# ----------------------------------------------------------------------------- # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # ----------------------------------------------------------------------------- import argparse import ast import csv import json import os import shutil import subprocess from tqdm import tqdm def get_vid_mapping(input_video_dir): """ Create mapping from video ID to local file path. Args: input_video_dir: Directory containing downloaded videos organized in folders Returns: vid_mapping: Dictionary mapping video IDs to local file paths """ print("mapping video id to local path") vid_mapping = {} folders = [x for x in os.listdir(input_video_dir) if os.path.isdir(f"{input_video_dir}/{x}")] for folder in sorted(folders): vids = [x for x in os.listdir(f"{input_video_dir}/{folder}") if x[-4:] == ".mp4"] for vid in tqdm(sorted(vids)): vid_path = f"{input_video_dir}/{folder}/{vid}" vid_json = f"{input_video_dir}/{folder}/{vid[:-4]}.json" # Extract video ID from URL in JSON metadata vid_name = json.load(open(vid_json))["url"].split("?v=")[-1] vid_mapping[vid_name] = vid_path return vid_mapping def extract(url_list, input_video_dir, output_frame_parent, uid_mapping): """ Extract frames from videos at 12 fps. Args: url_list: CSV file containing video URLs and timestamps input_video_dir: Directory containing downloaded videos output_frame_parent: Output directory for extracted frames uid_mapping: CSV file mapping timestamps to unique IDs """ vid_mapping = get_vid_mapping(input_video_dir) with open(uid_mapping, "r") as file2: with open(url_list, "r") as file: csv_reader = csv.reader(file) csv_reader2 = csv.reader(file2) for i, (row, row2) in enumerate(tqdm(zip(csv_reader, csv_reader2))): # Skip header row and empty rows if i == 0 or len(row) == 0: continue try: full_vid_path = vid_mapping[row[0]] except KeyError: if i % 10 == 0: print("video not found, skipping", row[0]) continue print("extracting", row[0]) for j, timestamps in enumerate(ast.literal_eval(row[2])): uid = row2[j] # Copy video with unique ID name vid_parent = os.path.dirname(os.path.dirname(full_vid_path)) vid_uid_path = shutil.copyfile(full_vid_path, f"{vid_parent}/{uid}.mp4") os.makedirs(f"{output_frame_parent}/{uid}", exist_ok=True) # Extract frames using ffmpeg cmd = f"nice -n 19 ffmpeg -i {vid_uid_path} -q:v 2 -vf fps=12 {output_frame_parent}/{uid}/%05d.jpg" subprocess.run(cmd, shell=True, capture_output=True) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--url_list", type=str, help="path for url list") parser.add_argument("--input_video_dir", type=str, help="video directory") parser.add_argument("--output_frame_parent", type=str, help="parent for output frames") parser.add_argument("--uid_mapping", type=str, help="path for uid mapping") args = parser.parse_args() print("args", args) extract(args.url_list, args.input_video_dir, args.output_frame_parent, args.uid_mapping)