeng, Zhaoshuo Li, Hanzi Mao, Jiahui Huang, Justin Johnson, JJ Park and Andrew Owens for invaluable inspirations, discussions and feedback on this project.