content
stringlengths
5
1.05M
import sys, os #-------------------------------------------------------------------------------------------------- if len(sys.argv) != 2: raise Exception('Usage: python ./mob_uploader.py input_path') if not os.path.exists(sys.argv[1]): raise Exception('Path does not exist: ' + sys.argv[1]) if not os.path.exists(os.path.join(sys.argv[1], '__SETTINGS__.py')): raise Exception('Path does not contain __SETTINGS__.py: ' + sys.argv[1]) sys.path.append(sys.argv[1]) #-------------------------------------------------------------------------------------------------- from edx_gen import _util import __SETTINGS__ #-------------------------------------------------------------------------------------------------- # Text strings WARNING = " WARNING:" #-------------------------------------------------------------------------------------------------- # process one course def main(): print("Start processing") # get the main mooc input folder, which we assume is the first folder root_folder = os.path.normpath(sys.argv[1]) course_path = os.path.join(root_folder, 'Course') # loop for [section, section_path] in _util.getSubFolders(course_path): print("- section", section) section_filename = section.lower() for [subsection, subsection_path] in _util.getSubFolders(section_path): print("-- subsection", subsection) subsection_filename = section_filename + '_' + subsection.lower() for [unit, unit_path] in _util.getSubFolders(subsection_path): print("--- unit", unit) unit_filename = subsection_filename + '_' + unit.lower() for [component, component_path] in _util.getFiles(unit_path): [component_name, component_ext] = component.split('.') component_filename = unit_filename + '_' + component_name # create the filename on s3 # this matches the url created in _mob_iframe.py mob_filename = component_filename + '.' + component_ext # upload an answer to a private repo if _util.ends(mob_filename, __SETTINGS__.MOB_ANSWER_FILENAMES): _util.upload_s3_answer(component_path, mob_filename) # upload an example to a public repo elif _util.ends(mob_filename, __SETTINGS__.MOB_EXAMPLE_FILENAMES): _util.upload_s3_example(component_path, mob_filename) # ignore files with wrong extension else: pass print("Finished processing") #-------------------------------------------------------------------------------------------------- main()
import numpy as np import pandas as pd import torch import torchvision import torch.nn.functional as F from torchvision import datasets,transforms,models import matplotlib.pyplot as plt #from train import get_pretrained_model from torch import nn,optim from PIL import Image #%matplotlib inline def load_dataset(data_direc): data_dir = data_direc train_dir = data_dir + '/train' valid_dir = data_dir + '/valid' test_dir = data_dir + '/test' train_transforms = transforms.Compose([transforms.RandomRotation(30), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) valid_transforms=transforms.Compose([transforms.Resize(255), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485,0.456,0.406], [0.229,0.224,0.225])]) test_transforms = transforms.Compose([transforms.Resize(255), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) train_data=datasets.ImageFolder(train_dir,transform=train_transforms) valid_data=datasets.ImageFolder(valid_dir,transform=valid_transforms) test_data=datasets.ImageFolder(test_dir,transform=test_transforms) trainloader =torch.utils.data.DataLoader(train_data,batch_size=64,shuffle=True) validloader =torch.utils.data.DataLoader(valid_data,batch_size=64) testloader =torch.utils.data.DataLoader(test_data,batch_size=64) return testloader,validloader,testloader,train_data def load_checkpoint(filepath,device): # Checkpoint for when using GPU if torch.cuda.is_available(): map_location=lambda storage, loc: storage.cuda() else: map_location='cpu' pretrained_model= 'vgg16' #get_pretrained_model() checkpoint = torch.load(filepath, map_location=map_location) model = getattr(models,pretrained_model)(pretrained=True) model.classifier=checkpoint['classifier'] model.class_to_idx=checkpoint['class_to_idx'] model.load_state_dict(checkpoint['state_dict']) #device=torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) return model def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' # TODO: Process a PIL image for use in a PyTorch model im=Image.open(image) transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) ## Transforming image for use with network trans_im = transform(im) # Converting to Numpy array array_im_tfd = np.array(trans_im) return array_im_tfd def imshow(image, ax=None, title=None): """Imshow for Tensor.""" if ax is None: fig, ax = plt.subplots() # PyTorch tensors assume the color channel is the first dimension # but matplotlib assumes is the third dimension #image = image.numpy().transpose((1, 2, 0)) image=image.transpose((1,2,0)) # Undo preprocessing mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) image = std * image + mean # Image needs to be clipped between 0 and 1 or it looks like noise when displayed image = np.clip(image, 0, 1) ax.imshow(image) return ax def predict_im(image_path, model, topk): ''' Predict the class (or classes) of an image using a trained deep learning model. ''' # TODO: Implement the code to predict the class from an image file k=topk test_img=process_image(image_path) test_img=torch.from_numpy(test_img) batch_img=torch.unsqueeze(test_img,0) outputs=model(batch_img) top_ps,top_indices = torch.topk(outputs,k) top_ps=torch.exp(top_ps) class_to_idx_inv={k:v for v,k in model.class_to_idx.items()} top_ps=top_ps.view(k).tolist() top_indices=top_indices.view(k).tolist() final_indices=[class_to_idx_inv[x] for x in top_indices] return top_ps,final_indices
"""AyudaEnPython: https://www.facebook.com/groups/ayudapython """ import numpy as np import pandas as pd from matplotlib import pyplot as plt def load_data(min: int = 0, max: int = 10, size: int = 20) -> np.ndarray: return np.random.randint(min, max, size=size) def statistics(ser: pd.Series) -> None: for _ in ("mean", "mode", "median"): print(f"{_}: {ser.__getattribute__(_)()}") def show_plots(ser: pd.Series, arr: np.ndarray) -> None: _, axs = plt.subplots(1, 3, figsize=(15, 5)) for _, type_ in enumerate(("bar", "pie")): ser.value_counts().plot(kind=type_, ax=axs[_]) ser.quantile(arr).plot(kind="box", ax=axs[2]) plt.show() def main(): data = load_data() ser = pd.Series(data) print(ser.value_counts()) statistics(ser) show_plots(ser, np.arange(0.1, 1, 0.1)) if __name__ == "__main__": main()
__copyright__ = "Copyright (C) 2019 Zachary J Weiner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import pyopencl as cl import pyopencl.array as cla import pyopencl.clrandom as clr import pystella as ps import pytest from pyopencl.tools import ( # noqa pytest_generate_tests_for_pyopencl as pytest_generate_tests) from pystella.multigrid import JacobiIterator, NewtonIterator @pytest.mark.parametrize("h", [1]) @pytest.mark.parametrize("dtype", [np.float64]) @pytest.mark.parametrize("Solver", [JacobiIterator, NewtonIterator]) def test_relax(ctx_factory, grid_shape, proc_shape, h, dtype, Solver, timing=False): if min(grid_shape) < 128: pytest.skip("test_relax needs larger grids, for now") ctx = ctx_factory() queue = cl.CommandQueue(ctx) rank_shape = tuple(Ni // pi for Ni, pi in zip(grid_shape, proc_shape)) mpi = ps.DomainDecomposition(proc_shape, h, rank_shape) L = 10 dx = L / grid_shape[0] dk = 2 * np.pi / L fft = ps.DFT(mpi, ctx, queue, grid_shape, dtype) spectra = ps.PowerSpectra(mpi, fft, (dk,)*3, L**3) statistics = ps.FieldStatistics(mpi, h, rank_shape=rank_shape, grid_size=np.product(grid_shape)) def get_laplacian(f): from pystella.derivs import _lap_coefs, centered_diff lap_coefs = _lap_coefs[h] from pymbolic import var return sum([centered_diff(f, lap_coefs, direction=mu, order=2) for mu in range(1, 4)]) / var("dx")**2 test_problems = {} from pystella import Field f = Field("f", offset="h") rho = Field("rho", offset="h") test_problems[f] = (get_laplacian(f), rho) f = Field("f2", offset="h") rho = Field("rho2", offset="h") test_problems[f] = (get_laplacian(f) - f, rho) solver = Solver(mpi, queue, test_problems, halo_shape=h, dtype=dtype, fixed_parameters=dict(omega=1/2)) def zero_mean_array(): f0 = clr.rand(queue, grid_shape, dtype) f = clr.rand(queue, tuple(ni + 2*h for ni in rank_shape), dtype) mpi.scatter_array(queue, f0, f, root=0) avg = statistics(f)["mean"] f = f - avg mpi.share_halos(queue, f) return f f = zero_mean_array() rho = zero_mean_array() tmp = cla.zeros_like(f) f2 = zero_mean_array() rho2 = zero_mean_array() tmp2 = cla.zeros_like(f) num_iterations = 1000 errors = {"f": [], "f2": []} first_mode_zeroed = {"f": [], "f2": []} for _ in range(0, num_iterations, 2): solver(mpi, queue, iterations=2, dx=np.array(dx), f=f, tmp_f=tmp, rho=rho, f2=f2, tmp_f2=tmp2, rho2=rho2) err = solver.get_error(queue, f=f, r_f=tmp, rho=rho, f2=f2, r_f2=tmp2, rho2=rho2, dx=np.array(dx)) for k, v in err.items(): errors[k].append(v) for key, resid in zip(["f", "f2"], [tmp, tmp2]): spectrum = spectra(resid, k_power=0) if mpi.rank == 0: max_amp = np.max(spectrum) first_zero = np.argmax(spectrum[1:] < 1e-30 * max_amp) first_mode_zeroed[key].append(first_zero) for _, errs in errors.items(): errs = np.array(errs) iters = np.arange(1, errs.shape[0]+1) assert (errs[10:, 0] * iters[10:] / errs[0, 0] < 1.).all(), \ "relaxation not converging at least linearly for " \ f"{grid_shape=}, {h=}, {proc_shape=}" first_mode_zeroed = mpi.bcast(first_mode_zeroed, root=0) for _, x in first_mode_zeroed.items(): x = np.array(list(x))[2:] assert (x[1:] <= x[:-1]).all() and np.min(x) < np.max(x) / 5, \ f"relaxation not smoothing error {grid_shape=}, {h=}, {proc_shape=}" if __name__ == "__main__": from common import parser parser.set_defaults(grid_shape=(128,)*3) args = parser.parse_args() test_relax( ps.choose_device_and_make_context, grid_shape=args.grid_shape, proc_shape=args.proc_shape, h=args.h, dtype=args.dtype, timing=args.timing, Solver=NewtonIterator )
""" vmagnify.py : abstract class for the processing of the data. """ class VMagnify: """ VMagnify is an abstract class for the processing of the data """ EDSR_MODEL_X2_PATH = "static/models/EDSR/EDSR_x2.pb" EDSR_MODEL_X3_PATH = "static/models/EDSR/EDSR_x3.pb" EDSR_MODEL_X4_PATH = "static/models/EDSR/EDSR_x4.pb" def __init__(self) -> None: self.url = ""
""" .. codeauthor:: David Zwicker <[email protected]> """ import glob import os import subprocess as sp import sys from pathlib import Path from typing import List # @UnusedImport import pytest from pde.tools.misc import module_available PACKAGE_PATH = Path(__file__).resolve().parents[2] EXAMPLES = glob.glob(str(PACKAGE_PATH / "examples" / "*.py")) SKIP_EXAMPLES: List[str] = [] if not module_available("matplotlib"): SKIP_EXAMPLES.append("plot_emulsion.py") @pytest.mark.no_cover @pytest.mark.skipif(sys.platform == "win32", reason="Assumes unix setup") @pytest.mark.parametrize("path", EXAMPLES) def test_example(path): """runs an example script given by path""" if os.path.basename(path).startswith("_"): pytest.skip("skip examples starting with an underscore") if any(name in path for name in SKIP_EXAMPLES): pytest.skip(f"Skip test {path}") env = os.environ.copy() env["PYTHONPATH"] = str(PACKAGE_PATH) + ":" + env.get("PYTHONPATH", "") proc = sp.Popen([sys.executable, path], env=env, stdout=sp.PIPE, stderr=sp.PIPE) try: outs, errs = proc.communicate(timeout=30) except sp.TimeoutExpired: proc.kill() outs, errs = proc.communicate() msg = "Script `%s` failed with following output:" % path if outs: msg = "%s\nSTDOUT:\n%s" % (msg, outs) if errs: msg = "%s\nSTDERR:\n%s" % (msg, errs) assert proc.returncode <= 0, msg
import pytest from traitlets.tests.utils import check_help_all_output from jupyter_server.utils import url_escape, url_unescape def test_help_output(): check_help_all_output('jupyter_server') @pytest.mark.parametrize( 'unescaped,escaped', [ ( '/this is a test/for spaces/', '/this%20is%20a%20test/for%20spaces/' ), ( 'notebook with space.ipynb', 'notebook%20with%20space.ipynb' ), ( '/path with a/notebook and space.ipynb', '/path%20with%20a/notebook%20and%20space.ipynb' ), ( '/ !@$#%^&* / test %^ notebook @#$ name.ipynb', '/%20%21%40%24%23%25%5E%26%2A%20/%20test%20%25%5E%20notebook%20%40%23%24%20name.ipynb' ) ] ) def test_url_escaping(unescaped, escaped): # Test escaping. path = url_escape(unescaped) assert path == escaped # Test unescaping. path = url_unescape(escaped) assert path == unescaped
import re with open('input.txt', 'r') as fh: lines = [l.strip() for l in fh.readlines()] vowels = 'aeiou' bad = ['ab', 'cd', 'pq', 'xy'] def nice(word): vowel_count = sum(word.count(v) for v in vowels) >= 3 double = re.match('.*(([a-z])\\2{1}).*', word) is not None no_bads = not any(b in word for b in bad) return all([vowel_count, double, no_bads]) print 'part 1', len(filter(nice, lines)) def nicer(word): repeat_pair = re.match('.*([a-z]{2}).*\\1.*', word) is not None repeat_letter = re.match('.*([a-z])[a-z]\\1.*', word) is not None return repeat_pair and repeat_letter print 'part 2', len(filter(nicer, lines))
import komand from .schema import FindIssuesInput, FindIssuesOutput, Input, Output, Component # Custom imports below from ...util import * class FindIssues(komand.Action): def __init__(self): super(self.__class__, self).__init__( name='find_issues', description=Component.DESCRIPTION, input=FindIssuesInput(), output=FindIssuesOutput()) def run(self, params={}): """Search for issues""" max = params.get(Input.MAX) get_attachments = params.get(Input.GET_ATTACHMENTS, False) issues = self.connection.client.search_issues(jql_str=params['jql'], maxResults=max) results = list(map(lambda issue: normalize_issue(issue, get_attachments=get_attachments,logger=self.logger), issues)) results = komand.helper.clean(results) return {Output.ISSUES: results}
#!/usr/bin/env python3 import numpy as np import random import os from scipy.io import loadmat from PIL import Image from collections import defaultdict from sklearn.model_selection import train_test_split import cv2 from sklearn.utils import shuffle import imgaug.augmenters as iaa from few_shot.constants import DATA_DIR def path_to_image(path, image_shape): ''' Resizes an mnist image so it will work with a pre-trained network ''' car_image = cv2.imread(path) car_image = cv2.cvtColor(car_image, cv2.COLOR_BGR2RGB) return np.array(Image.fromarray(car_image).resize( (image_shape[0], image_shape[1]))) def augment_pair(image_a, image_b): ''' Augments a pair of input images in the same way ''' seq = iaa.Sequential([ iaa.Crop(percent=(0, 0.1)), # random crops # Small gaussian blur with random sigma between 0 and 0.5. # But we only blur about 50% of all images. iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0, 0.1))), # Strengthen or weaken the contrast in each image. iaa.ContrastNormalization((0.75, 1.5)), # flip the image left to right half the time iaa.Fliplr(0.5), # Add gaussian noise. # For 50% of all images, we sample the noise once per pixel. # For the other 50% of all images, we sample the noise per pixel AND # channel. This can change the color (not only brightness) of the # pixels. iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # Make some images brighter and some darker. # In 20% of all cases, we sample the multiplier once per channel, # which can end up changing the color of the images. iaa.Multiply((0.8, 1.2), per_channel=0.2), # Apply affine transformations to each image. # Scale/zoom them, translate/move them, rotate them and shear them. iaa.Affine( scale={"x": (0.95, 1.05), "y": (0.95, 1.05)}, translate_percent={"x": (-0.1, 0.1), "y": (-0.1, 0.1)}, rotate=(-5, 5), shear=(-4, 4), # mode='edge', ), iaa.PerspectiveTransform(scale=(0.01, 0.05)), ], random_order=True) # apply augmenters in random order image_a, image_b = seq(images=[image_a, image_b]) return image_a, image_b def make_pairs_batch(dataset, batch_size, image_shape): ''' Given the features and labels of a dataset, return a batch of matching and not matching pairs ''' cars_dict = defaultdict(list) for car in dataset: cars_dict[car.class_id].append(car.filename) pairs = [] pair_labels = [] for i in range(batch_size // 2): # select a random feature class_id = random.choice(list(cars_dict.keys())) anchor_car_path = random.choice(list(cars_dict[class_id])) matching_car_path = random.choice(list(cars_dict[class_id])) anchor_car = path_to_image(anchor_car_path, image_shape) matching_car = path_to_image(matching_car_path, image_shape) augmented_anchor, augmented_match = augment_pair( anchor_car, matching_car) pairs.append([augmented_anchor, augmented_match]) pair_labels.append(0) # adding a non-matching example non_matching_class_id = random.choice(list(cars_dict.keys())) while non_matching_class_id == class_id: non_matching_class_id = random.choice(list(cars_dict.keys())) # get a sample from a different class non_matching_car_path = random.choice(list( cars_dict[non_matching_class_id])) non_matching_car = path_to_image(non_matching_car_path, image_shape) augmented_anchor, augmented_non_match = augment_pair( anchor_car, non_matching_car) pairs.append([augmented_anchor, augmented_non_match]) pair_labels.append(1) pairs, pair_labels = shuffle(pairs, pair_labels) pairs = np.array(pairs) return [pairs[:, 0], pairs[:, 1]], np.array(pair_labels) class Car(): ''' Creates car instance ''' def __init__(self, np_data, classnames): self._filename = np_data[0][0] self.lr_x = np_data[1][0][0] self.lr_y = np_data[2][0][0] self.ul_x = np_data[3][0][0] self.ul_x = np_data[4][0][0] self.class_id = np_data[5][0][0] self.class_name = classnames[self.class_id] @property def filename(self): return os.path.join(DATA_DIR, self._filename) def __repr__(self): ''' String representation of the Car ''' return '<Car {} | {} />'.format(self.class_id, self.filename) def np_to_cars(numpy_dataset, classnames): ''' Converts the raw numpy array to Car instances ''' cars = [] for sample in numpy_dataset['annotations'][0][:]: car = Car(sample, classnames) cars.append(car) return cars def car_generator(dataset, batch_size, image_shape): ''' Given a dataset of Car instances, yield matching and non-matching pairs of car instances ''' while True: features, labels = make_pairs_batch(dataset, batch_size, image_shape) yield features, labels def get_car_generators(batch_size, image_shape): ''' Return the training and validation car generators ''' train, validation, test = get_car_data() return ( car_generator(train, batch_size, image_shape), car_generator(validation, batch_size, image_shape), car_generator(test, batch_size, image_shape)) def get_car_data(): ''' Extracts the car data ''' metadata = loadmat(os.path.join(DATA_DIR, 'car_data', 'cars_meta.mat')) classnames = {i + 1: a[0] for i, a in enumerate(metadata['class_names'][0])} car_data_raw = loadmat(os.path.join(DATA_DIR, 'car_data', 'cars_annos.mat')) random.seed(9001) car_data = np_to_cars(car_data_raw, classnames) random.shuffle(car_data) train, validation = train_test_split(car_data, test_size=0.3) validation, test = train_test_split(validation, test_size=0.5) return train, validation, test
import tensorflow as tf from keras.callbacks import LearningRateScheduler from callbacks import * from help_functions import * from plots import * from networks import * from dataset_preparation import get_dataset def train_model(model, X_train, y_train, X_test, y_test, num_of_epochs, nn_cnn, batch_size=32, validation_share=0.0, mode='normal', context_matrices=None, task_index=None): """ Train and evaluate Keras model. :param model: Keras model instance :param X_train: train input data :param y_train: train output labels :param X_test: test input data :param y_test: test output labels :param num_of_epochs: number of epochs to train the model :param nn_cnn: usage of (convolutional) neural network (possible values: 'nn' or 'cnn') :param batch_size: batch size - number of samples per gradient update (default = 32) :param validation_share: share of examples to be used for validation (default = 0) :param mode: string for learning mode, important for callbacks - possible values: 'normal', 'superposition' :param context_matrices: multidimensional numpy array with random context (binary superposition), only used when mode = 'superposition' :param task_index: index of current task, only used when mode = 'superposition' :return: History object and 2 lists of test accuracies for every training epoch (normal and superposition) """ lr_callback = LearningRateScheduler(lr_scheduler) test_callback = TestPerformanceCallback(X_test, y_test, model) if nn_cnn == 'nn': test_superposition_callback = TestSuperpositionPerformanceCallback(X_test, y_test, context_matrices, model, task_index) elif nn_cnn == 'cnn': test_superposition_callback = TestSuperpositionPerformanceCallback_CNN(X_test, y_test, context_matrices, model, task_index) callbacks = [lr_callback] if mode == 'normal': callbacks.append(test_callback) elif mode == 'superposition': callbacks.append(test_superposition_callback) history = model.fit(X_train, y_train, epochs=num_of_epochs, batch_size=batch_size, verbose=2, validation_split=validation_share, callbacks=callbacks) return history, test_callback.accuracies, test_superposition_callback.accuracies def normal_training_mnist(model, X_train, y_train, X_test, y_test, num_of_epochs, num_of_tasks, nn_cnn, batch_size=32): """ Train model for 'num_of_tasks' tasks, each task is a different permutation of input images. Check how accuracy for original images is changing through tasks using normal training. :param model: Keras model instance :param X_train: train input data :param y_train: train output labels :param X_test: test input data :param y_test: test output labels :param num_of_epochs: number of epochs to train the model :param num_of_tasks: number of different tasks (permutations of original images) :param nn_cnn: usage of (convolutional) neural network (possible values: 'nn' or 'cnn') :param batch_size: batch size - number of samples per gradient update (default = 32) :return: list of test accuracies for 10 epochs for each task """ original_accuracies = [] # first training task - original MNIST images history, accuracies, _ = train_model(model, X_train, y_train, X_test, y_test, num_of_epochs, nn_cnn, batch_size, validation_share=0.1) original_accuracies.extend(accuracies) print_validation_acc(history, 0) # other training tasks - permuted MNIST data for i in range(num_of_tasks - 1): print("\n\n Task: %d \n" % (i + 1)) permuted_X_train = permute_images(X_train) history, accuracies, _ = train_model(model, permuted_X_train, y_train, X_test, y_test, num_of_epochs, nn_cnn, batch_size, validation_share=0.1) original_accuracies.extend(accuracies) print_validation_acc(history, i + 1) return original_accuracies def superposition_training_mnist(model, X_train, y_train, X_test, y_test, num_of_epochs, num_of_tasks, context_matrices, nn_cnn, batch_size=32): """ Train model for 'num_of_tasks' tasks, each task is a different permutation of input images. Check how accuracy for original images is changing through tasks using superposition training. :param model: Keras model instance :param X_train: train input data :param y_train: train output labels :param X_test: test input data :param y_test: test output labels :param num_of_epochs: number of epochs to train the model :param num_of_tasks: number of different tasks (permutations of original images) :param context_matrices: multidimensional numpy array with random context (binary superposition) :param nn_cnn: usage of (convolutional) neural network (possible values: 'nn' or 'cnn') :param batch_size: batch size - number of samples per gradient update (default = 32) :return: list of test accuracies for 10 epochs for each task """ original_accuracies = [] # context_multiplication(model, context_matrices, 0) # first training task - original MNIST images history, _, accuracies = train_model(model, X_train, y_train, X_test, y_test, num_of_epochs, nn_cnn, batch_size, validation_share=0.1, mode='superposition', context_matrices=context_matrices, task_index=0) original_accuracies.extend(accuracies) print_validation_acc(history, 0) # other training tasks - permuted MNIST data for i in range(num_of_tasks - 1): print("\n\n Task: %d \n" % (i + 1)) # multiply current weights with context matrices for each layer (without changing weights from bias node) if nn_cnn == 'nn': context_multiplication(model, context_matrices, i + 1) elif nn_cnn == 'cnn': context_multiplication_CNN(model, context_matrices, i + 1) permuted_X_train = permute_images(X_train) history, _, accuracies = train_model(model, permuted_X_train, y_train, X_test, y_test, num_of_epochs, nn_cnn, batch_size, validation_share=0.1, mode='superposition', context_matrices=context_matrices, task_index=i + 1) original_accuracies.extend(accuracies) print_validation_acc(history, i + 1) return original_accuracies def normal_training_cifar(model, datasets, num_of_epochs, num_of_tasks, nn_cnn, batch_size=32): """ Train model for 'num_of_tasks' tasks, each task is a different disjoint set of CIFAR-100 images. Check how accuracy for the first set of images is changing through tasks using normal training. :param model: Keras model instance :param datasets: list of disjoint datasets with corresponding train and test set :param num_of_epochs: number of epochs to train the model :param num_of_tasks: number of different tasks :param nn_cnn: usage of (convolutional) neural network (possible values: 'nn' or 'cnn') :param batch_size: batch size - number of samples per gradient update (default = 32) :return: list of test accuracies for 10 epochs for each task """ original_accuracies = [] # first training task - 10 classes of CIFAR-100 dataset X_train, y_train, X_test, y_test = datasets[0] # these X_test and y_test are used for testing all tasks history, accuracies, _ = train_model(model, X_train, y_train, X_test, y_test, num_of_epochs, nn_cnn, batch_size, validation_share=0.1) original_accuracies.extend(accuracies) print_validation_acc(history, 0) # other training tasks for i in range(num_of_tasks - 1): print("\n\n Task: %d \n" % (i + 1)) X_train, y_train, _, _ = datasets[i + 1] # use X_test and y_test from the first task to get its accuracy history, accuracies, _ = train_model(model, X_train, y_train, X_test, y_test, num_of_epochs, nn_cnn, batch_size, validation_share=0.1) original_accuracies.extend(accuracies) print_validation_acc(history, i + 1) return original_accuracies def superposition_training_cifar(model, datasets, num_of_epochs, num_of_tasks, context_matrices, nn_cnn, batch_size=32): """ Train model for 'num_of_tasks' tasks, each task is a different disjoint set of CIFAR-100 images. Check how accuracy for the first set of images is changing through tasks using superposition training. :param model: Keras model instance :param datasets: list of disjoint datasets with corresponding train and test set :param num_of_epochs: number of epochs to train the model :param num_of_tasks: number of different tasks :param context_matrices: multidimensional numpy array with random context (binary superposition) :param nn_cnn: usage of (convolutional) neural network (possible values: 'nn' or 'cnn') :param batch_size: batch size - number of samples per gradient update (default = 32) :return: list of test accuracies for 10 epochs for each task """ original_accuracies = [] # first training task - 10 classes of CIFAR-100 dataset X_train, y_train, X_test, y_test = datasets[0] # these X_test and y_test are used for testing all tasks history, _, accuracies = train_model(model, X_train, y_train, X_test, y_test, num_of_epochs, nn_cnn, batch_size, validation_share=0.1, mode='superposition', context_matrices=context_matrices, task_index=0) original_accuracies.extend(accuracies) print_validation_acc(history, 0) # other training tasks for i in range(num_of_tasks - 1): print("\n\n i: %d \n" % i) # multiply current weights with context matrices for each layer (without changing weights from bias node) if nn_cnn == 'nn': context_multiplication(model, context_matrices, i + 1) elif nn_cnn == 'cnn': context_multiplication_CNN(model, context_matrices, i + 1) X_train, y_train, _, _ = datasets[i + 1] # use X_test and y_test from the first task to get its accuracy history, _, accuracies = train_model(model, X_train, y_train, X_test, y_test, num_of_epochs, nn_cnn, batch_size, validation_share=0.1, mode='superposition', context_matrices=context_matrices, task_index=i + 1) original_accuracies.extend(accuracies) print_validation_acc(history, i + 1) return original_accuracies if __name__ == '__main__': # to avoid cuDNN error (https://github.com/tensorflow/tensorflow/issues/24496) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) dataset = 'mnist' # 'mnist' or 'cifar' nn_cnn = 'nn' # 'nn' or 'cnn' ('cifar' is only implemented with 'cnn') input_size = (28, 28) if dataset == 'mnist' else (32, 32, 3) # input sizes for MNIST and CIFAR images num_of_units = 1000 num_of_classes = 10 num_of_tasks = 50 if dataset == 'mnist' else 10 num_of_epochs = 10 batch_size = 600 if dataset == 'mnist' else 50 train_normal = True train_superposition = True if train_normal: if nn_cnn == 'nn': model = nn(input_size, num_of_units, num_of_classes) elif nn_cnn == 'cnn': model = cnn(input_size, num_of_classes) else: raise ValueError("'nn_cnn' variable must have value 'nn' or 'cnn'") d = get_dataset(dataset, nn_cnn, input_size, num_of_classes) if dataset == 'mnist': X_train, y_train, X_test, y_test = d acc_normal = normal_training_mnist(model, X_train, y_train, X_test, y_test, num_of_epochs, num_of_tasks, nn_cnn, batch_size) elif dataset == 'cifar': acc_normal = normal_training_cifar(model, d, num_of_epochs, num_of_tasks, nn_cnn, batch_size) else: raise ValueError("'dataset' variable must have value 'mnist' or 'cifar'") if train_superposition: if nn_cnn == 'nn': model = nn(input_size, num_of_units, num_of_classes) context_matrices = get_context_matrices(input_size, num_of_units, num_of_tasks) elif nn_cnn == 'cnn': model = cnn(input_size, num_of_classes) context_matrices = get_context_matrices_CNN(model, num_of_tasks) else: raise ValueError("nn_cnn variable must have value 'nn' or 'cnn'") d = get_dataset(dataset, nn_cnn, input_size, num_of_classes) if dataset == 'mnist': X_train, y_train, X_test, y_test = d acc_superposition = superposition_training_mnist(model, X_train, y_train, X_test, y_test, num_of_epochs, num_of_tasks, context_matrices, nn_cnn, batch_size) elif dataset == 'cifar': acc_superposition = superposition_training_cifar(model, d, num_of_epochs, num_of_tasks, context_matrices, nn_cnn, batch_size) else: raise ValueError("'dataset' variable must have value 'mnist' or 'cifar'") plot_general(acc_superposition, acc_normal, ['Superposition model', 'Baseline model'], 'Superposition vs. baseline model with ' + nn_cnn.upper() + ' model', 'Epoch', 'Accuracy (%)', [10], 0, 100)
# encoding: utf8 from test_base import DisplaySDKTest from utils import * SLEEP_INTERVAL = 2 class MRAIDTest(DisplaySDKTest): def test_mraid_single_expand(self): self.driver.orientation = 'PORTRAIT' set_channel_id(self, "24338") click_load_ad_btn(self, "BANNER") accept_location(self) block_until_webview(self) sleep(SLEEP_INTERVAL) click_on_webview(self) sleep(SLEEP_INTERVAL) assert_exists(self, "Lock to Landscape") # Rotate phone self.driver.orientation = 'LANDSCAPE' sleep(SLEEP_INTERVAL) assert_exists(self, "Rotate To Portrait") # Rotate phone back self.driver.orientation = 'PORTRAIT' sleep(SLEEP_INTERVAL) assert_exists(self, "Lock to Landscape") click_btn(self, "Lock to Landscape") sleep(SLEEP_INTERVAL) assert_exists(self, "Lock to Portrait") self.driver.orientation = 'LANDSCAPE' click_btn(self, "Lock to Portrait") sleep(SLEEP_INTERVAL) assert_exists(self, "Release Lock") # Rotate phone #self.driver.orientation = 'LANDSCAPE' #sleep(SLEEP_INTERVAL) assert_exists(self, "Release Lock") # Rotate phone back #self.driver.orientation = 'PORTRAIT' sleep(SLEEP_INTERVAL) assert_exists(self, "Release Lock") click_btn(self, "Release Lock") sleep(SLEEP_INTERVAL) assert_not_exists(self, "Lock to Portrait") assert_not_exists(self, "Lock To Landscape") assert_not_exists(self, "Release Lock") # Rotate phone self.driver.orientation = 'LANDSCAPE' sleep(SLEEP_INTERVAL) assert_not_exists(self, "Lock To Portrait") assert_not_exists(self, "Lock to Landscape") assert_not_exists(self, "Release Lock") # Rotate phone back self.driver.orientation = 'PORTRAIT' sleep(SLEEP_INTERVAL) click_x_btn(self) def test_mraid_two_part_expand(self): self.driver.orientation = 'PORTRAIT' set_channel_id(self, "24343") click_load_ad_btn(self, "Banner") accept_location(self) block_until_webview(self) save_source(self) block_until_element(self, ["Two Part Expand", "Two Part Expand Link"]) click_btn(self, "Two Part Expand") click_btn(self, "Two Part Expand Link") sleep(SLEEP_INTERVAL) switch_to_web_context(self) block_until_css_element(self, "#openiab") self.driver.orientation = 'LANDSCAPE' sleep(SLEEP_INTERVAL) self.driver.orientation = 'PORTRAIT' sleep(SLEEP_INTERVAL) # Click on open iab.com button click_btn(self, "#openiab") sleep(SLEEP_INTERVAL) if len(self.driver.find_elements_by_id("android:id/resolver_grid")) != 0: click_btn(self, "Chrome") sleep(SLEEP_INTERVAL) click_btn(self, "Always") sleep(SLEEP_INTERVAL) click_btn(self, "OK") switch_to_native_context(self) sleep(SLEEP_INTERVAL) assert_viewing_browser(self) # Close browser click_back_btn(self) sleep(SLEEP_INTERVAL) switch_to_web_context(self) sleep(SLEEP_INTERVAL) # Play video click_btn(self, "#openvideo") sleep(SLEEP_INTERVAL*3) assert_viewing_video(self) # Close video click_back_btn(self) # Assert expand again does nothing click_btn(self, "Expand Again") sleep(SLEEP_INTERVAL) assert_not_viewing_browser(self) # Close expanded view click_btn(self, "Click here to close.") sleep(SLEEP_INTERVAL) switch_to_native_context(self) block_until_element(self, ["Two Part Expand", "Two Part Expand Link"]) sleep(SLEEP_INTERVAL) click_btn(self, "Two Part Expand") click_btn(self, "Two Part Expand Link") click_btn(self, "Two Part Expand") click_btn(self, "Two Part Expand Link") sleep(SLEEP_INTERVAL) block_until_element(self, "Click here to close.") # TODO Click upper top corner and assert close click_btn(self, "Click here to close.") sleep(SLEEP_INTERVAL) save_source(self) assert_href_called(self, r"mraid://useCustomClose") assert_href_called(self, r"mraid://setOrientationProperties") assert_href_called(self, r"mraid://expand\?url=") assert_href_called(self, r"mraid://open\?url=") assert_href_called(self, r"mraid://playVideo") assert_href_called(self, r"mraid://close") def test_mraid_resize(self): set_channel_id(self, "24348") click_load_ad_btn(self, "Banner") accept_location(self) block_until_webview(self) sleep(SLEEP_INTERVAL) block_until_element(self, "Click to Resize") click_btn(self, "Click to Resize") sleep(SLEEP_INTERVAL) assert_href_called(self, r"mraid://resize") # Click open url click_btn(self, "Open URL") sleep(SLEEP_INTERVAL) assert_viewing_browser(self) # Close browser click_back_btn(self) sleep(SLEEP_INTERVAL) assert_href_called(self, r"mraid://open\?url=.*www\.iab\.net") # Open map click_btn(self, "Click to Map") sleep(SLEEP_INTERVAL) if len(self.driver.find_elements_by_id("android:id/resolver_grid")) != 0: click_btn(self, "Maps") sleep(SLEEP_INTERVAL) click_btn(self, "Always") sleep(SLEEP_INTERVAL) click_btn(self, "OK") sleep(SLEEP_INTERVAL) assert_viewing_maps(self) # Close map click_back_btn(self) sleep(SLEEP_INTERVAL) assert_href_called(self, r"mraid://open\?url=.*maps\.google\.com") # Open app click_btn(self, "Click to App") sleep(SLEEP_INTERVAL) if len(self.driver.find_elements_by_id("android:id/resolver_grid")) != 0: click_btn(self, "Play Store") sleep(SLEEP_INTERVAL) click_btn(self, "Always") sleep(SLEEP_INTERVAL) click_btn(self, "OK") sleep(SLEEP_INTERVAL) assert_viewing_google_play(self) click_back_btn(self) sleep(SLEEP_INTERVAL) assert_href_called(self, r"mraid://open\?url=.*play.google.com") # Open video click_btn(self, "Play Video") sleep(SLEEP_INTERVAL) assert_viewing_video(self) sleep(SLEEP_INTERVAL) # Close video click_back_btn(self) sleep(SLEEP_INTERVAL) self.driver.orientation = 'PORTRAIT' sleep(SLEEP_INTERVAL) assert_href_called(self, r"mraid://playVideo") """ click_btn(self, "Click to Resize") # Send sms click_btn(self, "SMS") sleep(SLEEP_INTERVAL) assert_viewing_sms(self) sleep(SLEEP_INTERVAL) click_back_btn(self) sleep(SLEEP_INTERVAL) assert_href_called(self, r"mraid://open\?url=sms") # Click to call click_btn(self, "Click to Call") sleep(SLEEP_INTERVAL) assert_viewing_call(self) # Close call click_back_btn(self) sleep(SLEEP_INTERVAL) click_back_btn(self) sleep(SLEEP_INTERVAL) assert_href_called(self, r"mraid://open\?url=tel") """ def test_mraid_full_page(self): set_channel_id(self, "24353") click_load_ad_btn(self, "Banner") accept_location(self) block_until_webview(self) sleep(SLEEP_INTERVAL) save_source(self) click_btn(self, "HIDE") click_btn(self, "Hide") sleep(SLEEP_INTERVAL) click_btn(self, "SHOW") click_btn(self, "Show") sleep(SLEEP_INTERVAL) switch_to_web_context(self) sleep(SLEEP_INTERVAL) # Assert that off screen timer is not all zeros timer = self.driver.find_elements_by_css_selector("#offscreentimer")[0] self.assertNotEquals(timer.text, "00:00:00") # Assert that on screen timer is not all zeros timer = self.driver.find_elements_by_css_selector("#onscreentimer")[0] self.assertNotEquals(timer.text, "00:00:00") def test_mraid_resize_error(self): set_channel_id(self, "24358") # Call specific size click_load_ad_btn(self, "Banner", "300x250") accept_location(self) block_until_webview(self) sleep(SLEEP_INTERVAL) # Click bad timing click_parent_btn(self, "bad timing") sleep(SLEEP_INTERVAL) click_parent_btn(self, "bad values") sleep(SLEEP_INTERVAL) click_parent_btn(self, "small") sleep(SLEEP_INTERVAL) click_parent_btn(self, "big") sleep(SLEEP_INTERVAL) click_parent_btn(self, "←") sleep(SLEEP_INTERVAL) click_parent_btn(self, "→") sleep(SLEEP_INTERVAL) click_parent_btn(self, "↑") sleep(SLEEP_INTERVAL) click_parent_btn(self, "↓") sleep(SLEEP_INTERVAL) click_parent_btn(self, "TRUE") sleep(SLEEP_INTERVAL) click_parent_btn(self, "←") sleep(SLEEP_INTERVAL) click_parent_btn(self, "→") sleep(SLEEP_INTERVAL) click_parent_btn(self, "↑") sleep(SLEEP_INTERVAL) click_parent_btn(self, "↓") sleep(SLEEP_INTERVAL) click_parent_btn(self, "X") def test_mraid_video_interstitial(self): set_channel_id(self, "24363") click_load_ad_btn(self, "Interstitial") sleep(SLEEP_INTERVAL) accept_location(self) block_until_webview(self) switch_to_web_context(self) sleep(SLEEP_INTERVAL) block_until_css_element(self, "video") sleep(SLEEP_INTERVAL) # Assert landscape view assert_landscape_view(self) switch_to_native_context(self) sleep(30) assert_href_called(self, r"mraid://useCustomClose") assert_href_called(self, r"mraid://close")
#Q1: WAP to check if the entered character is a vowel or a consonant def Ques1(): ch = raw_input("Enter a letter: "); if (ch=='a' or ch=='e' or ch=='i' or ch=='o' or ch=='u' or ch=='A' or ch=='E' or ch=='I' or ch=='O' or ch=='U'): print ch,"is a vowel"; else: print ch,"is a consonant"; #Q2: WAP to check the validity of triangle and then classify it on the basis of its sides def Ques2(): side1, side2, side3 = input("Enter the length of side 1: "), input("Enter the length of side 2: "), input("Enter the length of side 3: "); print "The Triangle exists" if (side1+side2>side3 and side2+side3>side1 and side3+side1>side2) else "The Triangle doesn't exist.",; if(side1==side2 and side2==side3): print "and is equilateral."; elif(side1==side2 or side2==side3 or side3==side1): print "and is isosceles."; elif(side1!=side2 and side2!=side3 and side3!=side1 and side1+side2>side3 and side2+side3>side1 and side3+side1>side2): print "and is scalene."; #Q3: WAP to find the minimum number of notes or coins of different denominition # required for the give amount(Rs. 2000, 500, 200, 100, 50, 20, 10, 5, 2, 1) def Ques3(): amt = input("Enter the amount: "); totalNumOfNotes=0 denominitions = [2000,500,200,100,50,20,10,5,2,1]; for i in range (0,10): if(amt >= denominitions[i]): numOfNotes = amt//denominitions[i]; print denominitions[i],":",numOfNotes; amt = amt-(numOfNotes*denominitions[i]); totalNumOfNotes+=numOfNotes; print "The total number of notes needed are",totalNumOfNotes; #O4: WAP to perform operations such as multiply divide add subtract and modulus as per user's choice def Ques4(): num1, num2 = input("Enter a number: "), input("Enter a number: "); choice = input("Enter:\n1 for Addition\n2 for Subtraction\n3 for Multiplication\n4 for Division\n5 for Remainder\n"); if choice == 1: print num1,"+",num2,"=",num1+num2; elif choice == 2: print num1,"-",num2,"=",num1-num2; elif choice == 3: print num1,"X",num2,"=",num1*num2; elif choice == 4: print num1,"/",num2,"=",num1/num2; elif choice == 5: print num1,"mod",num2,"=",num1%num2; else: print("Wrong Choice!!"); #PSV main() iterate = True; while(iterate): quesChoice = input("Enter the question number (1 to 4) you want to view(Press 0 to terminate): "); if(quesChoice==1): Ques1(); elif(quesChoice==2): Ques2(); elif(quesChoice==3): Ques3(); elif(quesChoice==4): Ques4(); elif(quesChoice==0): iterate=False; else: print "Enter a correct choice!!!"
# # from shell import main as run
import math import sys def hours_to_min_sec(time, milliseconds=False, txt=False): hours = math.floor(time) minutes = (time - hours) * 60 seconds = (minutes % 1) * 60 data = { "hours": int(hours), "minutes": int(math.floor(minutes)), "seconds": int(math.floor(seconds)) } if txt: data["txt"] = str(data["hours"]) + ' hour ' + \ str(data["minutes"]) + " min " + str(data["seconds"]) + " sec" if hours else str( data["minutes"]) + " min " + str(data["seconds"]) + " sec" if milliseconds: data["milliseconds"] = int(math.floor((seconds % 1) * 1000)) if data["milliseconds"]: data["txt"] = data["txt"] + " " + \ str(data["milliseconds"]) + " millisecond" return data def main(): length = len(sys.argv) if length > 1: try: print(hours_to_min_sec(float(sys.argv[1]))) except: print("argument must be a number") else: print("missing argument") if __name__ == '__main__': main()
import requests import urllib3 import json from global_secrets import api_get_url,api_default_group #Disable warning if not using certificate: verify=False if verify !=True : urllib3.disable_warnings() def _url(path): url=api_get_url() return url + path #Operations on authorization #Authenticate: def get_auth_token(username, password): auth_json={ "username": username, "password": password , "cookie": "true", "csrfToken": "false" } return requests.post(_url('/api/v3/authorize'), json=auth_json, verify=verify) def get_tenant_token (username, password, accountId): auth_json={ "accountId": accountId, "username": username, "password": password , "cookie": "true", "csrfToken": "false" } return requests.post(_url('/api/v3/authorize'), json=auth_json, verify=verify) #Operations at tenant level: #Get tenants accounts def get_tenants_accounts(authtoken): headers={'Authorization': 'Bearer ' + authtoken } return requests.get (_url('/api/v3/grid/accounts?limit=250'), headers=headers , verify=verify) def get_tenant_by_name (authtoken, tenant_name): #Returns the tenant id that match the name query=get_tenants_accounts(authtoken) for items in query.json()['data']: if items['name']==tenant_name: return items['id'] #Gets the storage usage information for the Storage Tenant Account def get_storage_usage_in_tenant(tenant_id, authtoken): headers={'Authorization': 'Bearer ' + authtoken } return requests.get (_url('/api/v3/grid/accounts/{}/usage'.format(tenant_id)), headers=headers , verify=verify) #Creates a new Storage Tenant Account def create_new_tenant(authtoken, account_name,quota,root_password): headers={'Authorization': 'Bearer ' + authtoken } data_json= "{ \"name\":\""+ account_name +"\",\"capabilities\": [\"management\",\"s3\" ],\"policy\": {\"useAccountIdentitySource\": false,\"allowPlatformServices\": false,\"quotaObjectBytes\":"+ str(quota) +"},\"password\": \""+ root_password +"\",\"grantRootAccessToGroup\":\""+ api_default_group()+"\"}" data=json.loads(data_json) return requests.post(_url('/api/v3/grid/accounts'), json=data, headers=headers, verify=verify) #Operations on alarms: def get_alarms(authtoken): headers={'Authorization': 'Bearer ' + authtoken } return requests.get(_url('/api/v3/grid/alarms'), headers=headers, verify=verify) def get_health(authtoken): headers={'Authorization': 'Bearer ' + authtoken } return requests.get(_url('/api/v3/grid/health'), headers=headers, verify=verify) def get_health_topology(authtoken): headers={'Authorization': 'Bearer ' + authtoken } return requests.get(_url('/api/v3/grid/health/topology'), headers=headers, verify=verify) #Operations on Users #Lists Grid Administrator Users def get_admin_users(authtoken): headers={'Authorization': 'Bearer ' + authtoken } return requests.get(_url('/api/v3/grid/users'), headers=headers, verify=verify) #operations on tenants... needs a X-Csrf-Token def get_usage(tenant_authtoken): headers={'Authorization': 'Bearer ' + tenant_authtoken } return requests.get(_url('/api/v3/org/usage'), headers=headers, verify=verify) #Inside a Tenant def create_new_tenant_user_group(tenant_authtoken, group_name, bucket_name): #/org/groups Creates a new Tenant User Group only with access to a specific bucket. #This group can operate over the bucket but not over the tenant, and can generate S3 keys. headers={'Authorization': 'Bearer ' + tenant_authtoken } body={ "displayName": group_name, "policies": { "management": { "manageAllContainers": False, "manageEndpoints": False, "manageOwnS3Credentials": True, "rootAccess": False }, "s3": { "Statement": [ { "Effect": "Allow", "Action": "s3:*", "Resource": [ "arn:aws:s3:::"+bucket_name, "arn:aws:s3:::"+bucket_name+"/*" ], } ] } }, "uniqueName": "federated-group/"+group_name } data=body #For debug: print (json.dumps(data, indent=1)) return requests.post(_url('/api/v3/org/groups'), json=data, headers=headers, verify=verify) def create_new_tenant_user_group_noS3access(tenant_authtoken, group_name, bucket_name): #/org/groups Creates a new Tenant User Group only with access to a specific bucket. #This group can operate over the bucket but not over the tenant, and can generate S3 keys. headers={'Authorization': 'Bearer ' + tenant_authtoken } body={ "displayName": group_name, "policies": { "management": { "manageAllContainers": False, "manageEndpoints": False, "manageOwnS3Credentials": True, "rootAccess": False } }, "uniqueName": "federated-group/"+group_name } data=body #For debug: print (json.dumps(data, indent=1)) return requests.post(_url('/api/v3/org/groups'), json=data, headers=headers, verify=verify) def create_new_bucket(tenant_authtoken,bucket_name, region): #/org/containers #Create a bucket for an S3 tenant account headers={'Authorization': 'Bearer ' + tenant_authtoken } data={ "name": bucket_name, "region": region, } #For debug: print (json.dumps(data, indent=1)) return requests.post(_url('/api/v3/org/containers'), json=data, headers=headers, verify=verify) #/org/containers/{bucketName}/last-access-time #Determines if LAT is enable on a bucket def get_last_access_time(tenant_authtoken,bucket_name): headers={'Authorization': 'Bearer ' + tenant_authtoken } return requests.get (_url('/api/v3/org/containers/{}/last-access-time'.format(bucket_name)), headers=headers , verify=verify)
import os from modulefinder import Module from pathlib import Path from typing import Iterable import fiona import geopandas as gpd import pyproj import rasterio from fiona.errors import DriverError from rasterio.errors import RasterioIOError from shapely.geometry import Polygon, box from arcpy2foss.utils import reproject def extent_from_file(filename: Path, as_wgs84: bool = True, lib: Module = fiona) -> Polygon: """Get the spatial extent from a file Parameters ---------- filename : Path Path of file as_wgs84 : bool, optional Return extent in WGS84, by default True lib : Module The library use to open the file, e.g. fiona, rasterio Returns ------- Polygon Bounding box extent """ with lib.open(filename) as src: bounds = box(*src.bounds) prj = pyproj.CRS.from_user_input(src.crs) epsg_code = prj.to_epsg(min_confidence=20) if as_wgs84 and epsg_code != 4326: bounds = reproject(from_crs=prj, to_crs="EPSG:4326", geom=bounds) return bounds def get_extent(filename: Path, as_wgs84: bool = True) -> Polygon: """Get the bounding box extent from a file Parameters ---------- filename : Path Path to raster or vector file as_wgs84 : bool, optional Return the Polygonal extent in the WGS84 CRS, by default True Returns ------- Polygon A bounding box extent of the data in ``filename`` """ try: return extent_from_file(filename, as_wgs84=as_wgs84, lib=fiona) except DriverError: pass try: return extent_from_file(filename, as_wgs84=as_wgs84, lib=rasterio) except RasterioIOError: pass # raise if neither OGR or GDAL can read the data raise NotImplementedError(f"Could not open file as either raster or vector: {filename}") def extents_to_features(input_files: Iterable[Path], output_file: Path, output_format: str = "GeoJSON") -> None: """Create a new vector file that contains the bounding box extents of each given file in ``input_files``. Parameters ---------- input_files : Iterable[Path] List of input fiels (raster or vector) output_file : Path Path to output file (vector) that will be created with the bounding boxes of each file from ``input_files``. This will be in WGS84. The CRS will be WGS-84. output_format : str The output format (or Driver) to use when writing ``output_file``. See also `fiona.support_drivers`. """ extents = [] for fn in input_files: extents.append({"filename": os.path.basename(fn), "geometry": get_extent(fn, as_wgs84=True)}) out = gpd.GeoDataFrame(extents, geometry="geometry", crs="EPSG:4326") out.to_file(output_file, driver=output_format)
# -*- coding: utf-8 -*- import json from oauthlib.oauth2 import RequestValidator from oauthlib.oauth2.rfc6749 import errors, utils from oauthlib.oauth2.rfc6749.grant_types.base import GrantTypeBase import logging log = logging.getLogger(__name__) JWT_BEARER = 'urn:ietf:params:oauth:grant-type:jwt-bearer' class JWTBearerGrant(GrantTypeBase): def __init__(self, request_validator=None): self.request_validator = request_validator or RequestValidator() def create_token_response(self, request, token_handler): headers = { 'Content-Type': 'application/json', 'Cache-Control': 'no-store', 'Pragma': 'no-cache', } try: log.debug('Validating access token request, %r.', request) self.validate_token_request(request) except errors.OAuth2Error as e: log.debug('Client error in token request. %s.', e) return headers, e.json, e.status_code token = token_handler.create_token(request, refresh_token=False) return headers, json.dumps(token), 200 def validate_token_request(self, request): if request.grant_type != JWT_BEARER: raise errors.UnsupportedGrantTypeError(request=request) if request.assertion is None: raise errors.InvalidRequestError('Missing assertion parameter.', request=request) for param in ('grant_type', 'scope'): if param in request.duplicate_params: raise errors.InvalidRequestError( 'Duplicate %s parameter.' % param, request=request) # Since the JSON Web Token is signed by its issuer client # authentication is not strictly required when the token is used as # an authorization grant. However, if client credentials are provided # they should be validated as describe in Section 3.1. # https://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-12#section-3.1 if self.request_validator.client_authentication_required(request): log.debug('Authenticating client, %r.', request) if not self.request_validator.authenticate_client(request): log.debug('Invalid client (%r), denying access.', request) raise errors.InvalidClientError(request=request) # REQUIRED. The web token issued by the client. log.debug('Validating assertion %s.', request.assertion) if not self.request_validator.validate_bearer_token( request.assertion, request.scopes, request): log.debug('Invalid assertion, %s, for client %r.', request.assertion, request.client) raise errors.InvalidGrantError('Invalid assertion.', request=request) original_scopes = utils.scope_to_list( self.request_validator.get_original_scopes( request.assertion, request)) if request.scope: request.scopes = utils.scope_to_list(request.scope) if (not all((s in original_scopes for s in request.scopes)) and not self.request_validator.is_within_original_scope( request.scopes, request.refresh_token, request)): log.debug('Refresh token %s lack requested scopes, %r.', request.refresh_token, request.scopes) raise errors.InvalidScopeError(request=request) else: request.scopes = original_scopes
{ "targets": [ { "include_dirs": [ "<!@(node -p \"require('node-addon-api').include\")", "lib/emokit-c/include", "/usr/local/include" ], "dependencies": [ "<!(node -p \"require('node-addon-api').gyp\")" ], "target_name": "emotiv", "sources": [ "lib/fprintf_override.c", "lib/bindings.cc", "lib/emokit-c/src/emokit.c" ], "conditions": [ ['OS=="linux"', { 'libraries': [ "/usr/lib/x86_64-linux-gnu/libhidapi-hidraw.so", "/usr/lib/libmcrypt.so" ] }], ['OS=="mac"', { "libraries": [ "/usr/local/lib/libhidapi.0.dylib", "/usr/local/lib/libmcrypt.4.4.8.dylib" ] }] ], "defines": [ "EXTERNAL_API" ], "cflags!": [ "-fno-exceptions" ], "cflags_cc!": [ "-fno-exceptions" ], "xcode_settings": { "GCC_ENABLE_CPP_EXCEPTIONS": "YES", "CLANG_CXX_LIBRARY": "libc++", "MACOSX_DEPLOYMENT_TARGET": "10.7", "OTHER_LDFLAGS": [ "-framework IOKit" ] }, "msvs_settings": { "VCCLCompilerTool": { "ExceptionHandling": 1 } } } ] }
import sys from pyspark.sql import SparkSession from pyspark.sql.functions import count if __name__ == "__main__": if len(sys.argv) != 2: print("Usage: mnmcount <file>", file=sys.stderr) sys.exit(-1) spark = (SparkSession .builder .appName("PythonMnMCount") .getOrCreate()) mnm_file = sys.argv[1] mnm_df = (spark.read.format("csv") .option("header", "true") .option("inferSchema", "true") .load(mnm_file)) count_mnm_df = (mnm_df .select("State", "Color", "Count") .groupby("State", "Color") .agg(count("Count").alias("Total")) .orderBy("Total", ascending=False)) count_mnm_df.show(n=60, truncate=False) print("Total Rows = %d" % (count_mnm_df.count())) ca_count_mnm_df = (mnm_df .select("State", "Color", "Count") .where(mnm_df.State == "CA") .groupby("State", "Color") .agg(count("Count").alias("Total")) .orderBy("Total", ascending=False)) ca_count_mnm_df.show(n=10, truncate=False) spark.stop()
from django.contrib import admin from leaflet.admin import LeafletGeoAdmin from pothole.models import Pothole, PotholeRepair # Register your models here. admin.site.register(Pothole, LeafletGeoAdmin) admin.site.register(PotholeRepair)
from typing import TypeVar, Generic, Callable, Type, cast from PySide2.QtCore import Signal _T = TypeVar('_T') class SimpleSignal: def __init__(self): pass def emit(self): pass def connect(self, c: Callable[[], None]): pass class TypedSignal(Generic[_T]): def __init__(self, _: Type[_T]): pass def emit(self, o: _T): pass def connect(self, c: Callable[[_T], None]): pass def typedsignal(t: Type[_T]) -> TypedSignal[_T]: return cast(TypedSignal[_T], Signal(t)) def signal() -> SimpleSignal: return cast(SimpleSignal, Signal()) __all__ = ['SimpleSignal', 'TypedSignal', 'typedsignal', 'signal']
import sys # Models from lokki.model import AdaBoost from lokki.model import GradientBoosting from lokki.model import RandomForest from lokki.model import LogisticRegressionModel from lokki.model import RidgeClassifierModel from lokki.model import SVM from lokki.model import DecisionTree from lokki.model import ExtraTree from lokki.model import LDA from lokki.model import QDA # Data Transforms from lokki.data_transform import NoPreprocessing from lokki.data_transform import Log from lokki.data_transform import ZScore # Feature Tranforms from lokki.feature_transform import FactorAnalysis from lokki.feature_transform import ICA from lokki.feature_transform import NMF from lokki.feature_transform import PCA from lokki.feature_transform import ChiSquare from lokki.feature_transform import MutualInformation from lokki.feature_transform import HFE from lokki.feature_transform import Void class PipelineComponents: def __init__(self, dataset_shape, parameters, taxonomy = None): self.dataset_shape = dataset_shape self.parameters = parameters self.taxonomy = taxonomy def get_component(self, name, component_type): if component_type.strip().lower() == 'data_transform': if name.lower() == 'none' or name.lower() == 'no_data_transform': return NoPreprocessing() elif name.lower() == 'log': return Log() elif name.lower() == 'zscore': return ZScore() else: sys.exit('ERROR: ' + ' Could not find data transform method "' + name + '"') if component_type.strip().lower() == 'feature_transform': if name.lower() == 'none' or name.lower() == 'no_feature_transform': return Void(self.dataset_shape, self.parameters) elif name.lower() == 'chi_square': return ChiSquare(self.dataset_shape, self.parameters) elif name.lower() == 'mutual_information': return MutualInformation(self.dataset_shape, self.parameters) elif name.lower() == 'hfe': return HFE(self.dataset_shape, self.taxonomy) elif name.lower() == 'factor_analysis': return FactorAnalysis(self.dataset_shape, self.parameters) elif name.lower() == 'ica': return ICA(self.dataset_shape, self.parameters) elif name.lower() == 'nmf': return NMF(self.dataset_shape, self.parameters) elif name.lower() == 'pca': return PCA(self.dataset_shape, self.parameters) else: sys.exit('ERROR: ' + ' Could not find feature transform method "' + name + '"') if component_type.strip().lower() == 'model': if name.lower() == 'random_forest': return RandomForest() elif name.lower() == 'decision_tree': return DecisionTree() elif name.lower() == 'lda': return LDA() if name.lower() == 'qda': return QDA() if name.lower() == 'extra_tree': return ExtraTree() if name.lower() == 'logistic_regression': return LogisticRegressionModel() if name.lower() == 'ridge_regression': return RidgeClassifierModel() if name.lower() == 'adaboost': return AdaBoost() if name.lower() == 'gradient_boosting': return GradientBoosting() if name.lower() == 'svm': return SVM() else: sys.exit('ERROR: ' + ' Could not find model "' + name + '"') # Description: Returns a dictionary mapping the name to the component type def get_name_to_component_map(self): def no_space(string): return '_'.join(string.split(' ')) return { no_space(NoPreprocessing.get_name('').lower()) : 'data_transform', no_space(Log.get_name('').lower()) : 'data_transform', no_space(ZScore.get_name('').lower()) : 'data_transform', no_space(Void.get_name('').lower()) : 'feature_transform', no_space(ChiSquare.get_name('').lower()) : 'feature_transform', no_space(MutualInformation.get_name('').lower()) : 'feature_transform', no_space(HFE.get_name('').lower()) : 'feature_transform', no_space(FactorAnalysis.get_name('').lower()) : 'feature_transform', no_space(ICA.get_name('').lower()) : 'feature_transform', no_space(NMF.get_name('').lower()) : 'feature_transform', no_space(PCA.get_name('').lower()) : 'feature_transform', no_space(RandomForest.get_name('').lower()) : 'model', no_space(DecisionTree.get_name('').lower()) : 'model', no_space(LDA.get_name('').lower()) : 'model', no_space(QDA.get_name('').lower()) : 'model', no_space(ExtraTree.get_name('').lower()) : 'model', no_space(LogisticRegressionModel.get_name('').lower()) : 'model', no_space(RidgeClassifierModel.get_name('').lower()) : 'model', no_space(AdaBoost.get_name('').lower()) : 'model', no_space(GradientBoosting.get_name('').lower()) : 'model', no_space(SVM.get_name('').lower()) : 'model'}
# coding: utf-8 # Copyright (c) Henniggroup. # Distributed under the terms of the MIT License. from __future__ import division, print_function, unicode_literals, \ absolute_import """ This script demonstrates the usage of the module mpinterfaces/calibrate.py to setup and run vasp jobs """ import os from math import sqrt from collections import OrderedDict from pymatgen.io.vasp.inputs import Incar, Poscar from pymatgen.io.vasp.inputs import Potcar, Kpoints from pymatgen.symmetry.analyzer import SpacegroupAnalyzer from mpinterfaces import get_struct_from_mp from mpinterfaces.calibrate import CalibrateSlab from mpinterfaces.interface import Interface from mpinterfaces.utils import get_run_cmmnd MAPI_KEY = os.environ.get("MAPI_KEY", "") # get structure from materialsproject, use your own key strt = get_struct_from_mp('PbS', MAPI_KEY=MAPI_KEY) # convert from fcc primitive to conventional cell # the conventional unit cell is used to create the slab # this is important becasue the hkl specification for the required slab # is wrt the provided unit cell sa = SpacegroupAnalyzer(strt) structure_conventional = sa.get_conventional_standard_structure() strt = structure_conventional.copy() # create slab iface = Interface(strt, hkl=[1, 1, 1], min_thick=10, min_vac=10, supercell=[1, 1, 1]) # sort structure into groups of elements atoms for Potcar mapping iface.sort() # vasp input incar_dict = { 'SYSTEM': 'test', 'ENCUT': 500, 'ISIF': 2, 'IBRION': 2, 'ISMEAR': 1, 'EDIFF': 1e-06, 'NPAR': 8, 'SIGMA': 0.1, 'NSW': 100, 'PREC': 'Accurate' } incar = Incar.from_dict(incar_dict) poscar = Poscar(iface) potcar = Potcar(poscar.site_symbols) kpoints = Kpoints.automatic(20) # set job list. if empty a single job will be run encut_list = [] # range(400,800,100) turn_knobs = OrderedDict( [ ('ENCUT', encut_list) ]) # job directory job_dir = 'vasp_job' # run settings qadapter = None job_cmd = None nprocs = 16 nnodes = 1 walltime = '24:00:00' mem = 1000 incar['NPAR'] = int(sqrt(nprocs)) job_bin = '/home/km468/Software/VASP/vasp.5.3.5/vasp' qadapter, job_cmd = get_run_cmmnd(nnodes=nnodes, nprocs=nprocs, walltime=walltime, job_bin=job_bin, mem=mem) # setup calibration jobs and run cal = CalibrateSlab(incar, poscar, potcar, kpoints, system=iface.as_dict(), turn_knobs=turn_knobs, qadapter=qadapter, job_cmd=job_cmd, job_dir=job_dir) cal.setup() cal.run()
from pathlib import Path from time import sleep from kubernetes import client, config from kubernetes.client.rest import ApiException from kubernetes.config.config_exception import ConfigException from retrying import retry SIG_DIR = '.openmpi-controller' SIG_TERM = f'{SIG_DIR}/term.sig' POLL_STATUS_INTERVAL = 10 TERMINATED_PHASES = ('Succeeded', 'Failed') class Controller: """ Controller is a sidecar container that extends the "main" container (openmpi-job). It communicates with the main container using a shared volume mounted at the working directory. Right before it finishes its work, it creates a semaphore file "term.sig" to signal the main container to terminate. """ def __init__(self, namespace, master): self.namespace = namespace self.master = master Path(SIG_DIR).mkdir() def __enter__(self): log('controller entered') try: config.load_incluster_config() except ConfigException: config.load_kube_config() self.api = client.CoreV1Api() return self def __exit__(self, exc_type, exc_val, exc_tb): log('controller exited') Path(SIG_TERM).touch() def wait_master_terminated(self): while True: phase = self._get_master_phase() log(f'{self.master} is in "{phase}" phase') if phase in TERMINATED_PHASES: break sleep(POLL_STATUS_INTERVAL) @retry(stop_max_attempt_number=5, wait_exponential_multiplier=1000, retry_on_exception=lambda e: isinstance(e, ApiException)) def _get_master_phase(self): pod = self.api.read_namespaced_pod(self.master, self.namespace) return pod.status.phase def log(msg): print(msg, flush=True)
import os import time import shutil import logging import subprocess import torch def init_dist(args): args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 if args.slurm: args.distributed = True if not args.distributed: # task with single GPU also needs to use distributed module os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['WORLD_SIZE'] = '1' os.environ['LOCAL_RANK'] = '0' os.environ['RANK'] = '0' args.local_rank = 0 args.distributed = True args.device = 'cuda:0' args.world_size = 1 args.rank = 0 # global rank if args.distributed: if args.slurm: # processes are created with slurm proc_id = int(os.environ['SLURM_PROCID']) ntasks = int(os.environ['SLURM_NTASKS']) node_list = os.environ['SLURM_NODELIST'] num_gpus = torch.cuda.device_count() torch.cuda.set_device(proc_id % num_gpus) addr = subprocess.getoutput( f'scontrol show hostname {node_list} | head -n1') os.environ['MASTER_ADDR'] = addr os.environ['WORLD_SIZE'] = str(ntasks) args.local_rank = proc_id % num_gpus os.environ['LOCAL_RANK'] = str(proc_id % num_gpus) os.environ['RANK'] = str(proc_id) print(f'Using slurm with master node: {addr}, rank: {proc_id}, world size: {ntasks}') os.environ['MASTER_PORT'] = args.dist_port args.device = 'cuda:%d' % args.local_rank torch.distributed.init_process_group(backend='nccl', init_method='env://') args.world_size = torch.distributed.get_world_size() args.rank = torch.distributed.get_rank() if not args.slurm: torch.cuda.set_device(args.rank) print(f'Training in distributed model with multiple processes, 1 GPU per process. Process {args.rank}, total {args.world_size}.') else: print('Training with a single process on 1 GPU.') # create logger file handler for rank 0, # ignore the outputs of the other ranks def init_logger(args): logger = logging.getLogger() if args.rank == 0: if not os.path.exists(args.exp_dir): os.makedirs(args.exp_dir) logger.setLevel(logging.INFO) fh = logging.FileHandler(os.path.join(args.exp_dir, f'log_{time.strftime("%Y%m%d_%H%M%S", time.localtime())}.txt')) fh.setFormatter(logging.Formatter(fmt='%(asctime)s %(levelname)s %(message)s', datefmt='%y-%m-%d %H:%M:%S')) logger.addHandler(fh) logger.info(f'Experiment directory: {args.exp_dir}') else: logger.setLevel(logging.ERROR)
import os import sys import BaseHTTPServer import threading sys.path.append(os.path.join(os.path.dirname( __file__), '../../../libbeat/tests/system')) from beat.beat import TestCase class BaseTest(TestCase): @classmethod def setUpClass(self): self.beat_name = "heartbeat" self.beat_path = os.path.abspath( os.path.join(os.path.dirname(__file__), "../../")) super(BaseTest, self).setUpClass() def start_server(self, content, status_code): class HTTPHandler(BaseHTTPServer.BaseHTTPRequestHandler): def do_GET(self): self.send_response(status_code) self.send_header('Content-Type', 'application/json') self.end_headers() self.wfile.write(content) server = BaseHTTPServer.HTTPServer(('localhost', 8185), HTTPHandler) thread = threading.Thread(target=server.serve_forever) thread.start() return server
import os import json import re import os.path as op from pathlib import Path from itertools import product from collections import defaultdict from types import SimpleNamespace from typing import Callable, Dict, List # -------------------------------------------------------------------------- # Map the function to do code shorter # -------------------------------------------------------------------------- from crawlino.modules_stores import CrawlinoModulesStore ACTIONS_DETECTION_REGEX = \ re.compile(r'''(\$)([\w\d\_\-]+)([\(\s]+)([\w\'_\"\-\.\d\, ]+)([\)\s]+)''') def gt(obj, key, default): if isinstance(obj, dict): return obj.get(key, default) else: return obj def resolve_log_level(level: int, quite_mode: bool = False) -> int: # If quiet mode selected -> decrease log level if quite_mode: input_level = 100 else: input_level = level * 10 if input_level > 50: input_level = 50 input_level = 60 - input_level if input_level >= 50: input_level = 50 return input_level def find_file(file_name: str) -> str or None: """This function try to find a file in 3 places: - Running path - User path - The folder ~/.crawlino/ If file not found, it returns None """ locations = [ op.abspath(os.getcwd()), # Current dir op.join(str(Path.home()), ".crawlino") # User's home ] if op.isabs(file_name): return file_name for l in locations: curr = op.join(l, file_name) if op.exists(curr): return curr def json_to_object(data: str) -> SimpleNamespace: """This function convert a JSON document into a Python object: >>> data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}' >>> json_to_object(data) namespace(hometown=namespace(id=123, name='New York'), name='John Smith') """ return json.loads(data, object_hook=lambda d: SimpleNamespace(**d)) def dict_to_object(item, callback: Callable = None): """This function convert a Python Dict into a Python object: >>> data = {"name": "John Smith", "hometown": {"name": "New York", "id": 123}}type >>> c = json_to_object(data) type>> c <class 'automatic'> >>> c.name "John Smith" >>> c.hometown.name "New York" typevars(c) mappingproxy({'name': 'Jotypemith', 'hometown': <class 'automatic'>, '__dict__':typetribute '__dict__' of 'automatic' objects>, '__weakref__': <attribute '__weakref__' of 'automatic' objects>, '__doc__': None}) """ def convert(item): if isinstance(item, dict): return type('automatic', (), { k: convert(v) for k, v in item.items() }) if isinstance(item, list): def yield_convert(item): for index, value in enumerate(item): yield convert(value) return list(yield_convert(item)) else: return item return convert(item) class GeneratorDiscover: """ This class stores dictionaries and discover Crawlino generator defined in the strings of the values of them. Also allow: - discover total of generators defined - number of loop needed to generate all of the generators combinations - yield the generated combinations of generated data >>> data = {"name": "John Smith", "hometown": "/users/user?id=$generator('numeric', 1, 10)"} >>> g = GeneratorBuilder(data) >>> g.total_generators 1 >>> g.discovered_generators ["numeric"] >>> g.keys_with_generators {"hometown": ["numeric"]} >>> next(g) {"name": "John Smith", "hometown": "/users/user?id=1"} >>> next(g) {"name": "John Smith", "hometown": "/users/user?id=2"} """ def __init__(self, data: Dict): self.raw_data: Dict = data self.generators = defaultdict(list) self._discovered_generators = None self._total_generators = None self._keys_with_generators = None self.map_keys_and_generators = {} # Parse self._locate_generators(self.raw_data) self._next_data = self._generate_data(self.raw_data) @property def discovered_generators(self) -> List[str]: if not self._discovered_generators: self._discovered_generators = list({ fn for _, generators in self.generators.items() for fn, _ in generators }) return self._discovered_generators @property def keys_with_generators(self) -> Dict[str, List[str]]: if not self._keys_with_generators: tmp = defaultdict(list) for key, generators in self.generators.items(): for fn, fn_args in generators: tmp[key].append((fn, fn_args)) self._keys_with_generators = dict(tmp) return self._keys_with_generators @property def total_generators(self) -> int: if not self._total_generators: self._total_generators = sum([ 1 for _, generators in self.generators.items() for _, _ in generators ]) return self._total_generators def _generate_all_values(self): result = {} keys = list(self.map_keys_and_generators.keys()) d = list(self.map_keys_and_generators.values()) for x in product(*d): for i, v in enumerate(x): result[keys[i]] = v yield result def _locate_generators(self, item: Dict): """This function convert a Python Dict into a Python object: >>> data = {"name": "John Smith", "hometown": {"name": "New York", "id": 123}}type >>> c = json_to_object(data) >>> lambda d: d if not isinstance(d, int) else d * d >>> """ from crawlino.mini_lang import detect_actions gen = self.generators map_keys_and_generators = self.map_keys_and_generators def convert(item, current: str = None): if isinstance(item, dict): return { k: convert( v, f"{current}.{k}" if current else k ) for k, v in item.items() } if isinstance(item, list): # # Currently List are not permitted # return [ convert(v, f"{current}.{k}") if current else k for k, v in enumerate(item) ] else: # _item = str(item) _item = item if "$generator" in _item: for i, (action, action_params) in \ enumerate(detect_actions(_item)): # Set generator name generator_name = action_params[0] generator_params = action_params[1:] gen[current].append( ( generator_name, generator_params ) ) # Map current property with their generators map_keys_and_generators[f"{current}_{i}"] = \ CrawlinoModulesStore.find_module( "generators", generator_name )(*generator_params) convert(item) def _generate_data(self, data) -> Dict: pre_generated_values = None def _data_generator(item, current: str = None): if isinstance(item, dict): res = {} for k, v in item.items(): res[k] = _data_generator( v, f"{current}.{k}" if current else k ) return res if isinstance(item, list): # # Currently List are not permitted # return [ _data_generator(v, f"{current}.{k}") if current else k for k, v in enumerate(item) ] else: _item = str(item) if "$generator" not in _item: return item else: try: results_text = [] i = 0 iter_text = _item while True: found = ACTIONS_DETECTION_REGEX.search(iter_text) # Replace generator results with generated data if found: start, end = found.span() curr_item = f"{current}_{i}" value = pre_generated_values[curr_item] results_text.extend( [ iter_text[:start], str(value) ] ) iter_text = iter_text[end:] i += 1 else: if iter_text: results_text.append(iter_text) break return "".join(results_text).strip() except KeyError: return item for d in self._generate_all_values(): pre_generated_values = d yield _data_generator(data) def __iter__(self): return self def __next__(self) -> Dict: return next(self._next_data) def un_camel(text: str): output = [text[0].lower()] for c in text[1:]: if c in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ': output.append('_') output.append(c.lower()) else: output.append(c) return str.join('', output) __all__ = ("gt", "find_file", "resolve_log_level", "json_to_object", "dict_to_object", "GeneratorDiscover", "un_camel")
"""Author Md Abed Rahman: [email protected]""" """This method iteratively prunes outliers using both LOF and LSCP based outlier detection methods improve HDBSCAN’s performance""" import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.neighbors import LocalOutlierFactor from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.preprocessing import StandardScaler import matplotlib.gridspec as gridspec import timeit import gc from hdbscan import HDBSCAN # import DBCV as DBCV import seaborn as sns from scipy.stats import norm from scipy.stats import zscore from pyod.models.lscp import LSCP from pyod.models.lof import LOF from pyod.utils.utility import standardizer from pyod.utils.data import generate_data from pyod.utils.data import evaluate_print from pyod.utils.example import visualize gc.collect() print(__doc__) start = timeit.default_timer() np.random.seed(42) path = 'G:\\Poralekha\\UofA\Fall 2019\\CMPUT 697- Into to KDD and DM\\Project\\New datasets' np.random.seed(42) filepath = path + '\\DS6\\Tagged.txt' inputFile = pd.read_csv(filepath, sep='\t') # Read dataset df = pd.DataFrame([inputFile['X1'], inputFile['X2']]) X = df.transpose() df = X X = np.asarray(X, dtype=np.float32) labels_true = inputFile['Cluster Number'] outliers_pred=[] true_pred=[] extra_X=[] print(type(labels_true)) para = len(X) * .1 print("10% of the length of X is:", para) if para < 50.0: detector_list = [LOF(n_neighbors=30), LOF(n_neighbors=40), LOF(n_neighbors=50), LOF(n_neighbors=60), LOF(n_neighbors=70)] else: detector_list = [LOF(n_neighbors=60), LOF(n_neighbors=70), LOF(n_neighbors=80), LOF(n_neighbors=90), LOF(n_neighbors=100)] # Make plot grid of 2X2 # gs = gridspec.GridSpec(2, 2) # # plt.figure() # # ax = plt.subplot(gs[0, 0]) # row 0, col 0 counter = 0 while (True): # fit the model for outlier detection with LOF clf = LocalOutlierFactor(n_neighbors=20) y_pred = clf.fit_predict(X) X_scores = clf.negative_outlier_factor_ # Default model has negative of LOF scores # Get the true LOF scores LOF_score = -X_scores if counter == 0: # Plot with LOF # plt.title("Local Outlier Factor (LOF)") # # plt.subplot(211) # plt.xlim((df['X1'].min() - 100, df['X1'].max() + 100)) # plt.ylim((df['X2'].min() - 100, df['X2'].max() + 100)) # # plt.scatter(X[:, 0], X[:, 1], color='k', s=3., label='Data points') # # plot circles with radius proportional to the outlier scores # radius = (X_scores.min() - X_scores) / (X_scores.min() - X_scores.max()) # plt.scatter(X[:, 0], X[:, 1], s=1000 * radius, edgecolors='r', # facecolors='none', label='Outlier scores') # plt.axis('tight') # # # plt.xlabel("prediction errors: %d" % (n_errors)) # legend = plt.legend(loc='upper left') # legend.legendHandles[0]._sizes = [10] # legend.legendHandles[1]._sizes = [20] old_max = X_scores.max() old_min = X_scores.min() # The usual way. Make a function for ease of use length = LOF_score.size flag = [] for i in range(0, length): if LOF_score[i] > 2: # print i flag.append(i) # Find the outlier percentage outlier_percentage = float(len(flag)) / float(len(df)) print("Outlier percentage is", outlier_percentage*100) if outlier_percentage <= 0.01: print("breaking here") break # Now get rid of the global outliers clf_name = 'LSCP' # detector_list = [LOF(n_neighbors=30), LOF(n_neighbors=40), # LOF(n_neighbors=50), LOF(n_neighbors=60),LOF(n_neighbors=70), LOF(n_neighbors=80), # LOF(n_neighbors=90), LOF(n_neighbors=100)] clf = LSCP(detector_list, contamination=outlier_percentage, random_state=42) clf.fit(X) y_train_pred = clf.labels_ # binary labels (0: inliers, 1: outliers) y_train_scores = clf.decision_scores_ # raw outlier scores length = len(y_train_pred) flag = [] for i in range(0, length): if y_train_pred[i] == 1: # print i flag.append(i) # Check how many inliers are going to get pruned count = 0 for i in flag: if (labels_true[i] != -1): count = count + 1 print('no of inliers pruned is ' + str(count)) # pruning happens df = df.drop(df.index[flag]) LOF_score = np.delete(LOF_score, flag, 0) X_scores = np.delete(X_scores, flag, 0) extra_X.extend([X[i] for i in flag]) X = np.delete(X, flag, 0) print(len(labels_true), len(flag)) outliers_pred.extend([-1] * len(flag)) true_pred.extend([labels_true[i] for i in flag]) if counter == 0: labels_true = np.delete(labels_true.values, flag, 0) counter = counter + 1 else: labels_true = np.delete(labels_true, flag, 0) # print(np.where()) # # ax = plt.subplot(gs[0, 1]) # row 0, col 1 # plt.title("After getting rid of outliers by recursively using Local Outlier Factor (LOF)") # plt.xlim((df['X1'].min() - 100, df['X1'].max() + 100)) # plt.ylim((df['X2'].min() - 100, df['X2'].max() + 100)) # plt.scatter(X[:, 0], X[:, 1], color='k', s=3., label='Data points') # # plot circles with radius proportional to the outlier scores # # radius = (X_scores.min() - X_scores) / (X_scores.min() - X_scores.max()) # # radius = (old_min - X_scores) / (old_min - old_max) # plt.scatter(X[:, 0], X[:, 1], s=1000 * radius, edgecolors='r', # facecolors='none', label='Outlier scores') # # plt.axis('tight') # # legend = plt.legend(loc='upper left') # legend.legendHandles[0]._sizes = [10] # legend.legendHandles[1]._sizes = [20] # HDBSCAN Code X = StandardScaler().fit_transform(X) hdb = HDBSCAN(min_cluster_size=10, min_samples=5).fit(X) hdb_labels = hdb.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_hdb_ = len(set(hdb_labels)) - (1 if -1 in hdb_labels else 0) print('\n\n++ HDBSCAN Results') print('Estimated number of clusters: %d' % n_clusters_hdb_) # print('Elapsed time to cluster: %.4f s' % hdb_elapsed_time) # print('Homogeneity: %0.3f' % metrics.homogeneity_score(labels_true, hdb_labels)) # print('Completeness: %0.3f' % metrics.completeness_score(labels_true, hdb_labels)) # print('V-measure: %0.3f' % metrics.v_measure_score(labels_true, hdb_labels)) print('Adjusted Rand Index: %0.3f' % metrics.adjusted_rand_score(labels_true, hdb_labels)) print('Mislabeled points: %0.3f'% (np.sum([np.where(labels_true[i]!=-1,1,0) for i in np.where(hdb_labels==-1)])+np.sum([np.where(hdb_labels[i]!=-1,1,0) for i in np.where(labels_true==-1)]))) # # print('Adjusted Mutual Information: %0.3f' % metrics.adjusted_mutual_info_score(labels_true, hdb_labels)) # print('Silhouette Coefficient: %0.3f' % metrics.silhouette_score(X, hdb_labels)) # print('Mislabeled outliers: %0.3f'% np.sum([np.where(hdb_labels[i]!=-1,1,0) for i in np.where(labels_true==-1)])) # print('DBCV: %0.3f' % DBCV.DBCV(X, hdb_labels)) ############################################################################## # Plot result import matplotlib.pyplot as plt # ax = plt.subplot(gs[1, :]) # Black removed and is used for noise instead. hdb_unique_labels = set(hdb_labels) # db_unique_labels = set(db_labels) hdb_colors = plt.cm.Spectral(np.linspace(0, 1, len( hdb_unique_labels))) # db_colors = plt.cm.Spectral(np.linspace(0, 1, len(db_unique_labels)))# fig = plt.figure(figsize=plt.figaspect(0.5))# hdb_axis = fig.add_subplot('121')# db_axis = fig.add_subplot('122') for k, col in zip(hdb_unique_labels, hdb_colors): if k == -1: # Black used for noise. col = 'k' plt.plot(X[hdb_labels == k, 0], X[hdb_labels == k, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) # for k, col in zip(db_unique_labels, db_colors):# if k == -1:# # Black used for noise.# col = 'k'# # db_axis.lot(X[db_labels == k, 0], X[db_labels == k, 1], 'o', markerfacecolor=col, #markeredgecolor='k', markersize=6) plt.title('LOF-LSCP-HDBSCAN\nEstimated number of clusters: %d' % n_clusters_hdb_) # db_axis.set_title('DBSCAN\nEstimated number of clusters: %d' % n_clusters_db_) plt.show() #True ARI labels_true=labels_true.tolist() labels_true.extend(true_pred) hdb_labels=hdb_labels.tolist() hdb_labels.extend(outliers_pred) X=X.tolist() X.extend(extra_X) print('Adjusted Rand Index: %0.3f' % metrics.adjusted_rand_score(labels_true, hdb_labels)) print('Mislabeled points: %0.3f'% (np.sum([np.where(np.asarray(labels_true)[i]!=-1,1,0) for i in np.where(np.asarray(hdb_labels)==-1)])+np.sum([np.where(np.asarray(hdb_labels)[i]!=-1,1,0) for i in np.where(np.asarray(labels_true)==-1)]))) # filepath=filepath.replace('Tagged.txt','LOF-LSCP-HDBSCANPoints.txt') # # with open(filepath, 'w') as file: # file.writelines('\t'.join(str(j) for j in i) + '\n' for i in X) # # filepath=filepath.replace('Points.txt','cluster.txt') # hdb_labels = [x+1 for x in hdb_labels] # with open(filepath, 'w') as f: # for _list in hdb_labels: # #f.seek(0) # f.write(str(_list)+'\n')
import spacy import torch from pathlib import Path from utils import read_multinli from torch.autograd import Variable from decomposable_attention import build_model from spacy_hook import get_embeddings, get_word_ids DATA_PATH = '../data/sample.jsonl' def main(): sample_path = Path.cwd() / DATA_PATH sample_premise, sample_hypo, sample_labels = read_multinli(sample_path) nlp = spacy.load('en') shape = (20, 300, 3) settings = { 'lr': 0.001, 'batch_size': 3, 'dropout': 0.2, 'nr_epoch': 5, 'tree_truncate': False, 'gru_encode': False } model = build_model(get_embeddings(nlp.vocab), shape, settings) data = [] for texts in (sample_premise, sample_hypo): data.append(get_word_ids( list(nlp.pipe(texts, n_threads=1, batch_size=3)), max_length=20, rnn_encode=False, tree_truncate=False)) model(Variable(torch.from_numpy(data[0]).long()), Variable(torch.from_numpy(data[1]).long())) if __name__ == '__main__': main()
#-- In python, if you define a function and then define a global variable it is visible to the function unless # you do some hackaround. The following example gives you an idea of what this code is all about. # link to the original answer: https://stackoverflow.com/questions/31023060/disable-global-variable-lookup-in-python #-- example to show how a global variable is visible to a function --- def f1(x): retun print(x+y) x = 1 y = 2 print(f1(x)) # it will print the answer even though we haven't passed y in the function call. #-- fix to the above issue --- def noglobal(f): return types.FunctionType(f.__code__, globals().copy(), f.__name__, f.__defaults__, f.__closure__) @noglobal def f1(x): retun print(x+y) x = 1 y = 2 print(f1(x)) # now it will throw an error saying that you haven't passed y. So you need to pass it now. # -- example to use multiple functions --- import numpy as np def noglobal(f): return types.FunctionType(f.__code__, globals().copy(), f.__name__, f.__defaults__, f.__closure__) @noglobal def f1(x,y): return np.pi*x*y @noglobal def f2(p,q): return np.pi*p*q x, y = 1, 2 p, q = 3, 4 print(f1(x,y), f2(p,q))
#!/usr/bin/env python # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import copy import datetime import json import time import argparse # PyCrypto library: https://pypi.python.org/pypi/pycrypto from Crypto.Cipher import PKCS1_OAEP from Crypto.PublicKey import RSA from Crypto.Util.number import long_to_bytes # Google API Client Library for Python: # https://developers.google.com/api-client-library/python/start/get_started from oauth2client.client import GoogleCredentials from googleapiclient.discovery import build def GetCompute(): """Get a compute object for communicating with the Compute Engine API.""" credentials = GoogleCredentials.get_application_default() compute = build("compute", "v1", credentials=credentials) return compute def GetInstance(compute, instance, zone, project): """Get the data for a Google Compute Engine instance.""" cmd = compute.instances().get(instance=instance, project=project, zone=zone) return cmd.execute() def GetKey(): """Get an RSA key for encryption.""" # This uses the PyCrypto library key = RSA.generate(2048) return key def GetModulusExponentInBase64(key): """Return the public modulus and exponent for the key in bas64 encoding.""" mod = long_to_bytes(key.n) exp = long_to_bytes(key.e) modulus = base64.b64encode(mod) exponent = base64.b64encode(exp) return modulus, exponent def GetExpirationTimeString(): """Return an RFC3339 UTC timestamp for 5 minutes from now.""" utc_now = datetime.datetime.utcnow() # These metadata entries are one-time-use, so the expiration time does # not need to be very far in the future. In fact, one minute would # generally be sufficient. Five minutes allows for minor variations # between the time on the client and the time on the server. expire_time = utc_now + datetime.timedelta(minutes=5) return expire_time.strftime("%Y-%m-%dT%H:%M:%SZ") def GetJsonString(user, modulus, exponent, email): """Return the JSON string object that represents the windows-keys entry.""" converted_modulus = modulus.decode("utf-8") converted_exponent = exponent.decode("utf-8") expire = GetExpirationTimeString() data = { "userName": user, "modulus": converted_modulus, "exponent": converted_exponent, "email": email, "expireOn": expire, } return json.dumps(data) def UpdateWindowsKeys(old_metadata, metadata_entry): """Return updated metadata contents with the new windows-keys entry.""" # Simply overwrites the "windows-keys" metadata entry. Production code may # want to append new lines to the metadata value and remove any expired # entries. new_metadata = copy.deepcopy(old_metadata) new_metadata["items"] = [{"key": "windows-keys", "value": metadata_entry}] return new_metadata def UpdateInstanceMetadata(compute, instance, zone, project, new_metadata): """Update the instance metadata.""" cmd = compute.instances().setMetadata( instance=instance, project=project, zone=zone, body=new_metadata ) return cmd.execute() def GetSerialPortFourOutput(compute, instance, zone, project): """Get the output from serial port 4 from the instance.""" # Encrypted passwords are printed to COM4 on the windows server: port = 4 cmd = compute.instances().getSerialPortOutput( instance=instance, project=project, zone=zone, port=port ) output = cmd.execute() return output["contents"] def GetEncryptedPasswordFromSerialPort(serial_port_output, modulus): """Find and return the correct encrypted password, based on the modulus.""" # In production code, this may need to be run multiple times if the output # does not yet contain the correct entry. converted_modulus = modulus.decode("utf-8") output = serial_port_output.split("\n") for line in reversed(output): try: entry = json.loads(line) if converted_modulus == entry["modulus"]: return entry["encryptedPassword"] except ValueError: pass def DecryptPassword(encrypted_password, key): """Decrypt a base64 encoded encrypted password using the provided key.""" decoded_password = base64.b64decode(encrypted_password) cipher = PKCS1_OAEP.new(key) password = cipher.decrypt(decoded_password) return password def Arguments(): # Create the parser args = argparse.ArgumentParser(description="List the content of a folder") # Add the arguments args.add_argument( "--instance", metavar="instance", type=str, help="compute instance name" ) args.add_argument("--zone", metavar="zone", type=str, help="compute zone") args.add_argument("--project", metavar="project", type=str, help="gcp project") args.add_argument("--username", metavar="username", type=str, help="username") args.add_argument("--email", metavar="email", type=str, help="email") # return arguments return args.parse_args() def main(): config_args = Arguments() # Setup compute = GetCompute() key = GetKey() modulus, exponent = GetModulusExponentInBase64(key) # Get existing metadata instance_ref = GetInstance( compute, config_args.instance, config_args.zone, config_args.project ) old_metadata = instance_ref["metadata"] # Create and set new metadata metadata_entry = GetJsonString( config_args.username, modulus, exponent, config_args.email ) new_metadata = UpdateWindowsKeys(old_metadata, metadata_entry) # Get Serial output BEFORE the modification serial_port_output = GetSerialPortFourOutput( compute, config_args.instance, config_args.zone, config_args.project ) UpdateInstanceMetadata( compute, config_args.instance, config_args.zone, config_args.project, new_metadata, ) # Get and decrypt password from serial port output # Monitor changes from output to get the encrypted password as soon as it's generated, will wait for 30 seconds i = 0 new_serial_port_output = serial_port_output while i <= 30 and serial_port_output == new_serial_port_output: new_serial_port_output = GetSerialPortFourOutput( compute, config_args.instance, config_args.zone, config_args.project ) i += 1 time.sleep(1) enc_password = GetEncryptedPasswordFromSerialPort(new_serial_port_output, modulus) password = DecryptPassword(enc_password, key) converted_password = password.decode("utf-8") # Display only the password print(format(converted_password)) if __name__ == "__main__": main()
import os, zbarlight, sys from PIL import Image from datetime import datetime def scan(): qr_count = len(os.listdir('resources/qr_codes')) qr_countup = qr_count print('Taking picture..') try: scan = True for i in range(0,3): os.system('sudo fswebcam -d /dev/video0 -r 800x600 -q resources/qr_codes/qr_'+str(qr_countup)+'.jpg') qr_countup += 1 print('Picture saved..') except: scan = False print('Picture couldn\'t be taken..') if(scan): codes = [] qr_countup = qr_count print('Scanning image..') for i in range(0,3): with open('resources/qr_codes/qr_'+str(qr_countup)+'.jpg','rb') as f: qr = Image.open(f) qr.load() code = zbarlight.scan_codes('qrcode',qr) if code: codes.append(code) qr_countup += 1 print(codes) print(type(codes)) if not codes: print('No QR code found in the picture') else: code = codes[0][0] with open('resources/qr_codes/qr_code_scans.txt','a+') as f: f.write(code.decode() + ' ' + str(datetime.now()) + '\n') return code.decode()
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2022 Hibikino-Musashi@Home # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of Hibikino-Musashi@Home nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Common import. Importing commonly used libraries and defining global parameters. """ """Imports.""" import sys import os import math import numpy as np import copy import csv import time import random import re import threading import glob import cv2 import json from enum import IntEnum from subprocess import Popen, call, PIPE """Globals.""" class GraspPose(IntEnum): """ Defining directions for grasp pose estimation.""" TOP = 0 FRONT = 1 class MappingAction(IntEnum): """ Defining actions for mapping objects.""" ADD = 0 MAPPING = 1 DELETE = 2 DELETEALL = 3 CHECK = 4 GET = 5 GETALL = 6 GETNEAREST = 7
class Solution(object): def thirdMax(self, nums): """ :type nums: List[int] :rtype: int """ if len(nums) == 0: return 0 nums = list(set(nums)) if len(nums) < 3: return max(nums) from heapq import heappush, heappop heap = [] k = 3 for num in nums: if len(heap) < k: heappush(heap, num) elif num > heap[0]: heappop(heap) heappush(heap, num) return heap[0]
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2018, Ansible Project # Copyright: (c) 2018, Abhijeet Kasurde <[email protected]> # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { 'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community' } DOCUMENTATION = r''' --- module: vmware_tag_facts short_description: Manage VMware tag facts description: - This module can be used to collect facts about VMware tags. - Tag feature is introduced in vSphere 6 version, so this module is not supported in the earlier versions of vSphere. - All variables and VMware object names are case sensitive. version_added: '2.6' author: - Abhijeet Kasurde (@Akasurde) notes: - Tested on vSphere 6.5 requirements: - python >= 2.6 - PyVmomi - vSphere Automation SDK - vCloud Suite SDK extends_documentation_fragment: vmware_rest_client.documentation ''' EXAMPLES = r''' - name: Get facts about tag vmware_tag_facts: hostname: '{{ vcenter_hostname }}' username: '{{ vcenter_username }}' password: '{{ vcenter_password }}' delegate_to: localhost - name: Get category id from the given tag vmware_tag_facts: hostname: '{{ vcenter_hostname }}' username: '{{ vcenter_username }}' password: '{{ vcenter_password }}' validate_certs: no delegate_to: localhost register: tag_details - debug: msg: "{{ tag_details.tag_facts['fedora_machines']['tag_category_id'] }}" ''' RETURN = r''' results: description: dictionary of tag metadata returned: on success type: dict sample: { "Sample_Tag_0002": { "tag_category_id": "urn:vmomi:InventoryServiceCategory:6de17f28-7694-43ec-a783-d09c141819ae:GLOBAL", "tag_description": "Sample Description", "tag_id": "urn:vmomi:InventoryServiceTag:a141f212-0f82-4f05-8eb3-c49647c904c5:GLOBAL", "tag_used_by": [] }, "fedora_machines": { "tag_category_id": "urn:vmomi:InventoryServiceCategory:baa90bae-951b-4e87-af8c-be681a1ba30c:GLOBAL", "tag_description": "", "tag_id": "urn:vmomi:InventoryServiceTag:7d27d182-3ecd-4200-9d72-410cc6398a8a:GLOBAL", "tag_used_by": [] }, "ubuntu_machines": { "tag_category_id": "urn:vmomi:InventoryServiceCategory:89573410-29b4-4cac-87a4-127c084f3d50:GLOBAL", "tag_description": "", "tag_id": "urn:vmomi:InventoryServiceTag:7f3516d5-a750-4cb9-8610-6747eb39965d:GLOBAL", "tag_used_by": [] } } ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.vmware_rest_client import VmwareRestClient try: from com.vmware.cis.tagging_client import Tag except ImportError: pass class VmTagFactManager(VmwareRestClient): def __init__(self, module): """Constructor.""" super(VmTagFactManager, self).__init__(module) self.tag_service = Tag(self.connect) self.global_tags = dict() def get_all_tags(self): """Function to retrieve all tag information.""" for tag in self.tag_service.list(): tag_obj = self.tag_service.get(tag) self.global_tags[tag_obj.name] = dict( tag_description=tag_obj.description, tag_used_by=tag_obj.used_by, tag_category_id=tag_obj.category_id, tag_id=tag_obj.id ) self.module.exit_json(changed=False, tag_facts=self.global_tags) def main(): argument_spec = VmwareRestClient.vmware_client_argument_spec() module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True) vmware_tag_facts = VmTagFactManager(module) vmware_tag_facts.get_all_tags() if __name__ == '__main__': main()
#!/usr/bin/env python2.6 # Copyright 2011 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: import pygtk pygtk.require('2.0') except: pygtk = None import sys import os import re import threading from optparse import OptionParser import traceback import exceptions import subprocess import shlex import signal from util import * try: import ui from ui.main_control_launcher import * except: print "While importing ui:" traceback.print_exc() ui = None def _onsig_USR1(signum, frame): print "SIGUSR1 recieved." traceback.print_stack() print " " signal.signal(10, _onsig_USR1) def exists(f): return os.path.exists(f) class LoadException(Exception): def __init__(self,msg): Exception.__init__(self) self.message = msg def get_basedir(): return os.path.dirname(sys.argv[0]) _debug_python_runtime = False def set_debug_python_runtime(): global _debug_python_runtime _debug_python_runtime = True def is_debug_python_runtime(): return _debug_python_runtime def run_tests(options,args): MessageLoop.init_hooks() testmod = __import__("tests") testmod.set_debug_mode(options.test_debug == True) try: if len(args) > 0: testmod.run(args) else: testmod.run(None) except exceptions.KeyboardInterrupt: traceback.print_exc() log2("ndbg.run_tests complete") MessageLoop.shutdown_hooks() CUR_SETTINGS_VERSION = 3 # bump this to force firstRun to run on old .ndbg files def _first_run(settings): log1("_first_run...") global CUR_SETTINGS_VERSION settings.SettingsVersion = CUR_SETTINGS_VERSION # bump # prompt user via GUI which editor they want to use from ui.editor_selection_dialog import EditorSelectionDialog dlg = EditorSelectionDialog() resp = dlg.run() assert resp == gtk.RESPONSE_OK settings.Editor = dlg.editor # force it to a value, making it a user-specific setting def process_options(options, args): """Returns dict with keys that need to be applied to the settings object""" res = DynObject() if options.exec_with_args: if not exists(options.exec_with_args[0]): print "%s is not a file. Cannot continue" % options.exec_with_args[0] return None res.ExecLaunch = options.exec_with_args else: if len(args) == 1: if re.match("^\d+$",args[0]): pid = int(args[0]) res.ExecAttach = pid elif exists(args[0]): res.ExecLaunch = [args[0]] else: print "%s is not a file, nor a pid. Cannot continue" % args[0] return None elif len(args) == 2: if not exists(args[0]): print "%s is not a file. Cannot continue" % args[0] return if not re.match("^\d+$", args[1]): print "Second argument should be a pid" % args[1]; return res.ExecAttach = int(args[1]) else: log1("No arguments") return res def launch_in_existing(options, args): # handle options first res = process_options(options, args) if not res: return if hasattr(res, 'ExecAttach') == False and hasattr(res, 'ExecLaunch') == False: print "Need to specify PID or executable when using the --existing flag." return # get MainControl proxies in existing ndbg processes from ui.main_control_base import MainControlBase mcs = MainControlBase.get_all_remote_instances() # If no ndbg exists, prompt the user to launch a new one # TODO(nduca): multiple dialogs may be presented at once. If they press yes on one, # then broadcast to all other ndbg instances to close the open dialog # and retry. if len(mcs) == 0: print "No nicer debugger instance found. Launch one and try again." return MessageLoop.add_message(lambda: MainControlLauncher(mcs, res)) MessageLoop.run() def run_ui(options, args): global ui if not ui: print "Cannot run UI.\n" return 255 settings = new_settings() # defaults settings.register("SettingsVersion", int, 0) settings.register("Editor", str, None) global CUR_SETTINGS_VERSION if settings.SettingsVersion != CUR_SETTINGS_VERSION: _first_run(settings) # update settings object based on the editor stuffs if hasattr(options,"gvim") and options.gvim: settings.set_temporarily("Editor", "GVimEditor") elif hasattr(options,"emacs") and options.emacs: settings.set_temporarily("Editor", "EmacsEditor") elif hasattr(options,"sourceview") and options.sourceview: settings.set_temporarily("Editor", "SourceViewEditor") if settings.Editor == 'GVimEditor': import ui.gvim_editor ok, error = ui.gvim_editor.SanityCheck(settings) if not ok: print error return 255 # debuger init settings.register("ExecLaunch", list, None) settings.register("ExecAttach", int, -1) res = process_options(options, args) if not res: return if hasattr(res,'ExecAttach'): settings.set_temporarily("ExecAttach", res.ExecAttach) elif hasattr(res,'ExecLaunch'): settings.set_temporarily("ExecLaunch", res.ExecLaunch) # UI init ui.run(settings) # engages main loop return 0 def main(): # basic options log1("ndbg.main(argv=%s)\n" % sys.argv) parser = OptionParser() def handle_args(option,opt_str,value,parser,*args,**kwargs): value = [] for arg in parser.rargs: value.append(arg) del parser.rargs[:len(value)] setattr(parser.values, option.dest, value) parser.add_option("--test", dest="test", action="store_true", default=False, help="Run internal tests. Any arguments passed will be regexps for the tests to run.") parser.add_option("--test-debug", dest="test_debug", action="store_true", default=False, help="Run internal tests, reporting errors immediately as they occurr. Any arguments passed will be regexps for the tests to run.") parser.add_option("--args", dest="exec_with_args", action="callback", callback=handle_args, help="Specify program to run plus arguments") parser.add_option("-v", action="count", dest="verbosity", help="Increase the verbosity level. Specifying repeatedly increases more.") parser.add_option("--sourceview", action="store_true", default=False, dest="sourceview", help="Enables use of SourceView as the editor component") parser.add_option("--gvim", action="store_true", default=False, dest="gvim", help="Enables use of GVimEditor as the editor component") parser.add_option("--emacs", action="store_true", default=False, dest="emacs", help="Enables use of EmacsEditor as the editor component") parser.add_option("-e", "--existing", action="store_true", default=False, dest="launch_in_existing", help="Launches the program inside an existing debugger instance rather than creating a new one.") parser.add_option("-D", action="store_true", default=False, dest="debug_gdb", help="Launches UI for debugging GDB operation.") (options,args) = parser.parse_args() # set verbosity if options.verbosity: set_loglevel(options.verbosity) else: set_loglevel(0) if options.debug_gdb: import debugger.gdb_backend debugger.gdb_backend.gdb_toggle_enable_debug_window() # test mode check if options.test or options.test_debug: run_tests(options,args) elif options.launch_in_existing: launch_in_existing(options, args) else: run_ui(options,args) if __name__ == "__main__": try: main() except Exception, e: traceback.print_exc() log1("Performing final exit steps") threads = threading.enumerate() threads.remove(threading.current_thread()) if len(threads) == 0: log2("Exiting via sys.exit()") sys.exit(0) else: log1("Warning: threads are still running:") for t in threads: log1(" %s", t) log1("Exiting via os._exit") os._exit(0) # do this so we truly exit... even if we have a lingering thread [eew] # assert(False)
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import os from typing import Any, Dict, List, Optional, cast import botocore from slugify import slugify from aws_orbit import bundle, remote, utils from aws_orbit.messages import MessagesContext, stylize from aws_orbit.models.context import Context, ContextSerDe from aws_orbit.remote_files.env import DEFAULT_IMAGES, DEFAULT_ISOLATED_IMAGES from aws_orbit.services import cfn, codebuild _logger: logging.Logger = logging.getLogger(__name__) PROFILES_TYPE = List[Dict[str, Any]] def read_user_profiles_ssm(env_name: str, team_name: str) -> PROFILES_TYPE: ssm_profile_name = f"/orbit/{env_name}/teams/{team_name}/user/profiles" _logger.debug("Trying to read profiles from SSM parameter (%s).", ssm_profile_name) client = utils.boto3_client(service_name="ssm") try: json_str: str = client.get_parameter(Name=ssm_profile_name)["Parameter"]["Value"] except botocore.errorfactory.ParameterNotFound: _logger.info("No team profile found, returning only default profiles") pass return cast(PROFILES_TYPE, json.loads(json_str)) def write_context_ssm(profiles: PROFILES_TYPE, env_name: str, team_name: str) -> None: ssm_profile_name = f"/orbit/{env_name}/teams/{team_name}/user/profiles" client = utils.boto3_client(service_name="ssm") _logger.debug("Writing team %s user profiles to SSM parameter.", team_name) json_str = str(json.dumps(obj=profiles, sort_keys=True)) # resolve any parameters inside team context per context json_str = utils.resolve_parameters( json_str, dict(region=utils.get_region(), account=utils.get_account_id(), env=env_name, team=team_name) ) client.put_parameter( Name=ssm_profile_name, Value=json_str, Overwrite=True, Tier="Intelligent-Tiering", ) def delete_profile(env: str, team: str, profile_name: str, debug: bool) -> None: with MessagesContext("Profile Deleted", debug=debug) as msg_ctx: msg_ctx.info("Retrieving existing profiles") profiles: List[Dict[str, Any]] = read_user_profiles_ssm(env, team) _logger.debug("Existing user profiles for team %s: %s", team, profiles) for p in profiles: if p["slug"] == profile_name: _logger.info("Profile exists, deleting...") profiles.remove(p) _logger.debug("Updated user profiles for team %s: %s", team, profiles) write_context_ssm(profiles, env, team) msg_ctx.tip("Profile deleted") msg_ctx.progress(100) return raise Exception(f"Profile {profile_name} not found") def list_profiles(env: str, team: str, debug: bool) -> None: print("Team profiles:") profiles: List[Dict[str, Any]] = read_user_profiles_ssm(env, team) _logger.debug("Existing user profiles for team %s: %s", team, profiles) print(json.dumps(profiles, indent=4, sort_keys=True)) print("Admin deployed profiles:") from aws_orbit_sdk import common_pod_specification os.environ["AWS_ORBIT_ENV"] = env os.environ["AWS_ORBIT_TEAM_SPACE"] = team deployed_profiles: common_pod_specification.PROFILES_TYPE = ( common_pod_specification.TeamConstants().deployed_profiles() ) print(json.dumps(deployed_profiles, indent=4, sort_keys=True)) def build_profile(env: str, team: str, profile: str, debug: bool) -> None: with MessagesContext("Adding profile", debug=debug) as msg_ctx: msg_ctx.info("Retrieving existing profiles") profiles: List[Dict[str, Any]] = read_user_profiles_ssm(env, team) _logger.debug("Existing user profiles for team %s: %s", team, profiles) profiles_new = json.loads(profile) if isinstance(profiles_new, dict): profile_json_list = [cast(Dict[str, Any], profiles_new)] else: profile_json_list = cast(List[Dict[str, Any]], profiles_new) for profile_json in profile_json_list: if "slug" not in profile_json: # generate missing slug fields from display_name profile_json["slug"] = slugify(profile_json["display_name"]) if "slug" not in profile_json: raise Exception("Profile document must include property 'slug'") _logger.debug(f"new profile name: {profile_json['display_name']}") for p in profiles: if p["slug"] == profile_json["slug"]: _logger.info("Profile exists, updating...") profiles.remove(p) break profiles.append(profile_json) msg_ctx.tip(f"Profile added {profile_json['display_name']}") _logger.debug("Updated user profiles for team %s: %s", team, profiles) write_context_ssm(profiles, env, team) msg_ctx.progress(100) def build_image( env: str, dir: Optional[str], name: str, script: Optional[str], build_args: Optional[List[str]], timeout: int = 30, debug: bool = False, source_registry: Optional[str] = None, source_repository: Optional[str] = None, source_version: Optional[str] = None, ) -> None: with MessagesContext("Deploying Docker Image", debug=debug) as msg_ctx: context: "Context" = ContextSerDe.load_context_from_ssm(env_name=env, type=Context) msg_ctx.info("Manifest loaded") if cfn.does_stack_exist(stack_name=f"orbit-{context.name}") is False: msg_ctx.error("Please, deploy your environment before deploying any additional docker image") return msg_ctx.progress(3) if dir: dirs = [(dir, name)] else: dirs = [] bundle_path = bundle.generate_bundle(command_name=f"deploy_image-{name}", context=context, dirs=dirs) msg_ctx.progress(5) script_str = "NO_SCRIPT" if script is None else script source_str = "NO_REPO" if source_registry is None else f"{source_registry} {source_repository} {source_version}" build_args = [] if build_args is None else build_args buildspec = codebuild.generate_spec( context=context, plugins=False, cmds_build=[ f"orbit remote --command build_image " f"{env} {name} {script_str} {source_str} {' '.join(build_args)}" ], changeset=None, ) msg_ctx.progress(6) remote.run( command_name=f"deploy_image-{name}", context=context, bundle_path=bundle_path, buildspec=buildspec, codebuild_log_callback=msg_ctx.progress_bar_callback, timeout=timeout, ) msg_ctx.info("Docker Image deploy into ECR") if name in DEFAULT_IMAGES or name in DEFAULT_ISOLATED_IMAGES: # Trying to build the system image, hope you are admin or you will get permission errors address = f"{context.account_id}.dkr.ecr.{context.region}.amazonaws.com/orbit-{context.name}-{name}" else: address = f"{context.account_id}.dkr.ecr.{context.region}.amazonaws.com/orbit-{context.name}-users-{name}" msg_ctx.info(f"ECR Image Address={address}") msg_ctx.tip(f"ECR Image Address: {stylize(address, underline=True)}") msg_ctx.progress(100)
from flask import Blueprint from app.api.v1 import index def create_blueprint_v1(): bp_v1 = Blueprint('v1', __name__) index.api.register(bp_v1) return bp_v1
import torch.nn as nn import torch.nn.init as init class MLP(nn.Module): def __init__(self, input_dim, num_hidden_layers, hidden_dim, dropout=0.5, activation_fn=nn.ReLU): super(MLP, self).__init__() self.num_hidden_layers = num_hidden_layers self.input_to_hidden = nn.Sequential( nn.Dropout(p=dropout), nn.Linear(in_features=input_dim, out_features=hidden_dim), activation_fn(), nn.BatchNorm1d(num_features=hidden_dim, affine=False) ) init.xavier_normal(self.input_to_hidden[1].weight) self.input_to_hidden[1].bias.data.zero_() if num_hidden_layers > 1: self.hiddens = nn.ModuleList( [nn.Sequential(nn.Linear(hidden_dim, hidden_dim), activation_fn(), nn.BatchNorm1d(num_features=hidden_dim, affine=False) ) for i in range(num_hidden_layers - 1)] ) for i in range(num_hidden_layers - 1): init.xavier_normal(self.hiddens[i][0].weight) self.hiddens[i][0].bias.data.zero_() self.output_logit = nn.Linear(in_features=hidden_dim, out_features=2) init.xavier_normal(self.output_logit.weight) self.output_logit.bias.data.zero_() def forward(self, x): x = self.input_to_hidden(x) if self.num_hidden_layers > 1: for hidden in self.hiddens: x = hidden(x) x = self.output_logit(x) return x
import tkinter from pytube import YouTube root = tkinter.Tk() root.geometry('500x300') root.resizable(0,0) root.title("Youtube Video Downloader") link = tkinter.StringVar() tkinter.Label(root, text ='Paste Link Here:', font ='arial 15 bold').place(x= 160, y = 60) link_enter = tkinter.Entry(root, width = 70, textvariable = link).place(x = 32, y = 90) def Downloader(): url =YouTube(str(link.get())) video = url.streams.first() video.download() tkinter.Label(root, text ='DOWNLOADED', font ='arial 15').place(x= 180, y = 210) tkinter.Button(root, text ='DOWNLOAD', font ='arial 15 bold', bg ='white', padx = 2, command = Downloader).place(x=180, y = 150) root.mainloop()
""" Deploy Artifacts to Anaconda and Quay """ import os import subprocess as sp import logging from . import utils logger = logging.getLogger(__name__) def anaconda_upload(package: str, token: str = None, label: str = None) -> bool: """ Upload a package to anaconda. Args: package: Filename to built package token: If None, use the environment variable ``ANACONDA_TOKEN``, otherwise, use this as the token for authenticating the anaconda client. label: Optional label to add Returns: True if the operation succeeded, False if it cannot succeed, None if it should be retried Raises: ValueError """ label_arg = [] if label is not None: label_arg = ['--label', label] if not os.path.exists(package): logger.error("UPLOAD ERROR: package %s cannot be found.", package) return False if token is None: token = os.environ.get('ANACONDA_TOKEN') if token is None: raise ValueError("Env var ANACONDA_TOKEN not found") logger.info("UPLOAD uploading package %s", package) try: cmds = ["anaconda", "-t", token, 'upload', package] + label_arg utils.run(cmds, mask=[token]) logger.info("UPLOAD SUCCESS: uploaded package %s", package) return True except sp.CalledProcessError as e: if "already exists" in e.stdout: # ignore error assuming that it is caused by # existing package logger.warning( "UPLOAD WARNING: tried to upload package, got:\n " "%s", e.stdout) return True elif "Gateway Timeout" in e.stdout: logger.warning("UPLOAD TEMP FAILURE: Gateway timeout") return False else: logger.error('UPLOAD ERROR: command: %s', e.cmd) logger.error('UPLOAD ERROR: stdout+stderr: %s', e.stdout) return False def mulled_upload(image: str, quay_target: str) -> sp.CompletedProcess: """ Upload the build Docker images to quay.io with ``mulled-build push``. Calls ``mulled-build push <image> -n <quay_target>`` Args: image: name of image to push quary_target: name of image on quay """ cmd = ['mulled-build', 'push', image, '-n', quay_target] mask = [] if os.environ.get('QUAY_OAUTH_TOKEN', False): token = os.environ['QUAY_OAUTH_TOKEN'] cmd.extend(['--oauth-token', token]) mask = [token] return utils.run(cmd, mask=mask) def skopeo_upload(image_file: str, target: str, creds: str, registry: str = "quay.io", timeout: int = 600) -> bool: """ Upload an image to docker registy Uses ``skopeo`` to upload tar archives of docker images as created with e.g.``docker save`` to a docker registry. The image name and tag are read from the archive. Args: image_file: path to the file to be uploaded (may be gzip'ed) target: namespace/repo for the image creds: login credentials (``USER:PASS``) registry: url of the registry. defaults to "quay.io" timeout: timeout in seconds """ cmd = ['skopeo', '--insecure-policy', # disable policy checks '--command-timeout', str(timeout) + "s", 'copy', 'docker-archive:{}'.format(image_file), 'docker://{}/{}'.format(registry, target), '--dest-creds', creds] try: utils.run(cmd, mask=creds.split(':')) return True except sp.CalledProcessError as exc: logger.error("Failed to upload %s to %s", image_file, target) for line in exc.stdout.splitlines(): logger.error("> %s", line) return False
import os, py from rpython.memory.gc import env from rpython.rlib.rarithmetic import r_uint from rpython.tool.udir import udir class FakeEnviron: def __init__(self, value): self._value = value def get(self, varname): assert varname == 'FOOBAR' return self._value def check_equal(x, y): assert x == y assert type(x) == type(y) def test_get_total_memory_darwin(): # this only tests clipping BIG = 2 * env.addressable_size SMALL = env.addressable_size / 2 assert env.addressable_size == env.get_total_memory_darwin(0) assert env.addressable_size == env.get_total_memory_darwin(-1) assert env.addressable_size == env.get_total_memory_darwin(BIG) assert SMALL == env.get_total_memory_darwin(SMALL) def test_get_total_memory(): # total memory should be at least a megabyte assert env.get_total_memory() > 1024*1024 def test_read_from_env(): saved = os.environ try: os.environ = FakeEnviron(None) check_equal(env.read_from_env('FOOBAR'), 0) check_equal(env.read_uint_from_env('FOOBAR'), r_uint(0)) check_equal(env.read_float_from_env('FOOBAR'), 0.0) # os.environ = FakeEnviron('') check_equal(env.read_from_env('FOOBAR'), 0) check_equal(env.read_uint_from_env('FOOBAR'), r_uint(0)) check_equal(env.read_float_from_env('FOOBAR'), 0.0) # os.environ = FakeEnviron('???') check_equal(env.read_from_env('FOOBAR'), 0) check_equal(env.read_uint_from_env('FOOBAR'), r_uint(0)) check_equal(env.read_float_from_env('FOOBAR'), 0.0) # os.environ = FakeEnviron('1') check_equal(env.read_from_env('FOOBAR'), 1) check_equal(env.read_uint_from_env('FOOBAR'), r_uint(1)) check_equal(env.read_float_from_env('FOOBAR'), 1.0) # os.environ = FakeEnviron('12345678') check_equal(env.read_from_env('FOOBAR'), 12345678) check_equal(env.read_uint_from_env('FOOBAR'), r_uint(12345678)) check_equal(env.read_float_from_env('FOOBAR'), 12345678.0) # os.environ = FakeEnviron('1234B') check_equal(env.read_from_env('FOOBAR'), 1234) check_equal(env.read_uint_from_env('FOOBAR'), r_uint(1234)) check_equal(env.read_float_from_env('FOOBAR'), 1234.0) # os.environ = FakeEnviron('1.5') check_equal(env.read_float_from_env('FOOBAR'), 1.5) # os.environ = FakeEnviron('1.5Kb') check_equal(env.read_from_env('FOOBAR'), 1536) check_equal(env.read_uint_from_env('FOOBAR'), r_uint(1536)) check_equal(env.read_float_from_env('FOOBAR'), 0.0) # os.environ = FakeEnviron('1.5mB') check_equal(env.read_from_env('FOOBAR'), int(1.5*1024*1024)) check_equal(env.read_uint_from_env('FOOBAR'), r_uint(1.5*1024*1024)) check_equal(env.read_float_from_env('FOOBAR'), 0.0) # os.environ = FakeEnviron('1.5g') check_equal(env.read_from_env('FOOBAR'), int(1.5*1024*1024*1024)) check_equal(env.read_uint_from_env('FOOBAR'), r_uint(1.5*1024*1024*1024)) check_equal(env.read_float_from_env('FOOBAR'), 0.0) # finally: os.environ = saved def test_get_total_memory_linux2(): filepath = udir.join('get_total_memory_linux2') filepath.write("""\ MemTotal: 1976804 kB MemFree: 32200 kB Buffers: 144092 kB Cached: 1385196 kB SwapCached: 8408 kB Active: 1181436 kB etc. """) result = env.get_total_memory_linux2(str(filepath)) assert result == 1976804 * 1024 def test_get_total_memory_linux2_32bit_limit(): filepath = udir.join('get_total_memory_linux2') filepath.write("""\ MemTotal: 3145728 kB etc. """) saved = env.addressable_size try: env.addressable_size = float(2**31) result = env.get_total_memory_linux2(str(filepath)) check_equal(result, float(2**31)) # limit hit # env.addressable_size = float(2**32) result = env.get_total_memory_linux2(str(filepath)) check_equal(result, float(3145728 * 1024)) # limit not hit finally: env.addressable_size = saved def test_estimate_best_nursery_size_linux2(): filepath = udir.join('estimate_best_nursery_size_linux2') filepath.write("""\ processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 37 model name : Intel(R) Core(TM) i5 CPU M 540 @ 2.53GHz stepping : 5 cpu MHz : 1199.000 cache size : 3072 KB physical id : 0 siblings : 4 core id : 0 cpu cores : 2 apicid : 0 initial apicid : 0 fpu : yes fpu_exception : yes cpuid level : 11 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp lm constant_tsc arch_perfmon pebs bts rep_good xtopology nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 sse4_2 popcnt aes lahf_lm ida arat tpr_shadow vnmi flexpriority ept vpid bogomips : 5054.78 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: processor : 1 vendor_id : GenuineIntel cpu family : 6 model : 37 model name : Intel(R) Core(TM) i5 CPU M 540 @ 2.53GHz stepping : 5 cpu MHz : 2534.000 cache size : 3072 KB physical id : 0 siblings : 4 core id : 0 cpu cores : 2 apicid : 1 initial apicid : 1 fpu : yes etc. """) result = env.get_L2cache_linux2_cpuinfo(str(filepath)) assert result == 3072 * 1024 def test_estimate_nursery_s390x(): filepath = udir.join('estimate_best_nursery_size_linux2') filepath.write("""\ vendor_id : IBM/S390 # processors : 2 bogomips per cpu: 20325.00 ... cache2 : level=2 type=Data scope=Private size=2048K line_size=256 associativity=8 cache3 : level=2 type=Instruction scope=Private size=2048K line_size=256 associativity=8 ... """) result = env.get_L2cache_linux2_cpuinfo_s390x(str(filepath)) assert result == 2048 * 1024 filepath = udir.join('estimate_best_nursery_size_linux3') filepath.write("""\ vendor_id : IBM/S390 # processors : 2 bogomips per cpu: 9398.00 ... cache2 : level=2 type=Unified scope=Private size=1536K line_size=256 associativity=12 cache3 : level=3 type=Unified scope=Shared size=24576K line_size=256 associativity=12 ... """) result = env.get_L2cache_linux2_cpuinfo_s390x(str(filepath), label='cache3') assert result == 24576 * 1024 result = env.get_L2cache_linux2_cpuinfo_s390x(str(filepath), label='cache2') assert result == 1536 * 1024
''' @uthor: saleem Minimal Scheduler for running functions at set interval. ''' import time class scheduler: def __init__(self, h=0, m=0, s=0): self.h = h self.m = m self.s = s def runit(self, fn, *args): time_step = self.h*3600 + self.m*60 + self.s while True: starttime = time.time() fn(*args) exec_time = time.time()-starttime tlambda = int(exec_time)/time_step ttime = (tlambda+1)*time_step time.sleep(ttime - ((time.time()-starttime)%ttime)) if __name__ == "__main__": def fn(a, b): print a+b return ss = scheduler(s=3) ss.runit(fn, 1, 3)
# try-finally support import sys # Basic finally support: print "basic_finally" def basic_finally(n): try: 1/n print "1" except: print "2" else: print "3" finally: print "4" print "5" print basic_finally(1) print basic_finally(0) print # If we return from inside the try part of a try-finally, we have to save the return value, # execute the finally block, then do the actual return. print "finally_after_return" def finally_after_return(): try: print 1 return 2 finally: print 3 print 4 print finally_after_return() print # Return from a finally will disable any exception propagation: print "return_from_finally" def return_from_finally(to_throw=None): try: if to_throw: raise to_throw return 1 except: print "except" return 2 else: print "else" return 3 finally: print "finally" return 4 print return_from_finally() print return_from_finally(Exception) print # A break in a finally will disable any exception propagation # Note: "break" is allowed in a finally, but "continue" is not (see finally_continue.py) print "break_from_finally" def break_from_finally(to_throw=None): for i in xrange(5): print i try: if to_throw: raise to_throw return 1 except: return 2 else: return 3 finally: break return 4 print break_from_finally(None) print break_from_finally(Exception) print # I guess you're allowed to yield from a finally block. # Once execution is returned, exception propagation will continue print "yield_from_finally" def yield_from_finally(to_throw=None): for i in xrange(5): try: if to_throw: raise to_throw finally: yield i for i in yield_from_finally(): print i try: for i in yield_from_finally(Exception("ex")): print i # Throw a different exception just for fun: try: raise Exception() except: pass except Exception, e: print e print # Similarly for continues print "finally_after_continue" def finally_after_continue(): for i in xrange(5): try: continue finally: print 3 print finally_after_continue() print # And breaks print "finally_after_break" def finally_after_break(): for i in xrange(5): try: break finally: print 3 print finally_after_break() print # Exceptions thrown in the else or except blocks of a try-finally still run the finally print "exception_in_elseexcept" def exception_in_elseexcept(throw0=None, throw1=None, throw2=None): try: if throw0: raise throw0 except: print "except" if throw1: raise throw1 else: print "else" if throw2: raise throw2 finally: print "in finally" for t0 in [None, Exception("exc 0")]: for t1 in [None, Exception("exc 1")]: for t2 in [None, Exception("exc 2")]: print "throwing:", t0, t1, t2 try: exception_in_elseexcept(t0, t1, t2) print "no exception" except Exception, e: print "threw:", e print # An exception thrown and caught inside a finally doesn't hide the current exception propagation print "exception_in_finally" def exception_in_finally(): try: 1/0 finally: print sys.exc_info()[0] try: raise KeyError() except KeyError: pass print sys.exc_info()[0] try: print exception_in_finally() print "no exception" except ZeroDivisionError, e: print e print # sys.exc_clear() doesn't stop finally-exception propagation print "sysclear_in_finally" def sysclear_in_finally(): try: 1/0 finally: sys.exc_clear() try: print sysclear_in_finally() print "no exception" except ZeroDivisionError, e: print e print # An uncaught exception from a finally will override the previous exception: print "raise_from_finally" def raise_from_finally(): try: raise Exception("exception 1") finally: raise Exception("exception 2") try: raise_from_finally() except Exception, e: print e print # Make sure we can handle various nestings of try-finally print "nested_finally" def nested_finally(): try: try: for i in xrange(5): pass finally: print "finally1" finally: print "finally2" try: for j in xrange(5): pass finally: print "finally3" nested_finally() print # finally blocks hide their exceptions even from bare "raise" statements: print "bare_raise_in_finally" def bare_raise_in_finally(): try: raise Exception("first exception") except: pass try: 1/0 finally: raise # raises the "first exception" exception above try: bare_raise_in_finally() except Exception, e: print e print # Some older tests. Keep them around, because why not def f3(): print print "f3" def f(): print "getting the exc handler type" raise AssertionError() try: print "in the first try" # f() won't get evaluated until the exception is actually thrown: try: print "in the second try" raise Exception() except f(): print "In the inner exception block??" finally: # This will get called even though there was an exception in # evaluating the exception-handler type: print "inner finally" except Exception: # This will print "AssertionError", from the f() call, *not* the Exception # that was thrown in the inner try block. print "In the outer exception block:", sys.exc_info()[0].__name__ finally: print "outer finally" f3() def f6(): print print "f6" # A finally block must somehow track how it was entered, because it's not based # on the value of sys.exc_info at the end of the finally block: def inner(nested_throw, reraise): try: pass finally: if nested_throw: try: raise AttributeError() except: pass print sys.exc_info()[0] if reraise: raise inner(False, False) # no exception raised inner(True, False) # no exception raised try: inner(True, True) # Shouldn't get here raise Exception() except AttributeError: print "the thrown AttributeError raised as expected" # Have to call this, because the inner throw can reraise the out-of-except # exception from this scope! sys.exc_clear() try: inner(False, True) # Shouldn't get here raise Exception() except TypeError, e: print "Got TypeError as expected, since exc_info was None" print e f6() def f7(): print print "f7" # Similar test to f6, but this time with an exception propagating # up through a finally block. # An exception thrown inside that finally shouldn't change the exception # that will end up getting propagated def inner(): try: raise AttributeError() finally: try: raise NotImplementedError() except: pass print sys.exc_info()[0].__name__ try: inner() except: print sys.exc_info()[0].__name__ f7() def f9(): print print "f9" # Exceptions thrown inside a catch block should still go through the finally, # but not other catch blocks. try: try: raise Exception() except Exception: print "here" raise AttributeError() except AttributeError: print "shouldn't get here" finally: print "in finally" except AttributeError: pass f9()
xh = input("Enter Hours: ") xr = input("Enter Rate: ") xp = float(xh) * float(xr) print("Pay: ")
from polyphony import pure from polyphony import testbench @pure def rand(seed, x, y): import random random.seed(seed) return random.randint(x, y) @testbench def test(): assert rand(0, 1, 1000) == rand(0, 1, 1000) assert rand(0, -1000, 1000) == rand(0, -1000, 1000) test()
from django.contrib import admin from django.urls import include, path from rest_framework.routers import DefaultRouter from basic import viewsets from drf_triad_permissions.views import triad_permissions_js router = DefaultRouter() router.register("users", viewsets.UserViewSet) router.register(r"entities-by-user/(?P<username>\w+)", viewsets.EntityByUserViewSet) urlpatterns = [ path("admin/", admin.site.urls), path("permissions.js", triad_permissions_js, name="triad_permissions_js"), path("api/", include(router.urls)), ]
#!/usr/bin/python # -*- coding: utf-8 -*- # # (c) 2015, René Moser <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['stableinterface'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: cs_account short_description: Manages accounts on Apache CloudStack based clouds. description: - Create, disable, lock, enable and remove accounts. author: René Moser (@resmo) options: name: description: - Name of account. type: str required: true username: description: - Username of the user to be created if account did not exist. - Required on I(state=present). type: str password: description: - Password of the user to be created if account did not exist. - Required on I(state=present) if I(ldap_domain) is not set. type: str first_name: description: - First name of the user to be created if account did not exist. - Required on I(state=present) if I(ldap_domain) is not set. type: str last_name: description: - Last name of the user to be created if account did not exist. - Required on I(state=present) if I(ldap_domain) is not set. type: str email: description: - Email of the user to be created if account did not exist. - Required on I(state=present) if I(ldap_domain) is not set. type: str timezone: description: - Timezone of the user to be created if account did not exist. type: str network_domain: description: - Network domain of the account. type: str account_type: description: - Type of the account. type: str choices: [ user, root_admin, domain_admin ] default: user domain: description: - Domain the account is related to. type: str default: ROOT role: description: - Creates the account under the specified role name or id. type: str ldap_domain: description: - Name of the LDAP group or OU to bind. - If set, account will be linked to LDAP. type: str ldap_type: description: - Type of the ldap name. GROUP or OU, defaults to GROUP. type: str choices: [ GROUP, OU ] default: GROUP state: description: - State of the account. - C(unlocked) is an alias for C(enabled). type: str choices: [ present, absent, enabled, disabled, locked, unlocked ] default: present poll_async: description: - Poll async jobs until job has finished. type: bool default: yes extends_documentation_fragment: - community.general.cloudstack ''' EXAMPLES = ''' - name: create an account in domain 'CUSTOMERS' cs_account: name: customer_xy username: customer_xy password: S3Cur3 last_name: Doe first_name: John email: [email protected] domain: CUSTOMERS role: Domain Admin delegate_to: localhost - name: Lock an existing account in domain 'CUSTOMERS' cs_account: name: customer_xy domain: CUSTOMERS state: locked delegate_to: localhost - name: Disable an existing account in domain 'CUSTOMERS' cs_account: name: customer_xy domain: CUSTOMERS state: disabled delegate_to: localhost - name: Enable an existing account in domain 'CUSTOMERS' cs_account: name: customer_xy domain: CUSTOMERS state: enabled delegate_to: localhost - name: Remove an account in domain 'CUSTOMERS' cs_account: name: customer_xy domain: CUSTOMERS state: absent delegate_to: localhost - name: Create a single user LDAP account in domain 'CUSTOMERS' cs_account: name: customer_xy username: customer_xy domain: CUSTOMERS ldap_domain: cn=customer_xy,cn=team_xy,ou=People,dc=domain,dc=local delegate_to: localhost - name: Create a LDAP account in domain 'CUSTOMERS' and bind it to a LDAP group cs_account: name: team_xy username: customer_xy domain: CUSTOMERS ldap_domain: cn=team_xy,ou=People,dc=domain,dc=local delegate_to: localhost ''' RETURN = ''' --- id: description: UUID of the account. returned: success type: str sample: 87b1e0ce-4e01-11e4-bb66-0050569e64b8 name: description: Name of the account. returned: success type: str sample: [email protected] account_type: description: Type of the account. returned: success type: str sample: user state: description: State of the account. returned: success type: str sample: enabled network_domain: description: Network domain of the account. returned: success type: str sample: example.local domain: description: Domain the account is related. returned: success type: str sample: ROOT role: description: The role name of the account returned: success type: str sample: Domain Admin ''' # import cloudstack common from ansible.module_utils.basic import AnsibleModule from ansible_collections.community.general.plugins.module_utils.cloudstack import ( AnsibleCloudStack, cs_argument_spec, cs_required_together ) class AnsibleCloudStackAccount(AnsibleCloudStack): def __init__(self, module): super(AnsibleCloudStackAccount, self).__init__(module) self.returns = { 'networkdomain': 'network_domain', 'rolename': 'role', } self.account = None self.account_types = { 'user': 0, 'root_admin': 1, 'domain_admin': 2, } def get_role_id(self): role_param = self.module.params.get('role') role_id = None if role_param: role_list = self.query_api('listRoles') for role in role_list['role']: if role_param in [role['name'], role['id']]: role_id = role['id'] if not role_id: self.module.fail_json(msg="Role not found: %s" % role_param) return role_id def get_account_type(self): account_type = self.module.params.get('account_type') return self.account_types[account_type] def get_account(self): if not self.account: args = { 'listall': True, 'domainid': self.get_domain(key='id'), 'fetch_list': True, } accounts = self.query_api('listAccounts', **args) if accounts: account_name = self.module.params.get('name') for a in accounts: if account_name == a['name']: self.account = a break return self.account def enable_account(self): account = self.get_account() if not account: account = self.present_account() if account['state'].lower() != 'enabled': self.result['changed'] = True args = { 'id': account['id'], 'account': self.module.params.get('name'), 'domainid': self.get_domain(key='id') } if not self.module.check_mode: res = self.query_api('enableAccount', **args) account = res['account'] return account def lock_account(self): return self.lock_or_disable_account(lock=True) def disable_account(self): return self.lock_or_disable_account() def lock_or_disable_account(self, lock=False): account = self.get_account() if not account: account = self.present_account() # we need to enable the account to lock it. if lock and account['state'].lower() == 'disabled': account = self.enable_account() if (lock and account['state'].lower() != 'locked' or not lock and account['state'].lower() != 'disabled'): self.result['changed'] = True args = { 'id': account['id'], 'account': self.module.params.get('name'), 'domainid': self.get_domain(key='id'), 'lock': lock, } if not self.module.check_mode: account = self.query_api('disableAccount', **args) poll_async = self.module.params.get('poll_async') if poll_async: account = self.poll_job(account, 'account') return account def present_account(self): account = self.get_account() if not account: self.result['changed'] = True if self.module.params.get('ldap_domain'): required_params = [ 'domain', 'username', ] self.module.fail_on_missing_params(required_params=required_params) account = self.create_ldap_account(account) else: required_params = [ 'email', 'username', 'password', 'first_name', 'last_name', ] self.module.fail_on_missing_params(required_params=required_params) account = self.create_account(account) return account def create_ldap_account(self, account): args = { 'account': self.module.params.get('name'), 'domainid': self.get_domain(key='id'), 'accounttype': self.get_account_type(), 'networkdomain': self.module.params.get('network_domain'), 'username': self.module.params.get('username'), 'timezone': self.module.params.get('timezone'), 'roleid': self.get_role_id() } if not self.module.check_mode: res = self.query_api('ldapCreateAccount', **args) account = res['account'] args = { 'account': self.module.params.get('name'), 'domainid': self.get_domain(key='id'), 'accounttype': self.get_account_type(), 'ldapdomain': self.module.params.get('ldap_domain'), 'type': self.module.params.get('ldap_type') } self.query_api('linkAccountToLdap', **args) return account def create_account(self, account): args = { 'account': self.module.params.get('name'), 'domainid': self.get_domain(key='id'), 'accounttype': self.get_account_type(), 'networkdomain': self.module.params.get('network_domain'), 'username': self.module.params.get('username'), 'password': self.module.params.get('password'), 'firstname': self.module.params.get('first_name'), 'lastname': self.module.params.get('last_name'), 'email': self.module.params.get('email'), 'timezone': self.module.params.get('timezone'), 'roleid': self.get_role_id() } if not self.module.check_mode: res = self.query_api('createAccount', **args) account = res['account'] return account def absent_account(self): account = self.get_account() if account: self.result['changed'] = True if not self.module.check_mode: res = self.query_api('deleteAccount', id=account['id']) poll_async = self.module.params.get('poll_async') if poll_async: self.poll_job(res, 'account') return account def get_result(self, account): super(AnsibleCloudStackAccount, self).get_result(account) if account: if 'accounttype' in account: for key, value in self.account_types.items(): if value == account['accounttype']: self.result['account_type'] = key break return self.result def main(): argument_spec = cs_argument_spec() argument_spec.update(dict( name=dict(required=True), state=dict(choices=['present', 'absent', 'enabled', 'disabled', 'locked', 'unlocked'], default='present'), account_type=dict(choices=['user', 'root_admin', 'domain_admin'], default='user'), network_domain=dict(), domain=dict(default='ROOT'), email=dict(), first_name=dict(), last_name=dict(), username=dict(), password=dict(no_log=True), timezone=dict(), role=dict(), ldap_domain=dict(), ldap_type=dict(choices=['GROUP', 'OU'], default='GROUP'), poll_async=dict(type='bool', default=True), )) module = AnsibleModule( argument_spec=argument_spec, required_together=cs_required_together(), supports_check_mode=True ) acs_acc = AnsibleCloudStackAccount(module) state = module.params.get('state') if state in ['absent']: account = acs_acc.absent_account() elif state in ['enabled', 'unlocked']: account = acs_acc.enable_account() elif state in ['disabled']: account = acs_acc.disable_account() elif state in ['locked']: account = acs_acc.lock_account() else: account = acs_acc.present_account() result = acs_acc.get_result(account) module.exit_json(**result) if __name__ == '__main__': main()
import asyncio from typing import Optional from tests import APITestCase, MAINNET_WS_URI, WEBSOCKET_TIMEOUT_GET_REQUEST from tradehub.websocket_client import DemexWebsocket class TestWSGetRecentTrades(APITestCase): def test_get_recent_trades_structure(self): """ Check if response match expected dict structure. :return: """ expect: dict = { "id": str, "sequence_number": int, "result": [ { "id": str, "block_created_at": str, "taker_id": str, "taker_address": str, "taker_fee_amount": str, "taker_fee_denom": str, "taker_side": str, "maker_id": str, "maker_address": str, "maker_fee_amount": str, "maker_fee_denom": str, "maker_side": str, "market": str, "price": str, "quantity": str, "liquidation": str, "taker_username": str, "maker_username": str, "block_height": str }, ] } # connect to websocket client = DemexWebsocket(uri=MAINNET_WS_URI) # little work around to save the response self.response: Optional[dict] = None async def on_connect(): await client.get_recent_trades("recent_trades", "swth_eth1") async def on_message(message: dict): # save response into self self.response = message await client.disconnect() try: loop = asyncio.get_event_loop() loop.run_until_complete(asyncio.wait_for(client.connect(on_connect_callback=on_connect, on_receive_message_callback=on_message), WEBSOCKET_TIMEOUT_GET_REQUEST)) except asyncio.TimeoutError: raise TimeoutError("Test did not complete in time.") if not self.response: raise RuntimeError("Did not receive a response.") self.assertDictStructure(expect, self.response)
from datetime import datetime, date import os import re import subprocess import yaml from boto.s3.connection import S3Connection bucket_name = 'canvas_public_ugc' results_bucket_name = 'canvas-ugc-backup-logging' bucket_path = 'original' base_dest = '/Volumes/Backup/ugc-backups' prefix_dir_length = 3 use_date_directories = False def datestr(): today = date.today() return "{0}{1}{2}".format(today.year, str(today.month).zfill(2), str(today.day).zfill(2)) def destination_directory(): if use_date_directories: return "{0}/{1}".format(base_dest, datestr()) else: return base_dest def ensure_destination_directory(name): if not os.path.exists(name): os.makedirs(name) def shasum(fname): hash_output = subprocess.Popen(['shasum', fname], stdout=subprocess.PIPE).communicate()[0] try: return hash_output.split()[0] except IndexError: print hash_output return "doesnotmatch" def check_hash(full_path, filename): expected = re.sub(r'^([^\.]+)\..+$', r'\1', filename) actual = shasum(full_path) correct = (expected == actual) if not correct: print "{0}-{1}:{2}".format(full_path, actual, correct) return correct def get_dir_size(name): p1 = subprocess.Popen(['df', '-h'], stdout=subprocess.PIPE) p2 = subprocess.Popen(['grep', 'Backup'], stdin=p1.stdout, stdout=subprocess.PIPE) p1.stdout.close() return p2.communicate()[0] def store_results(start_time, end_time, stored, skipped, failed, failed_list): keyname = 'ugc-backup-results-{0}'.format(datestr()) conn = S3Connection() bucket = conn.get_bucket(results_bucket_name) key = bucket.new_key(keyname) backup_size_str = get_dir_size(destination_directory()) report = { 'start_time': start_time, 'end_time': end_time, 'stored': stored, 'skipped': skipped, 'failed': failed, 'size': backup_size_str, 'failed_list': failed_list, } key.set_contents_from_string(yaml.dump(report)) def do_backup(): stored = 0 skipped = 0 failed = 0 failed_list = [] start_time = datetime.utcnow() dest = destination_directory() ensure_destination_directory(dest) conn = S3Connection() bucket = conn.get_bucket(bucket_name) try: for k in iter(bucket.list(prefix=bucket_path)): try: if not k.name.endswith("/"): key_part = k.name.split('/')[1] sdir = "{0}/{1}".format(dest, key_part[:prefix_dir_length]) fname = "{0}/{1}".format(sdir, key_part) ensure_destination_directory(sdir) if not os.path.exists(fname): print "Getting {0}/{1} ...".format(bucket.name, k.name), k.get_contents_to_filename(fname) print "done" if check_hash(fname, key_part): stored += 1 else: raise Exception("File content does not match hash") else: skipped += 1 except KeyboardInterrupt as e: raise e except Exception as e: failed_list.append(k.name) failed += 1 except KeyboardInterrupt: print print "finishing up..." finally: store_results(start_time, datetime.utcnow(), stored, skipped, failed, failed_list) if __name__ == "__main__": do_backup()
from django.contrib import admin from django.utils.translation import ugettext from django.utils.encoding import force_unicode from models import LogEntry, LogAggregate from djangologdb import settings as djangologdb_settings class LogEntryInline(admin.TabularInline): model = LogEntry class LogAggregateOptions(admin.ModelAdmin): list_display = ('name', 'module', 'function_name', 'line_number', 'level', 'last_seen', 'times_seen',) list_filter = ('name', 'level',) date_hierarchy = 'last_seen' ordering = ('-last_seen',) inlines = (LogEntryInline,) def change_view(self, request, object_id, extra_context=None): djangologdb_context = { 'djangologdb_settings': djangologdb_settings, 'aggregate': 'checksum', 'title': ugettext('View %s') % force_unicode(self.opts.verbose_name), } return super(LogAggregateOptions, self).change_view(request, object_id, extra_context=djangologdb_context) def changelist_view(self, request, extra_context=None): djangologdb_context = { 'djangologdb_settings': djangologdb_settings, 'aggregate': 'checksum', 'title': ugettext('Select %s to view') % force_unicode(self.opts.verbose_name), } return super(LogAggregateOptions, self).changelist_view(request, extra_context=djangologdb_context) class LogEntryOptions(admin.ModelAdmin): list_display = ('created', 'level', 'name', 'module', 'function_name', 'line_number', 'process', 'thread', 'get_message_display', 'extra') list_filter = ('name', 'level',) date_hierarchy = 'created' ordering = ('-created',) def change_view(self, request, object_id, extra_context=None): djangologdb_context = { 'djangologdb_settings': djangologdb_settings, 'title': ugettext('View %s') % force_unicode(self.opts.verbose_name), } return super(LogEntryOptions, self).change_view(request, object_id, extra_context=djangologdb_context) def changelist_view(self, request, extra_context=None): djangologdb_context = { 'djangologdb_settings': djangologdb_settings, 'aggregate': 'level', 'title': ugettext('Select %s to view') % force_unicode(self.opts.verbose_name), } return super(LogEntryOptions, self).changelist_view(request, extra_context=djangologdb_context) admin.site.register(LogAggregate, LogAggregateOptions) admin.site.register(LogEntry, LogEntryOptions)
# compute_rnaQuast.py # # Laura Tung # # Usage: compute_rnaQuast.py <result_dir> # # <result_dir> is the directory containing rnaQUAST_output and rnaQUAST_output_1 import sys import numpy as np def load_data(dataset): loaded_isoform = np.loadtxt(dataset+"/isoform_data", dtype='int', usecols=(2, 3, 4)) loaded_matched = np.loadtxt(dataset+"/matched_data", dtype='int', usecols=(1, 2, 3)) return loaded_isoform, loaded_matched if __name__ == "__main__": # load rnaQUAST_output (75% and 95%) loaded_isoform, loaded_matched = load_data(sys.argv[1]+"/rnaQUAST_output") # load rnaQUAST_output_1 (0% and 50%) loaded_isoform_1, loaded_matched_1 = load_data(sys.argv[1]+"/rnaQUAST_output_1") print("\t\t\t\tScallop\t\tStringTie\tIsoseq") # assembled isoforms print("0-50%-assembled-isoforms\t"+str(loaded_isoform_1[0][0]-loaded_isoform_1[1][0])+"\t\t"+str(loaded_isoform_1[0][1]-loaded_isoform_1[1][1])+"\t\t"+str(loaded_isoform_1[0][2]-loaded_isoform_1[1][2])) print("50-75%-assembled-isoforms\t"+str(loaded_isoform_1[1][0]-loaded_isoform[0][0])+"\t\t"+str(loaded_isoform_1[1][1]-loaded_isoform[0][1])+"\t\t"+str(loaded_isoform_1[1][2]-loaded_isoform[0][2])) print("75-95%-assembled-isoforms\t"+str(loaded_isoform[0][0]-loaded_isoform[1][0])+"\t\t"+str(loaded_isoform[0][1]-loaded_isoform[1][1])+"\t\t"+str(loaded_isoform[0][2]-loaded_isoform[1][2])) print("95-100%-assembled-isoforms\t"+str(loaded_isoform[1][0])+"\t\t"+str(loaded_isoform[1][1])+"\t\t"+str(loaded_isoform[1][2])) # matched print("0-50%-matched-transcripts\t"+str(loaded_matched_1[0][0]-loaded_matched_1[1][0])+"\t\t"+str(loaded_matched_1[0][1]-loaded_matched_1[1][1])+"\t\t"+str(loaded_matched_1[0][2]-loaded_matched_1[1][2])) print("50-75%-matched-transcripts\t"+str(loaded_matched_1[1][0]-loaded_matched[0][0])+"\t\t"+str(loaded_matched_1[1][1]-loaded_matched[0][1])+"\t\t"+str(loaded_matched_1[1][2]-loaded_matched[0][2])) print("75-95%-matched-transcripts\t"+str(loaded_matched[0][0]-loaded_matched[1][0])+"\t\t"+str(loaded_matched[0][1]-loaded_matched[1][1])+"\t\t"+str(loaded_matched[0][2]-loaded_matched[1][2])) print("95-100%-matched-transcripts\t"+str(loaded_matched[1][0])+"\t\t"+str(loaded_matched[1][1])+"\t\t"+str(loaded_matched[1][2]))
import csv import os import random import tempfile from itertools import groupby from operator import itemgetter from django.conf import settings from django_rq import job from datetime import datetime from terra.utils import gsutilCopy from estimators.models import Annotation, Estimator, ImageTile from tasks.models import Task, TaskLogEntry from . import run_cloudml @job("default") def start_training_job(task_id): task = Task.objects.get(pk=task_id) try: prepare_artifacts(task) job_name = f'train_{task_id}_{datetime.now().strftime("%Y%m%d_%H%M%S")}' task.internal_metadata.update(uses_cloudml=True) run_cloudml(task, './submit_job.sh', job_name) task.internal_metadata.update(cloudml_job_name=job_name) task.save(update_fields=["internal_metadata"]) except Exception as err: err_msg = str(err) TaskLogEntry.objects.create(task=task, log=dict(error=err_msg), logged_at=datetime.now()) print(f"Error: {err_msg}") task.mark_as_failed(reason=err_msg) def prepare_artifacts(task): generate_annotations_csv(task) generate_classes_csv(task) upload_image_tiles(task) def train_val_split_rows(rows, val_size=0.2): # FIXME Consider splitting in a stratified manner... # Class balancing? random.shuffle(rows) n_val_size = round(len(rows) * val_size) return rows[n_val_size:], rows[:n_val_size] def constrain_and_scale(coord, max_value): # FIXME !! When Analytics starts saving annotations with scaled coordinates # (from 0 to 1), replace with: # return round(min(max(coord, 0), 1) * max_value) # if coord < 0 or coord > IMAGE_TILE_SIZE: # import pdb # pdb.set_trace() # pass return round(min(max(coord, 0), max_value)) def build_annotations_csv_rows(annotations): rows = [] for annotation in annotations: tile = annotation.image_tile w, h = tile.width, tile.height for s in annotation.segments: print(annotation, s) row = {} x1, x2 = sorted([s['x'], s['x'] + s['width']]) y1, y2 = sorted([s['y'], s['y'] + s['height']]) row['x1'] = constrain_and_scale(x1, w) row['x2'] = constrain_and_scale(x2, w) row['y1'] = constrain_and_scale(y1, h) row['y2'] = constrain_and_scale(y2, h) row['tile_path'] = 'img/{basename}'.format(basename=os.path.join( os.path.basename(os.path.normpath(tile.source_tile_path)), os.path.basename(tile.tile_file.name))) row['label'] = s['label'] rows.append(row) return rows def generate_annotations_csv(task): annotations = Annotation.objects.filter( estimator__uuid=task.kwargs["estimator"]) if sum([len(a.segments) for a in annotations]) < settings.MIN_ANNOTATION_NEEDED: raise Exception("Not enough labels for training. " "You need at least {} objects of each class.".format( settings.MIN_ANNOTATION_NEEDED)) rows = build_annotations_csv_rows(annotations) rows_train, rows_val = train_val_split_rows(rows) urls = [] for name, rows in zip(['train', 'val'], [rows_train, rows_val]): url = os.path.join(task.input_artifacts_url, '{}.csv'.format(name)) upload_csv(url, rows, ('tile_path', 'x1', 'y1', 'x2', 'y2', 'label')) urls.append(url) return urls def generate_classes_csv(job): estimator = Estimator.objects.get(uuid=job.kwargs["estimator"]) rows = [ dict(label=label, class_id=i) for i, label in enumerate(estimator.classes) ] url = os.path.join(job.input_artifacts_url, 'classes.csv') upload_csv(url, rows, ('label', 'class_id')) def upload_csv(url, rows, fieldnames): with tempfile.NamedTemporaryFile() as tmpfile: with open(tmpfile.name, 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=fieldnames) for row in rows: writer.writerow(row) gsutilCopy(tmpfile.name, url) def upload_image_tiles(job): annotations = Annotation.objects.filter( estimator__uuid=job.kwargs["estimator"]).all() image_tiles = [a.image_tile for a in annotations] if len(image_tiles) == 0: raise Exception( "There are no tiles with labels. Please check your input.") image_tile_urls = [ 'gs://{bucket}/{name}'.format(bucket=settings.GS_BUCKET_NAME, name=t.tile_file.name) for t in image_tiles ] image_file_names = [ os.path.dirname(t.tile_file.name).split("/")[-1] for t in image_tiles ] seq = sorted(zip(image_file_names, image_tile_urls), key=itemgetter(0)) groups = groupby(seq, itemgetter(0)) for img_file_name, urls in groups: urls = [url for _, url in urls] dst_url = os.path.join(job.input_artifacts_url, 'img/', img_file_name) gsutilCopy(' '.join(urls), dst_url)
import unittest from intuitquickbooks.helpers import qb_date_format, qb_datetime_format, qb_datetime_utc_offset_format from datetime import datetime, date class HelpersTests(unittest.TestCase): def test_qb_date_format(self): result = qb_date_format(date(2016, 7, 22)) self.assertEquals(result, '2016-07-22') def test_qb_datetime_format(self): result = qb_datetime_format(datetime(2016, 7, 22, 10, 35, 00)) self.assertEquals(result, '2016-07-22T10:35:00') def test_qb_datetime_utc_offset_format(self): result = qb_datetime_utc_offset_format(datetime(2016, 7, 22, 10, 35, 00), '-06:00') self.assertEquals(result, '2016-07-22T10:35:00-06:00')
import re import json import math import time import random import pandas as pd import bs4 import requests from tqdm.notebook import tqdm from .formatting.text_tools import title_to_snake_case from .pandas.data import dict_to_col pd.set_option('mode.chained_assignment', None) # Objects included in this file: # grades_converter # Functions included in this file: # # preprocess # # get_ratings_from_mp # # transform_features grades_converter = {'V-easy': -1, 'V-easy PG13': -1, '5.9 V-easy': -1, 'V-easy R': -0.75, 'V0-': -0.25, '5.9 V0-': -0.25, 'V0- PG13': -0.25, 'V0- R': -0.25, '5.8+ V0': 0, '5.9 V0': 0, 'V0': 0, 'V0 PG13': 0, '5.10a V0 R': 0.25, 'V0 R': 0.25, 'V0 X': 0.25, '5.8+ V0 X': 0.25, 'V0+': 0.25, 'V0+ PG13': 0.25, 'V0+ R': 0.5, 'V0-1': 0.5, '5.10- V0-1': 0.5, 'V1-': 0.75, 'V1': 1, 'V1 PG13': 1, '5.9 V1': 1, 'V1 R': 1.25, 'V1 X':1.25, 'V1+': 1.25, 'V1+ PG13': 1.25, 'V1-2': 1.5, 'V2-': 1.75, '5.10+ V2': 2, 'V2': 2, 'V2 PG13': 2, '5.11b V2': 2, 'V2 R': 2.25, 'V2+': 2.25, 'V2-3': 2.5, '5.10- V2-3': 2.5, 'V2+ X': 2.5, 'V3-': 2.75, 'V3- R': 3, 'V3': 3, 'V3 PG13': 3, 'V3 R': 3.25, '5.11c V3 R': 3.25, 'V3+': 3.25, 'V3+ R':3.5, 'V3-4': 3.5, 'V4-': 3.75, 'V4': 4, 'V4 PG13': 4, 'V4 R': 4.25, 'V4 X': 4.25, 'V4+': 4.25, 'V4+ PG13': 4.25, 'V4-5': 4.5, 'V5-': 4.75, 'V5': 5, 'V5 PG13': 5, '5.12c V5 X': 5, 'V5 R': 5.25, 'V5+': 5.25, 'V5+ X': 5.5, 'V5-6': 5.5, 'V6-': 5.75, 'V6- PG13': 5.75, 'V6- R': 6, 'V6': 6, 'V6 PG13': 6, 'V6 R': 6.25, 'V6+': 6.25, 'V6-7': 6.5, 'V6-7 PG13': 6.5, 'V7-': 6.75, 'V7': 7, 'V7 PG13': 7, 'V7 R': 7.25, 'V7+':7.25, 'V7-8': 7.5, 'V7-8 R': 7.75, 'V8-': 7.75, 'V8': 8, 'V8 PG13': 8, 'V8 R':8.25, 'V8 X': 8.25, 'V8+': 8.25, 'V8-9': 8.5, 'V9-': 8.75, 'V9': 9, 'V9 PG13': 9, 'V9 R': 9.25, 'V9+': 9.25, 'V9+ PG13': 9.25, 'V9 X': 9.25, 'V9-10':9.5, 'V9-10 PG13': 9.5, 'V10-': 9.75, 'V10': 10, 'V10 PG13': 10, 'V10 R': 10.25, 'V10 X': 10.25, 'V10+': 10.25, 'V10-11': 10.5, 'V10-11 PG13': 10.5, 'V11-': 10.75, 'V11': 11, 'V11 R': 11.25, 'V11 X': 11.25, 'V11-12': 11.5, 'V12-': 11.75, 'V12': 12, 'V12 PG13': 12, 'V12+': 12.25, 'V12-13 R': 12.5, 'V13': 13, 'V13 PG13': 13, 'V13 R': 13.25, 'V13-14 PG13': 13.5, 'V14': 14} # should find a way to generate these automatically def preprocess(df, grade_converter): """Use this to clean data prior to storage in postgres """ # format columns names df.columns = [title_to_snake_case(col) for col in df.columns] df = df.rename(columns = {"length": "length_"}) # Collect the route ID (to ensure there are no duplicates) df['url_id'] = df['url'].apply(lambda x: re.sub("https://www.mountainproject.com/route/", "", x)) df['url_id'] = df['url_id'].apply(lambda x: int(re.sub("/(?<=/).*", "", x))) # Fix bad avg_stars rating df.avg_stars = df.avg_stars.replace(to_replace = -1.0, value = 0) # Convert V grades into numerical values df['grade'] = df.rating.replace(grade_converter) return df def get_ratings_from_mp(df): """Uses the link provided in the CSV file to open and grab data from the following categories: Star Ratings, Suggested Ratings, On To Do Lists, and Ticks """ df["ratings"] = None # add empty column to df # Chose to do it this way to prevent potential auto-ban for row in tqdm(df.iterrows()): # url url = row[1]['url'] url_items = re.match('https://www.mountainproject.com/route/(?P<url_id>\d+)/(?P<route>.*)', url) url_id, route = url_items['url_id'], url_items['route'] route_stats_url = f'https://www.mountainproject.com/route/stats/{url_id}/{route}' # get data html = bs4.BeautifulSoup((requests.get(route_stats_url).text), "lxml") h3_sections = list(html.find('div', {"id":"route-stats"}).find_all("h3")) # ratings only ratings = {title_to_snake_case(h3_section.contents[0].strip()): int(h3_section.contents[1].text) for h3_section in h3_sections} # add data to df df.loc[row[0], ['ratings']] = json.dumps(ratings) # Delay is 1.5 +/- 1.0 s, so code should run for about 10-15 min for 400 rows time.sleep(.5+2*random.random()) # Delay by average of 2.5 seconds, at least 0.5 seconds between clicks df['ratings'] = df['ratings'].apply(json.loads) df = dict_to_col(df, 'ratings') return df def transform_features(df): """ Add log and sqrt values """ # add log values for ols linear regression df['log_star_ratings'] = df['star_ratings'].apply(lambda x: math.log(x+1, 10)) df['log_ticks'] = df['ticks'].apply(lambda x: math.log(x+1, 10)) df['log_avg_stars'] = df['avg_stars'].apply(lambda x: math.log(x+1, 10)) df['log_length'] = df['length_'].apply(lambda x: math.log(x+1, 10)) df['log_grade'] = df['grade'].apply(lambda x: math.log(x+2, 10)) df['log_on_to_do_lists'] = df['on_to_do_lists'].apply(lambda x: math.log(x+1, 10)) # Target # add sqrt values for Poisson regression df['sqrt_star_ratings'] = df['star_ratings'].apply(lambda x: math.sqrt(x)) df['sqrt_ticks'] = df['ticks'].apply(lambda x: math.sqrt(x)) df['sqrt_avg_stars'] = df['avg_stars'].apply(lambda x: math.sqrt(x)) df['sqrt_length'] = df['length_'].apply(lambda x: math.sqrt(x)) df['sqrt_grade'] = df['grade'].apply(lambda x: math.sqrt(x+1)) return df
from django.http import HttpResponse import datetime def hello(request): return HttpResponse("Hello World") def current_datetime(request): now = datetime.datetime.now() html = "<html><body>It is now %s.</body></html>" % now return HttpResponse(html) def hours_ahead(request,offset): try: # offset = int(offset) except ValueError: raise Http404() dt = datetime.datetime.now() + datetime.timedelta(hours=offset) html = "<html><body>In %s hour(s),it will be %s.</body></html>" %(offset,dt) return HttpResponse(html)
# pylint: disable=missing-docstring,no-self-use import re import pytest from context import esperanto_analyzer from esperanto_analyzer.speech import Preposition from esperanto_analyzer.analyzers.morphological import PrepositionMorphologicalAnalyzer class TestPrepositionMorphologicalAnalyzerBasic(): TEST_WORD = 'anstataŭ' def test_import(self): assert PrepositionMorphologicalAnalyzer def test_initialize_default_options(self): analyzer = PrepositionMorphologicalAnalyzer(self.TEST_WORD) assert analyzer.options == dict() def test_initialize_overwrite_options(self): analyzer = PrepositionMorphologicalAnalyzer(self.TEST_WORD, dict(option='ok')) assert analyzer.options == dict(option='ok') def test_initialize_raw_word(self): analyzer = PrepositionMorphologicalAnalyzer(self.TEST_WORD) assert analyzer.raw_word == self.TEST_WORD def test_initialize_word(self): analyzer = PrepositionMorphologicalAnalyzer(self.TEST_WORD) # analyzer.word is only populated after calling `analyze()` method assert analyzer.word is None def test_initialize_matches(self): analyzer = PrepositionMorphologicalAnalyzer(self.TEST_WORD) # analyzer.matches is only populated after calling `analyze()` method assert analyzer.matches is None def test_initialize_processed(self): analyzer = PrepositionMorphologicalAnalyzer(self.TEST_WORD) # analyzer.matches is only populated after calling `analyze()` method assert analyzer.processed is False def test_match_regexp(self): assert PrepositionMorphologicalAnalyzer.MATCH_REGEXP is not None def test_word_class(self): assert isinstance(PrepositionMorphologicalAnalyzer.word_class()(self.TEST_WORD), Preposition) class TestPrepositionMorphologicalAnalyzerMatchMethod(): VALID_WORDS = ['K', 'al', 'anstataŭ', 'antaŭ', 'antaŭ ol', 'apud', 'da', 'de', 'disde', 'du vortoj', 'dum', 'ekde', 'ekster', 'eksteren', 'el', 'en', 'ene', 'estiel', 'far', 'fare de', 'flanke de', 'for de', 'graŭ', 'inter', 'je', 'kaj ankaŭ', 'kiel', 'kontraŭ', 'kontraŭe de', 'krom', 'kun', 'laŭ', 'mala', 'malantaŭ', 'malgraŭ', 'malkiel', 'malsupre de', 'malsupren', 'meze de', 'na', 'nome de', 'ol', 'per', 'pere de', 'plus', 'po', 'por', 'post', 'preter', 'pri', 'pro', 'proksime de', 'samkiel', 'sed', 'sekva', 'sen', 'sub', 'suben', 'super', 'supren', 'sur', 'tiu', 'tiuj', 'tra', 'trans', 'tri vortoj', 'tuj post', 'tutĉirkaŭ', 'ĉe', 'ĉi tiu', 'ĉi tiuj', 'ĉirkaŭ', 'ĝis' ] INVALID_WORDS = ['io', 'bela', 'domo', 'hundoj', 'kiu', 'vi', 'multe', 'ankoraŭ', 'dek', 'du', 'ĉar', 'aŭ', '?', '!'] def test_match(self): for word in self.VALID_WORDS: analyzer = PrepositionMorphologicalAnalyzer(word) matches = analyzer.match() assert matches is not None assert len(matches.span()) == 2 def test_match_empty(self): for word in self.INVALID_WORDS: analyzer = PrepositionMorphologicalAnalyzer(word) matches = analyzer.match() assert matches is None class TestPrepositionMorphologicalAnalyzerAnalyzeMethod(): VALID_WORDS = ['K', 'al', 'anstataŭ', 'antaŭ', 'antaŭ ol', 'apud', 'da', 'de', 'disde', 'du vortoj', 'dum', 'ekde', 'ekster', 'eksteren', 'el', 'en', 'ene', 'estiel', 'far', 'fare de', 'flanke de', 'for de', 'graŭ', 'inter', 'je', 'kaj ankaŭ', 'kiel', 'kontraŭ', 'kontraŭe de', 'krom', 'kun', 'laŭ', 'mala', 'malantaŭ', 'malgraŭ', 'malkiel', 'malsupre de', 'malsupren', 'meze de', 'na', 'nome de', 'ol', 'per', 'pere de', 'plus', 'po', 'por', 'post', 'preter', 'pri', 'pro', 'proksime de', 'samkiel', 'sed', 'sekva', 'sen', 'sub', 'suben', 'super', 'supren', 'sur', 'tiu', 'tiuj', 'tra', 'trans', 'tri vortoj', 'tuj post', 'tutĉirkaŭ', 'ĉe', 'ĉi tiu', 'ĉi tiuj', 'ĉirkaŭ', 'ĝis', ] INVALID_WORDS = ['io', 'bela', 'domo', 'hundoj', 'kiu', 'vi', 'multe', 'ankoraŭ', 'dek', 'du', 'ĉar', 'aŭ', '?', '!'] def test_invalid_analyze(self): for word in self.INVALID_WORDS: analyzer = PrepositionMorphologicalAnalyzer(word) result = analyzer.analyze() assert not result def test_invalid_analyze_word(self): for word in self.INVALID_WORDS: analyzer = PrepositionMorphologicalAnalyzer(word) analyzer.analyze() assert analyzer.word is None def test_invalid_analyze_match(self): for word in self.INVALID_WORDS: analyzer = PrepositionMorphologicalAnalyzer(word) analyzer.analyze() assert analyzer.matches is None def test_analyze(self): for word in self.VALID_WORDS: analyzer = PrepositionMorphologicalAnalyzer(word) assert analyzer.analyze() def test_prepositions_list(self): for word in PrepositionMorphologicalAnalyzer.PREPOSITIONS_LIST: analyzer = PrepositionMorphologicalAnalyzer(word) assert analyzer.analyze() def test_analyze_word(self): for word in self.VALID_WORDS: analyzer = PrepositionMorphologicalAnalyzer(word) analyzer.analyze() assert isinstance(analyzer.word, Preposition) assert analyzer.word.content == word def test_analyze_match(self): for word in self.VALID_WORDS: analyzer = PrepositionMorphologicalAnalyzer(word) analyzer.analyze() assert analyzer.matches is not None def test_analyze_return_false(self): for word in self.INVALID_WORDS: analyzer = PrepositionMorphologicalAnalyzer(word) assert analyzer.analyze() is False def test_analyze_return_true(self): for word in self.VALID_WORDS: analyzer = PrepositionMorphologicalAnalyzer(word) assert analyzer.analyze() def test_analyze_processed(self): for word in self.VALID_WORDS: analyzer = PrepositionMorphologicalAnalyzer(word) assert analyzer.processed is False analyzer.analyze() assert analyzer.processed is True def test_analyze_processed_response(self): for word in self.VALID_WORDS: analyzer = PrepositionMorphologicalAnalyzer(word) analyzer.analyze() assert analyzer.analyze() is None assert analyzer.analyze() is None class TestPrepositionMorphologicalAnalyzerPrepositionsList: PREPOSITIONS_LIST = ['K', 'al', 'anstataŭ', 'antaŭ', 'antaŭ ol', 'apud', 'da', 'de', 'disde', 'du vortoj', 'dum', 'ekde', 'ekster', 'eksteren', 'el', 'en', 'ene', 'estiel', 'far', 'fare de', 'flanke de', 'for de', 'graŭ', 'inter', 'je', 'kaj ankaŭ', 'kiel', 'kontraŭ', 'kontraŭe de', 'krom', 'kun', 'laŭ', 'mala', 'malantaŭ', 'malgraŭ', 'malkiel', 'malsupre de', 'malsupren', 'meze de', 'na', 'nome de', 'ol', 'per', 'pere de', 'plus', 'po', 'por', 'post', 'preter', 'pri', 'pro', 'proksime de', 'samkiel', 'sed', 'sekva', 'sen', 'sub', 'suben', 'super', 'supren', 'sur', 'tiu', 'tiuj', 'tra', 'trans', 'tri vortoj', 'tuj post', 'tutĉirkaŭ', 'ĉe', 'ĉi tiu', 'ĉi tiuj', 'ĉirkaŭ', 'ĝis'] def test_preposition_list_not_changed(self): assert PrepositionMorphologicalAnalyzer.PREPOSITIONS_LIST == self.PREPOSITIONS_LIST def test_prepositions_not_empty(self): assert PrepositionMorphologicalAnalyzer.PREPOSITIONS_LIST is not None def test_prepositions_not_size(self): assert len(PrepositionMorphologicalAnalyzer.PREPOSITIONS_LIST) == 73 def test_prepositions_match_list(self): for word in PrepositionMorphologicalAnalyzer.PREPOSITIONS_LIST: assert PrepositionMorphologicalAnalyzer.PROPOSITIONS_MATCH_REGEXP.match(word) def test_prepositions_match_final_regexp_list(self): for word in PrepositionMorphologicalAnalyzer.PREPOSITIONS_LIST: assert PrepositionMorphologicalAnalyzer.MATCH_REGEXP.match(word)
class PC: def __init__(self, Name, Combat_Class, Race, Eye_Color, Skin_Tone, Hair_Color, Size, Weight, Trademarks, STR, DEX, CON, INT, WIS, CHA, Muscle, Wrestle, Brawl, Coordination, Finesse, Sleight_of_Hand, Stealth, Endurance, Concentration, Vitality, Academic, Arcana, Culture, Analyze, Nature, Aggressive, Suave, Diplomatic, Sincere, Tier_1, Tier_2, Tier_3, Offensive_Ability, Defensive_Ability, Movement_Ability, Special_Ability, Main_Hand, Off_Hand, Utility, Armor, Combat_Special_Move, Backpack, Gold, Rations, Kits, Adventuring_Special_Moves, Value_Self, Value_Others, Value_Society, Mission, Interests, Talents, Quirks, Fears, Family, Friends, Professional, Nemesis, Factions, Home, Profession, Skill, Race_Bonus, Story, Roleplaying_Special_Moves): # Basic information and appearance self.Name = Name self.Combat_Class = Combat_Class self.Race = Race self.Eye_Color = Eye_Color self.Skin_Tone = Skin_Tone self.Hair_Color = Hair_Color self.Size = Size self.Weight = Weight self.Trademarks = Trademarks # STATS and SKILLS self.STR = STR STR_Mod = (STR // 5) - 2 self.DEX = DEX DEX_Mod = (DEX // 5) - 2 self.CON = CON CON_Mod = (CON // 5) - 2 self.INT = INT INT_Mod = (INT // 5) - 2 self.WIS = WIS WIS_MOD = (WIS // 5) - 2 self.CHA = CHA CHA_Mod = (CHA // 5) - 2 self.Muscle = Muscle self.Wrestle = Wrestle self.Brawl = Brawl self.Coordination = Coordination self.Finesse = Finesse self.Sleight_of_Hand = Sleight_of_Hand self.Stealth = Stealth self.Endurance = Endurance self.Concentration = Concentration self.Vitality = Vitality self.Academic = Academic self.Arcana = Arcana self.Culture = Culture self.Analyze = Analyze self.Nature = Nature self.Aggressive = Aggressive self.Suave = Suave self.Diplomatic = Diplomatic self.Sincere = Sincere #Health information self.Tier_1 = Tier_1 self.Tier_2 = Tier_2 self.Tier_3 = Tier_3 self.Max_Vitality = Tier_3 self.Current_Vitality = Tier_3 #Statuses - always start at 0 and can be added during combat self.blinded_status_stage = 0 self.burning_status_stage = 0 self.crippled_arm_status_stage = 0 self.crippled_leg_status_stage = 0 self.deafened_status_stage = 0 self.fatigued_status_stage = 0 self.impaled_status_stage = 0 self.captivated_status_stage = 0 self.confused_status_stage = 0 self.frightened_status_stage = 0 self.stunned_status_stage = 0 self.momentum_status_stage = 0 self.prone_status_stage = 0 self.restrained_status_stage = 0 self.suffocating_status_stage = 0 self.surprised_status_stage = 0 # Combat stats self.Attack_Bonus = Muscle + STR_Mod self.Dodge_Bonus = Coordination + DEX_Mod self.Defend_Bonus = Endurance + CON_Mod self.Offensive_Ability = Offensive_Ability self.Defensive_Ability = Defensive_Ability self.Movement_Ability = Movement_Ability self.Special_Ability = Special_Ability self.Free_Movement = 4 self.AP = 12 self.RP = 4 self.Power_Rank = 0 #equipment self.Main_Hand = Main_Hand self.Off_Hand = Off_Hand self.Utility = Utility self.Armor = Armor self.Combat_Special_Move = Combat_Special_Move # adventuring conditions - set at 0 until added to after combat or during adventuring self.bleeding_condition_stage = 0 self.blinded_condition_stage = 0 self.crippled_condition_stage = 0 self.deafened_condition_stage = 0 self.drowsy_condition_stage = 0 self.fatigued_condition_stage = 0 self.fractured_condition_stage = 0 self.sickened_condition_stage = 0 self.Short_Rest = 0 self.Carry_Weight = 5 + STR_Mod self.Backpack = Backpack self.Gold = Gold self.Rations = Rations self.Kits = Kits self.Adventuring_Special_Moves = Adventuring_Special_Moves self.Value_Self = Value_Self self.Value_Others = Value_Others self.Value_Society = Value_Society self.Mission = Mission self.Interests = Interests self.Talents = Talents self.Quirks = Quirks self.Fears = Fears self.Family = Family self.Friends = Friends self.Professional = Professional self.Nemesis = Nemesis self.Factions = Factions self.Home = Home self.Profession = Profession self.Skill = Skill self.Race_Bonus = Race_Bonus self.Story = Story self.Roleplaying_Special_Moves = Roleplaying_Special_Moves Dougey = PC("Dougey", "Brute", "Human", "Blue", "Skin_Tone", "Hair_Color", 1, 4, "Trademarks", 26, 21, 18, 6, 10, 13, 4, 0, 2, 1, 0, 0, 2, 3, 0, 0, 0, 0, 1, 2, 1, 3, 0, 0, 0, 3, 5, 7, "Offensive_Ability", "Defensive_Ability", "Movement_Ability", "Special_Ability", "Maul", "Off_Hand", "Utility", "ChainMail", "Combat_Special_Move", "Backpack", 100, 5, "Kits", "Adventuring_Special_Moves", "Loyalty", "Compassion", "Cooperation", "Mission", "Interests", "Talents", "Quirks", "Fears", "Family", "Friends", "Professional", "Nemesis", "Factions", "Home", "Profession", "Skill", "Race_Bonus", "Story", "Roleplaying_Special_Moves") Maincharacter = Dougey.Name print(Maincharacter)
from collections import defaultdict import os with open(os.path.join(os.path.dirname(__file__), "input.txt"), "r") as file: report_lines = [l.strip() for l in file.readlines()] def count_occurances(report_numbers): counts = defaultdict(lambda: {"0": 0, "1": 0}) for line in report_numbers: for idx, value in enumerate(line): counts[idx][value] += 1 return counts def filter_list(l, mode): idx = 0 while len(l) > 1: counts = count_occurances(l) if counts[idx]["0"] > counts[idx]["1"]: l = list(filter(lambda b: b[idx] == ("0" if mode == "most" else "1"), l)) if counts[idx]["0"] < counts[idx]["1"]: l = list(filter(lambda b: b[idx] == ("1" if mode == "most" else "0"), l)) if counts[idx]["0"] == counts[idx]["1"]: l = list(filter(lambda b: b[idx] == ("1" if mode == "most" else "0"), l)) idx += 1 return l def part1(): gamma_rate = epsilon_rate = "" counts = count_occurances(report_lines) for value in counts.values(): if value["0"] > value["1"]: gamma_rate += "0" epsilon_rate += "1" else: gamma_rate += "1" epsilon_rate += "0" return int(gamma_rate, 2) * int(epsilon_rate, 2) def part2(): oxygen_list = filter_list(report_lines.copy(), "most") co2_list = filter_list(report_lines.copy(), "least") return int(oxygen_list[0], 2) * int(co2_list[0], 2) print(f"Part 1: {part1()}") # 1997414 print(f"Part 2: {part2()}") # 1032597
from azure_storage.methods import client_prep, delete_container, delete_file, delete_folder, extract_account_name from azure_storage.azure_delete import AzureDelete, cli, container_delete, file_delete, \ folder_delete from unittest.mock import patch import argparse import pytest import azure import os @pytest.fixture(name='variables', scope='module') def setup(): class Variables: def __init__(self): self.passphrase = 'AzureStorage' self.container_name = '000000container' self.account_name = extract_account_name(passphrase=self.passphrase) return Variables() def test_client_prep(variables): variables.container_name, variables.connect_str, variables.blob_service_client, variables.container_client = \ client_prep(container_name=variables.container_name, passphrase=variables.passphrase, account_name=variables.account_name) assert variables.connect_str.startswith('DefaultEndpointsProtocol') @pytest.mark.parametrize('file_name', ['file_1.txt', 'container_integration/file_2.txt', 'nested_container/nested_folder/nested_folder_2/nested_folder_test_1.txt', 'ABC/123/nested_folder_test_1.txt']) def test_delete_file(variables, file_name): delete_file(container_client=variables.container_client, object_name=file_name, blob_service_client=variables.blob_service_client, container_name=variables.container_name) blobs = variables.container_client.list_blobs() assert file_name not in [blob.name for blob in blobs] @pytest.mark.parametrize('file_name', ['file_3.txt', 'container_integration/file_2.txt', 'nested_container/nested_folder/nested_folder_2/nested_folder_test_1.txt', 'ABC/123/nested_folder_test_1.txt']) def test_delete_file_missing(variables, file_name): with pytest.raises(SystemExit): delete_file(container_client=variables.container_client, object_name=file_name, blob_service_client=variables.blob_service_client, container_name=variables.container_name) def test_delete_file_invalid_category(variables): with pytest.raises(SystemExit): del_file = AzureDelete(object_name='file_1.txt', container_name=variables.container_name, account_name=variables.account_name, passphrase=variables.passphrase, retention_time=8, category='container') del_file.main() @patch('argparse.ArgumentParser.parse_args') def test_delete_file_integration(mock_args, variables): file_name = 'nested/file_2.txt' mock_args.return_value = argparse.Namespace(passphrase=variables.passphrase, account_name=variables.account_name, container_name=variables.container_name, verbosity='info', file=file_name, retention_time=1) arguments = cli() file_delete(arguments) blobs = variables.container_client.list_blobs() assert os.path.basename(file_name) not in [blob.name for blob in blobs] @pytest.mark.parametrize('retention_time', [0, 1000]) @patch('argparse.ArgumentParser.parse_args') def test_delete_file_integration_invalid_retention_time(mock_args, variables, retention_time): file_name = 'nested/file_2.txt' with pytest.raises(SystemExit): mock_args.return_value = argparse.Namespace(passphrase=variables.passphrase, account_name=variables.account_name, container_name=variables.container_name, verbosity='info', file=file_name, retention_time=retention_time) arguments = cli() file_delete(arguments) @patch('argparse.ArgumentParser.parse_args') def test_delete_file_integration_missing(mock_args, variables): file_name = 'nested/file_2.txt' with pytest.raises(SystemExit): mock_args.return_value = argparse.Namespace(passphrase=variables.passphrase, account_name=variables.account_name, container_name=variables.container_name, verbosity='info', file=file_name, retention_time=1) arguments = cli() file_delete(arguments) @pytest.mark.parametrize('folder_name,check_file', [('container_integration/', 'nested_folder_test_1.txt'), ('nested_container/nested_folder/', 'nested_file_2.txt'), ('ABC/', 'nested_folder_test_1.txt')]) def test_delete_folder(variables, folder_name, check_file): delete_folder(container_client=variables.container_client, object_name=folder_name, blob_service_client=variables.blob_service_client, container_name=variables.container_name, account_name=variables.account_name) blobs = variables.container_client.list_blobs() assert os.path.join(folder_name, check_file) not in [blob.name for blob in blobs] @pytest.mark.parametrize('folder_name,check_file', [('container_integration/', 'nested_folder_test_1.txt'), ('nested_container/nested_folder/', 'nested_file_2.txt'), ('ABC/', 'nested_folder_test_1.txt')]) def test_delete_folder_missing(variables, folder_name, check_file): with pytest.raises(SystemExit): delete_folder(container_client=variables.container_client, object_name=folder_name, blob_service_client=variables.blob_service_client, container_name=variables.container_name, account_name=variables.account_name) @patch('argparse.ArgumentParser.parse_args') def test_delete_folder_integration(mock_args, variables): folder_name = 'nested_folder_3' mock_args.return_value = argparse.Namespace(passphrase=variables.passphrase, account_name=variables.account_name, container_name=variables.container_name, verbosity='info', folder=folder_name, retention_time=1) arguments = cli() folder_delete(arguments) blobs = variables.container_client.list_blobs() assert os.path.join(folder_name, 'nested_folder_test_1.txt') not in [blob.name for blob in blobs] @patch('argparse.ArgumentParser.parse_args') def test_delete_folder_integration_missing(mock_args, variables): folder_name = 'nested_folder_3' with pytest.raises(SystemExit): mock_args.return_value = argparse.Namespace(passphrase=variables.passphrase, account_name=variables.account_name, container_name=variables.container_name, verbosity='info', folder=folder_name, retention_time=1) arguments = cli() folder_delete(arguments) def test_delete_container_missing(variables): with pytest.raises(SystemExit): delete_container(blob_service_client=variables.blob_service_client, container_name='000000000container', account_name=variables.account_name) @patch('argparse.ArgumentParser.parse_args') def test_delete_container_integration(mock_args, variables): mock_args.return_value = argparse.Namespace(passphrase=variables.passphrase, account_name=variables.account_name, container_name=variables.container_name, verbosity='info') arguments = cli() container_delete(arguments) with pytest.raises(azure.core.exceptions.ResourceExistsError): variables.blob_service_client.create_container(variables.container_name)
from django.core.management.base import BaseCommand, CommandError from extractor.models import DocumentationUnit, MappingUnitToUser import random from django.contrib.auth.models import User """ map each unit to 2 different users """ class Command(BaseCommand): help = 'maps a sample to the 7 students with their id' def create_mapping(self, object_list, offset): howfull= [0 for x in range(7)] user1 = 0 user2 = 0 for each in object_list: random.seed() user1=random.randint(0,6) howfull[user1] += 1 user2=howfull.index(min(howfull)) howfull[user2] += 1 user_object1 = User.objects.get(id=(user1)+offset) user_object2 = User.objects.get(id=(user2)+offset) mapUnitToUser = MappingUnitToUser.objects.create( user=user_object1, documentation_unit=each, already_marked=False ) mapUnitToUser = MappingUnitToUser.objects.create( user=user_object2, documentation_unit=each, already_marked=False ) self.stdout.write(str(howfull)) self.stdout.write(str(howfull)) self.stdout.write("***DONE***") def handle(self, *args, **options): self.stdout.write("***START***") ClassOrException = (DocumentationUnit.objects.filter(type='class') | \ DocumentationUnit.objects.filter(type='exception')).order_by('?')[:265] AttributeOrData = (DocumentationUnit.objects.filter(type='attribute') | \ DocumentationUnit.objects.filter(type='data')).order_by('?')[:306] MethodOrFunction = (DocumentationUnit.objects.filter(type='method') | \ DocumentationUnit.objects.filter(type='staticmethod') | \ DocumentationUnit.objects.filter(type='classmethod') | \ DocumentationUnit.objects.filter(type='function')).order_by('?')[:651] Describe = (DocumentationUnit.objects.filter(type='describe')).order_by('?')[:16] Section = (DocumentationUnit.objects.filter(type='section')).order_by('?')[:310] self.stdout.write('Counted ClassOrException: "%s"' % ClassOrException.count()) self.stdout.write('Counted AttributeOrData: "%s"' % AttributeOrData.count()) self.stdout.write('Counted MethodOrFunction: "%s"' % MethodOrFunction.count()) self.stdout.write('Counted Describe: "%s"' % Describe.count()) self.stdout.write('Counted Section: "%s"' % Section.count()) self.stdout.write('Random-Test: "%s"' % ClassOrException[0].id) Command.create_mapping(self, ClassOrException, 3, 76) Command.create_mapping(self, AttributeOrData, 3, 88) Command.create_mapping(self, MethodOrFunction, 3, 186) Command.create_mapping(self, Describe, 3, 5) Command.create_mapping(self, Section, 3, 89)
# -*- coding: utf-8 -*- import argparse import multiprocessing from tox import hookimpl @hookimpl def tox_addoption(parser): def positive_integer(value): ivalue = int(value) if ivalue <= 0: raise argparse.ArgumentTypeError( "%s is an invalid positive int value" % value) return ivalue try: num_proc = multiprocessing.cpu_count() except Exception: num_proc = 2 parser.add_argument( "-n", "--num", type=positive_integer, action="store", default=num_proc, dest="numproc", help="set the number of concurrent processes " "(default %s)." % num_proc)
import pyaudio p = pyaudio.PyAudio() def getValidDevicesList(): output = [] for i in range(p.get_device_count()): currentDevice = p.get_device_info_by_index(i) isInput = currentDevice["maxInputChannels"] > 0 isWASAPI = (p.get_host_api_info_by_index( currentDevice["hostApi"])["name"]).find("WASAPI") != -1 if isWASAPI and not isInput: output.append((i, currentDevice['name'])) return output def getDeviceInfoString(deviceIndex): device = p.get_device_info_by_index(deviceIndex) return f"""Device Name: {device['name']}\nDevice Index: {device['index']}\nSample Rate: {device['defaultSampleRate']}"""
import socket import os from six.moves import urllib import netifaces def guess_external_ip(): gateways = netifaces.gateways() try: ifnet = gateways['default'][netifaces.AF_INET][1] return netifaces.ifaddresses(ifnet)[netifaces.AF_INET][0]['addr'] except (KeyError, IndexError): return def bind_zmq_socket(sock, address, port=None): endpoint = address if '://' in address else 'tcp://%s' % address p = urllib.parse.urlparse(endpoint) if port and p.port and p.port != port: raise ValueError('two port numbers given: %s and %s' % (p.port, port)) if p.port: sock.bind(endpoint) port = p.port elif port: endpoint = '%s:%s' % (endpoint, port) sock.bind(endpoint) else: port = sock.bind_to_random_port(endpoint) endpoint = '%s:%s' % (endpoint, port) return endpoint, port # adapted from https://github.com/mozilla-services/chaussette/ def create_socket(host, family=socket.AF_INET, type=socket.SOCK_STREAM, backlog=2048, blocking=True, inheritable=False): if family == socket.AF_UNIX and not host.startswith('unix:'): raise ValueError('Your host needs to have the unix:/path form') if host.startswith('unix:'): family = socket.AF_UNIX if host.startswith('fd://'): fd = int(host[5:]) sock = socket.fromfd(fd, family, type) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) else: sock = socket.socket(family, type) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) if host.startswith('unix:'): filename = host[len('unix:'):] try: os.remove(filename) except OSError: pass sock.bind(filename) else: if ':' in host: host, port = host.rsplit(':', 1) port = int(port) else: host, port = '0.0.0.0', int(host) sock.bind((host, port)) sock.listen(backlog) if blocking: sock.setblocking(1) else: sock.setblocking(0) # Required since Python 3.4 to be able to share a socket with a child # process. if inheritable and hasattr(os, 'set_inheritable'): os.set_inheritable(sock.fileno(), True) return sock def get_unused_port(host="127.0.0.1", family=socket.AF_INET, socktype=socket.SOCK_STREAM): tempsock = socket.socket(family, socktype) tempsock.bind((host, 0)) port = tempsock.getsockname()[1] tempsock.close() del tempsock return port
[print('\n'.join(" "*abs(c)+"* "*(a-abs(c))for c in range(-a+1,a)))for a in[int(__import__('sys').argv[1])]]
import argparse import os from PIL import Image import numpy as np def read_grayscale(input_file, width): """ Reads the raw bytes from the input_file and returns a 2d numpy array of np.int8 pixel values. """ with open(input_file, 'rb') as file: raw_bytes = file.read() flat_integers = [int(byte) for byte in raw_bytes] int_array = np.array([flat_integers[n*width:(n+1)*width] for n in range(len(flat_integers)//width)], dtype=np.uint8) return int_array def grayscale_to_jpg(input_file, output_dir, width): """ Reads grayscale image, converts it to jpg and writes it back into the output dir. """ int_array = read_grayscale(input_file, width) image = Image.fromarray(int_array) image.save(os.path.join(output_dir, os.path.splitext(os.path.basename(input_file))[0]+'.jpg')) def grayscale_dir_to_jpg(input_dir, output_dir, width, grayscale_extension='gs'): """ Converts all images in the input_dir with the grayscale_extension to jpg in the output_dir. """ print('converting grayscale images in {} to jpg'.format(input_dir)) if not os.path.exists(output_dir): os.makedirs(output_dir) for file_name in os.listdir(input_dir): if os.path.splitext(file_name)[-1] != ('.' + grayscale_extension): continue grayscale_to_jpg(input_file=os.path.join(input_dir, file_name), output_dir=output_dir, width=width) print('jpg images written to {}'.format(output_dir)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input_dir') parser.add_argument('--output_dir') args = parser.parse_args() grayscale_dir_to_jpg(args.input_dir, args.output_dir, width=96, grayscale_extension='gs')
import unittest import sys import os sys.path.append('../../') from etk.core import Core import json import codecs class TestTableExtractions(unittest.TestCase): def setUp(self): self.e_config = { "document_id": "doc_id", "extraction_policy": "replace", "error_handling": "raise_error", "resources": { "dictionaries": { }, "landmark": [ ], "pickle": { } }, "content_extraction": { "input_path": "raw_content", "extractors": { "table": { "field_name": "table", "config": { }, "extraction_policy": "replace" } } }, "data_extraction": [ ], "kg_enhancement": [ ] } file_path = os.path.join(os.path.dirname(__file__), "ground_truth/table.jl") table_out = os.path.join(os.path.dirname(__file__), "ground_truth/table_out.jl") no_table_file = os.path.join(os.path.dirname(__file__), "ground_truth/1_content_extracted.jl") self.doc = json.load(codecs.open(file_path, "r", "utf-8")) self.table_ex = json.load(codecs.open(table_out, "r", "utf-8")) self.no_table = json.load(codecs.open(no_table_file, "r", "utf-8")) def test_table_extractor(self): c = Core(extraction_config=self.e_config) r = c.process(self.doc) with open("table_out.jl", "w") as f: f.write(json.dumps(r["content_extraction"]["table"]["tables"])) self.assertTrue("content_extraction" in r) self.assertTrue("table" in r["content_extraction"]) ex = json.loads(json.JSONEncoder().encode(r["content_extraction"]["table"]["tables"])) self.assertEqual(ex, self.table_ex) def test_table_extractor_no_field_name(self): c = Core(extraction_config=self.e_config) r = c.process(self.doc) self.assertTrue("content_extraction" in r) self.assertTrue("table" in r["content_extraction"]) ex = json.loads(json.JSONEncoder().encode(r["content_extraction"]["table"]["tables"])) self.assertEqual(ex, self.table_ex) def test_table_extractor_empty_config(self): c = Core(extraction_config=self.e_config) r = c.process(self.doc) self.assertTrue("content_extraction" in r) self.assertTrue("table" in r["content_extraction"]) ex = json.loads(json.JSONEncoder().encode(r["content_extraction"]["table"]["tables"])) self.assertEqual(ex, self.table_ex) def test_table_extractor_no_table(self): c = Core(extraction_config=self.e_config) r = c.process(self.no_table) self.assertTrue("content_extraction" in r) self.assertEqual(len(r["content_extraction"]["table"]["tables"]), 0) if __name__ == '__main__': unittest.main()
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from .web_view import VizSeqWebView from .data_view import VizSeqDataPageView, DEFAULT_PAGE_SIZE, DEFAULT_PAGE_NO from .data_filter import VizSeqFilter from .data_sorters import (VizSeqSortingType, VizSeqRandomSorter, VizSeqByLenSorter, VizSeqByStrOrderSorter, VizSeqByMetricSorter, VizSeqByMetricDiffSorter)
from typing import DefaultDict, List import itertools class CachedParamMixin: data: DefaultDict[float, List[float]] = None def __init__(self): self._all_keys = None self._keysmax = None self._keysmin = None self._valmax = None self._valmin = None @property def all_keys(self): if self._all_keys is None: self._all_keys = list(self.data.keys()) return self._all_keys @property def keysmax(self): if self._keysmax is None: self._keysmax = max(self.data.keys()) return self._keysmax @property def keysmin(self): if self._keysmin is None: self._keysmin = min(self.data.keys()) return self._keysmin @property def valmax(self): if self._valmax is None: self._valmax = max(itertools.chain.from_iterable(self.data.values())) return self._valmax @property def valmin(self): if self._valmin is None: self._valmin = min(itertools.chain.from_iterable(self.data.values())) return self._valmin def dirty(self): self._valmax = None self._valmin = None self._keysmax = None self._keysmin = None self._all_keys = None
# Python Object Oriented Programming by Joe Marini course example # Using composition to build complex objects # Inheritance is a - is type of relationship. # composition is different from inheritance. When using composition, we build objects out of other objects and this model is more of a has a relationship. B. ok object has an author object # passing author object in __init__ # Now, book has an author associated with it. # Composition is used for the separation of the responsibilities class Book: def __init__(self, title, price, author=None): self.title = title self.price = price self.author = author # holds list of chapters information. self.chapters = [] # book object now takes in a chapter object. # book has a collection of chapter objects. def addchapter(self, chapter): self.chapters.append((chapter)) def getbookpagecount(self): result = 0 for ch in self.chapters: result += ch.pagecount return result class Author: def __init__(self, fname, lname): self.fname = fname self.lname = lname def __str__(self): return f"{self.fname} {self.lname}" class Chapter: def __init__(self, name, pagecount): self.name = name self.pagecount = pagecount auth = Author("Leo", "Tolstoy") b1 = Book("War and Peace", 39.0, auth) b1.addchapter(Chapter("Chapter 1", 125)) b1.addchapter(Chapter("Chapter 2", 97)) b1.addchapter(Chapter("Chapter 3", 143)) print(b1.title) print(b1.author) print(b1.getbookpagecount())
from dns.rdtypes.ANY.TXT import TXT def query(records): context = {} context['i'] = -1 def mockable(_, __, ___): if context['i'] + 1 < len(records): context['i'] += 1 rdclass = 1 rdtype = 1 strings = records[context['i']] return [ TXT(rdclass, rdtype, strings) ] return mockable
import numpy as np import matplotlib.pyplot as plt from random import randint from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasClassifier from keras.utils import np_utils from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split # fix random seed for reproducibility seed = 7 np.random.seed(seed) def generate_word_one(): features = np.zeros(81) features_n = np.zeros((10,8)) for i in range(0, 10): d = randint(50,100) features[i*8] = d features_n[i][0] = d t = randint(350, 400) features[i*8 + 1] = t features_n[i][1] = t lA = randint(750, 800) features[i*8 + 2] = lA features_n[i][2] = lA hA = randint(1000, 1099) features[i*8 + 3] = hA features_n[i][3] = hA lB = randint(1300, 1490) features[i*8 + 4] = lB features_n[i][4] = lB hB = randint(1800, 2000) features[i*8 + 5] = hB features_n[i][5] = hB lG = randint(3100, 3300) features[i*8 + 6] = lG features_n[i][6] = lG hG = randint(4100, 4500) features[i*8 + 7] = hG features_n[i][7] = hG f = features_n/np.linalg.norm(features_n, ord=1, axis=0, keepdims=True) features[80] = 1 return features, np.append(f.reshape(80), 1) def generate_word_two(): features = np.zeros(81) features_n = np.zeros((10,8)) for i in range(0, 10): d = randint(80,200) features[i*8] = d features_n[i][0] = d t = randint(330, 550) features[i*8 + 1] = t features_n[i][1] = t lA = randint(780, 900) features[i*8 + 2] = lA features_n[i][2] = lA hA = randint(1080, 1130) features[i*8 + 3] = hA features_n[i][3] = hA lB = randint(1450, 1600) features[i*8 + 4] = lB features_n[i][4] = lB hB = randint(1900, 2400) features[i*8 + 5] = hB features_n[i][5] = hB lG = randint(3200, 3805) features[i*8 + 6] = lG features_n[i][6] = lG hG = randint(4400, 4700) features[i*8 + 7] = hG features_n[i][7] = hG f = features_n/np.linalg.norm(features_n, ord=1, axis=0, keepdims=True) features[80] = 2 return features, np.append(f.reshape(80), 2) def generate_word_three(): features = np.zeros(81) features_n = np.zeros((10,8)) for i in range(0, 10): d = randint(180,275) features[i*8] = d features_n[i][0] = d t = randint(480, 675) features[i*8 + 1] = t features_n[i][1] = t lA = randint(850, 925) features[i*8 + 2] = lA features_n[i][2] = lA hA = randint(1100, 1175) features[i*8 + 3] = hA features_n[i][3] = hA lB = randint(1550, 1675) features[i*8 + 4] = lB features_n[i][4] = lB hB = randint(2200, 2975) features[i*8 + 5] = hB features_n[i][5] = hB lG = randint(3500, 3975) features[i*8 + 6] = lG features_n[i][6] = lG hG = randint(4600, 4975) features[i*8 + 7] = hG features_n[i][7] = hG f = features_n/np.linalg.norm(features_n, ord=1, axis=0, keepdims=True) features[80] = 3 return features, np.append(f.reshape(80), 3) smaple_count = 10 word1 = [] word2 = [] word3 = [] for i in range(0, smaple_count): f1_1, f1_2 = generate_word_one() f2_1, f2_2 = generate_word_two() f3_1, f3_2 = generate_word_three() #print(f1_1.shape, f1_2.shape) #print(f1_1, f1_2) word1.append(f1_1) word2.append(f2_1) word3.append(f3_1) word_1 = np.array(word1) word_2 = np.array(word2) word_3 = np.array(word3) feature_set = np.vstack([word_1, word_2, word_3]) labels = np.array([0]*10 + [1]*10 + [2]*10) one_hot_labels = np.zeros((30, 3)) for i in range(30): one_hot_labels[i, labels[i]] = 1 #X_b = feature_set[:,0:80].astype(float) X = feature_set[:,0:80].astype(float) Y = feature_set[:,80] #word_1_r = word_1.reshape((100, 8)) #word_2_r = word_2.reshape((100, 8)) #word_3_r = word_3.reshape((100, 8)) #print("word_1", word_1.shape) #print("word_2", word_2.shape) #print("word_3", word_3.shape) #print("word_1_r", word_1_r.shape) #print("word_2_r", word_2_r.shape) #print("word_3_r", word_3_r.shape) #print("word_1_r", word_1_r) #print("word_2_r", word_2_r) #print("word_3_r", word_3_r) #word_1 = np.random.randn(10, 80) + np.array([0, -3, 0, -3, 0, -3, 0, -3]) #word_2 = np.random.randn(10, 80) + np.array([3, 3, 3, 3, 3, 3, 3, 3]) #word_3 = np.random.randn(10, 80) + np.array([-3, 3, -3, 3, -3, 3, -3, 3]) #word_1_n = word_1_r/np.linalg.norm(word_1_r, ord=2, axis=0, keepdims=True) #word_2_n = word_2_r/np.linalg.norm(word_2_r, ord=2, axis=0, keepdims=True) #word_3_n = word_3_r/np.linalg.norm(word_3_r, ord=2, axis=0, keepdims=True) #print("word_1_n", word_1_n.shape) #print("word_2_n", word_2_n.shape) #print("word_3_n", word_3_n.shape) #print("word_n_r", word_1_n) #print("word_n_r", word_2_n) #print("word_n_3", word_3_n) #word_1_b = word_1_n.reshape((10, 80)) #word_2_b = word_2_n.reshape((10, 80)) #word_3_b = word_3_n.reshape((10, 80)) #X = X_b.reshape((100, 8)) #X = X_b/np.linalg.norm(X_b, ord=2, axis=0, keepdims=True) #X = word_1_n.reshape((10, 80)) encoder = LabelEncoder() encoder.fit(Y) encoded_Y = encoder.transform(Y) # convert integers to dummy variables (i.e. one hot encoded) dummy_y = np_utils.to_categorical(encoded_Y) def baseline_model(): # create model model = Sequential() model.add(Dense(8, input_dim=80, activation='relu')) model.add(Dense(20, input_dim=8, activation='relu')) #model.add(Dense(30, input_dim=20, activation='relu')) #model.add(Dense(10, input_dim=30, activation='relu')) model.add(Dense(3, activation='softmax')) # Compile model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model #X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=seed) #baseline_model().fit(X_train, y_train, validation_data=(X_test,y_test), epochs=150, batch_size=1) estimator = KerasClassifier(build_fn=baseline_model, epochs=100, batch_size=5, verbose=0) kfold = KFold(n_splits=10, shuffle=True, random_state=seed) results = cross_val_score(estimator, X, dummy_y, cv=kfold) print("Baseline: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
import re class DisambiguatorPrefixRule19(object): """Disambiguate Prefix Rule 19 Original Rule 19 : mempV -> mem-pV where V != 'e' Modified Rule 19 by ECS : mempA -> mem-pA where A != 'e' in order to stem memproteksi """ def disambiguate(self, word): """Disambiguate Prefix Rule 19 Original Rule 19 : mempV -> mem-pV where V != 'e' Modified Rule 19 by ECS : mempA -> mem-pA where A != 'e' in order to stem memproteksi """ matches = re.match(r'^memp([abcdfghijklmopqrstuvwxyz])(.*)$', word) if matches: return 'p' + matches.group(1) + matches.group(2)
# -*- coding: utf-8 -*- # # Copyright (c) 2015 Cisco Systems, Inc. and others. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Custom modules built on top of nn layers that can do sequence classification """ import logging from abc import abstractmethod from collections import OrderedDict from typing import List from .classification import BaseClassification from .helpers import BatchData, EmbedderType, SequenceClassificationType from .layers import ( EmbeddingLayer, CnnLayer, LstmLayer, PoolingLayer ) from ..containers import HuggingfaceTransformersContainer try: import torch import torch.nn as nn import torch.nn.functional as F except ImportError: pass logger = logging.getLogger(__name__) class BaseSequenceClassification(BaseClassification): """Base class that defines all the necessary elements to successfully train/infer custom pytorch modules wrapped on top of this base class. Classes derived from this base can be trained for sequence classification. """ def _prepare_labels(self, labels: List[int], max_length: int = None): # for sequence classification, the length of an example doesn't matter as we have only one # label for each example. hence, no need to do any padding or validation checks. del max_length return torch.as_tensor(labels, dtype=torch.long) def _init_graph(self): # initialize the beginning layers of the graph self._init_core() # init the underlying params and architectural components try: assert self.out_dim > 0 self.params.update({"out_dim": self.out_dim}) except (AttributeError, AssertionError) as e: msg = f"Derived class '{self.name}' must indicate its hidden size for dense layer " \ f"classification by having an attribute 'self.out_dim', which must be a " \ f"positive integer greater than 1" raise ValueError(msg) from e # init the peripheral architecture params if not self.params.num_labels: msg = f"Invalid number of labels ({self.params.num_labels}) inputted to '{self.name}'" raise ValueError(msg) # init the peripheral architectural components and the criterion to compute loss self.dense_layer_dropout = nn.Dropout( p=1 - self.params.output_keep_prob ) if self.params.num_labels == 2: # sigmoid criterion self.classifier_head = nn.Linear(self.out_dim, 1) self.criterion = nn.BCEWithLogitsLoss(reduction='mean') elif self.params.num_labels > 2: # cross-entropy criterion self.classifier_head = nn.Linear(self.out_dim, self.params.num_labels) self.criterion = nn.CrossEntropyLoss(reduction='mean') else: msg = f"Invalid number of labels specified: {self.params.num_labels}. " \ f"A valid number is equal to or greater than 2" raise ValueError(msg) msg = f"{self.name} is initialized" logger.info(msg) def forward(self, batch_data): batch_data = self.to_device(batch_data) batch_data = self._forward_core(batch_data) seq_embs = batch_data["seq_embs"] seq_embs = self.dense_layer_dropout(seq_embs) logits = self.classifier_head(seq_embs) batch_data.update({"logits": logits}) targets = batch_data.pop("_labels", None) if targets is not None: if self.params.num_labels == 2: loss = self.criterion(logits.view(-1), targets.float()) else: # self.params.num_labels > 2: loss = self.criterion(logits, targets) batch_data.update({"loss": loss}) return batch_data def predict(self, examples): logits = self._forward_with_batching_and_no_grad(examples) if self.params.num_labels == 2: predictions = (logits >= 0.5).long().view(-1) else: # self.params.num_labels > 2: predictions = torch.argmax(logits, dim=-1) return predictions.tolist() def predict_proba(self, examples): logits = self._forward_with_batching_and_no_grad(examples) if self.params.num_labels == 2: probs = F.sigmoid(logits) # extending the results from shape [N,1] to [N,2] to give out class probs distinctly probs = torch.cat((1 - probs, probs), dim=-1) else: # self.params.num_labels > 2: probs = F.softmax(logits, dim=-1) return probs.tolist() def _forward_with_batching_and_no_grad(self, examples): logits = None was_training = self.training self.eval() with torch.no_grad(): for start_idx in range(0, len(examples), self.params.batch_size): batch_examples = examples[start_idx:start_idx + self.params.batch_size] batch_data = self.encoder.batch_encode( batch_examples, padding_length=self.params.padding_length, add_terminals=self.params.add_terminals, ) batch_logits = self.forward(batch_data)["logits"] logits = torch.cat((logits, batch_logits)) if logits is not None else batch_logits if was_training: self.train() return logits @abstractmethod def _init_core(self) -> None: raise NotImplementedError @abstractmethod def _forward_core(self, batch_data: BatchData) -> BatchData: raise NotImplementedError class EmbedderForSequenceClassification(BaseSequenceClassification): """An embedder pooling module that operates on a batched sequence of token ids. The tokens could be characters or words or sub-words. This module finally outputs one 1D representation for each instance in the batch (i.e. [BS, EMB_DIM]). The `forward` method of this module expects padded token ids along with numer of tokens per instance in the batch. Additionally, one can set different coefficients for different tokens of the embedding matrix (e.g. tf-idf weights). """ def _init_core(self): self.emb_layer = EmbeddingLayer( self.params._num_tokens, self.params.emb_dim, self.params._padding_idx, self.params.pop("_embedding_weights", None), self.params.update_embeddings, 1 - self.params.embedder_output_keep_prob ) self.emb_layer_pooling = PoolingLayer( self.params.embedder_output_pooling_type ) self.out_dim = self.params.emb_dim def _forward_core(self, batch_data): seq_ids = batch_data["seq_ids"] # [BS, SEQ_LEN] flattened_split_lengths = [ sum(_split_lengths) + (self.encoder.number_of_terminal_tokens if self.params.add_terminals else 0) for _split_lengths in batch_data["split_lengths"] ] flattened_split_lengths = torch.as_tensor(flattened_split_lengths, dtype=torch.long) # [BS] encodings = self.emb_layer(seq_ids) # [BS, SEQ_LEN, EMD_DIM] encodings = self.emb_layer_pooling(encodings, flattened_split_lengths) # [BS, self.out_dim] batch_data.update({"seq_embs": encodings}) return batch_data class CnnForSequenceClassification(BaseSequenceClassification): """A CNN module that operates on a batched sequence of token ids. The tokens could be characters or words or sub-words. This module finally outputs one 1D representation for each instance in the batch (i.e. [BS, EMB_DIM]). The `forward` method of this module expects only padded token ids as input. """ def _init_core(self): self.emb_layer = EmbeddingLayer( self.params._num_tokens, self.params.emb_dim, self.params._padding_idx, self.params.pop("_embedding_weights", None), self.params.update_embeddings, 1 - self.params.embedder_output_keep_prob ) self.conv_layer = CnnLayer( self.params.emb_dim, self.params.window_sizes, self.params.number_of_windows ) self.out_dim = sum(self.params.number_of_windows) def _forward_core(self, batch_data): seq_ids = batch_data["seq_ids"] # [BS, SEQ_LEN] encodings = self.emb_layer(seq_ids) # [BS, SEQ_LEN, EMD_DIM] encodings = self.conv_layer(encodings) # [BS, self.out_dim] batch_data.update({"seq_embs": encodings}) return batch_data class LstmForSequenceClassification(BaseSequenceClassification): """A LSTM module that operates on a batched sequence of token ids. The tokens could be characters or words or sub-words. This module finally outputs one 1D representation for each instance in the batch (i.e. [BS, EMB_DIM]). The `forward` method of this module expects padded token ids along with numer of tokens per instance in the batch. """ def _init_core(self): self.emb_layer = EmbeddingLayer( self.params._num_tokens, self.params.emb_dim, self.params._padding_idx, self.params.pop("_embedding_weights", None), self.params.update_embeddings, 1 - self.params.embedder_output_keep_prob ) self.lstm_layer = LstmLayer( self.params.emb_dim, self.params.lstm_hidden_dim, self.params.lstm_num_layers, 1 - self.params.lstm_keep_prob, self.params.lstm_bidirectional ) self.lstm_layer_pooling = PoolingLayer( self.params.lstm_output_pooling_type ) self.out_dim = ( self.params.lstm_hidden_dim * 2 if self.params.lstm_bidirectional else self.params.lstm_hidden_dim ) def _forward_core(self, batch_data): seq_ids = batch_data["seq_ids"] # [BS, SEQ_LEN] flattened_split_lengths = [ sum(_split_lengths) + (self.encoder.number_of_terminal_tokens if self.params.add_terminals else 0) for _split_lengths in batch_data["split_lengths"] ] flattened_split_lengths = torch.as_tensor(flattened_split_lengths, dtype=torch.long) # [BS] encodings = self.emb_layer(seq_ids) # [BS, SEQ_LEN, EMD_DIM] encodings = self.lstm_layer(encodings, flattened_split_lengths) # [BS,SEQ_LEN,self.out_dim] encodings = self.lstm_layer_pooling(encodings, flattened_split_lengths) # [BS,self.out_dim] batch_data.update({"seq_embs": encodings}) return batch_data class BertForSequenceClassification(BaseSequenceClassification): def fit(self, examples, labels, **params): # overriding base class' method to set params, and then calling base class' .fit() embedder_type = params.get("embedder_type", EmbedderType.BERT.value) if EmbedderType(embedder_type) != EmbedderType.BERT: msg = f"{self.name} can only be used with 'embedder_type': " \ f"'{EmbedderType.BERT.value}'. " \ f"Other values passed through config params are not allowed." raise ValueError(msg) safe_values = { "num_warmup_steps": 50, "learning_rate": 2e-5, "optimizer": "AdamW", "max_grad_norm": 1.0, } for k, v in safe_values.items(): v_inputted = params.get(k, v) if v != v_inputted: msg = f"{self.name} can be best used with '{k}' equal to '{v}' but found " \ f"the value '{v_inputted}'. Use the non-default value with caution as it " \ f"may lead to unexpected results and longer training times depending on " \ f"the choice of pretrained model." logger.warning(msg) else: params.update({k: v}) params.update({ "embedder_type": embedder_type, "save_frozen_bert_weights": params.get("save_frozen_bert_weights", False) # if True, # frozen set of bert weights are also dumped }) super().fit(examples, labels, **params) def _create_optimizer_and_scheduler(self, num_training_steps): num_warmup_steps = min(int(0.1 * num_training_steps), self.params.num_warmup_steps) self.params.update({"num_warmup_steps": num_warmup_steps}) # https://github.com/huggingface/transformers/blob/master/src/transformers/optimization.py # refer `get_linear_schedule_with_warmup` method def lr_lambda(current_step: int): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) return max( 0.0, float(num_training_steps - current_step) / float( max(1, num_training_steps - num_warmup_steps)) ) # load a torch optimizer optimizer = self._create_optimizer() # load a lr scheduler scheduler = getattr(torch.optim.lr_scheduler, "LambdaLR")(optimizer, lr_lambda) return optimizer, scheduler def _create_optimizer(self): params = list(self.named_parameters()) no_decay = ["bias", 'LayerNorm.bias', "LayerNorm.weight", 'layer_norm.bias', 'layer_norm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in params if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in params if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = getattr(torch.optim, self.params.optimizer)( optimizer_grouped_parameters, lr=self.params.learning_rate, eps=1e-08, weight_decay=0.01 ) return optimizer def _get_dumpable_state_dict(self): if not self.params.update_embeddings and not self.params.save_frozen_bert_weights: state_dict = OrderedDict( {k: v for k, v in self.state_dict().items() if not k.startswith("bert_model")} ) return state_dict return self.state_dict() def _init_core(self): self.bert_model = HuggingfaceTransformersContainer( self.params.pretrained_model_name_or_path, cache_lookup=False ).get_transformer_model() if not self.params.update_embeddings: for param in self.bert_model.parameters(): param.requires_grad = False self.dropout = nn.Dropout( p=1 - self.params.embedder_output_keep_prob ) if self.params.embedder_output_pooling_type != "first": self.emb_layer_pooling = PoolingLayer( self.params.embedder_output_pooling_type ) self.out_dim = self.params.emb_dim def _forward_core(self, batch_data): # refer to https://huggingface.co/docs/transformers/master/en/main_classes/output # for more details on huggingface's bert outputs bert_outputs = self.bert_model(**batch_data["hgf_encodings"], return_dict=True) if self.params.embedder_output_pooling_type != "first": # 'last_hidden_state' refers to the tensor output of the final transformer layer (i.e. # before the logit layer) and hence its dimension [BS, SEQ_LEN, EMD_DIM] last_hidden_state = bert_outputs.get("last_hidden_state") # [BS, SEQ_LEN, EMD_DIM] if last_hidden_state is None: # TODO: Do all huggingface models have this key? Are there any alternatives for this # key? If so, we can enumerate the set of key names instead of just one key name? msg = f"The choice of pretrained bert model " \ f"({self.params.pretrained_model_name_or_path}) " \ f"has no key 'last_hidden_state' in its output dictionary." raise ValueError(msg) last_hidden_state = self.dropout(last_hidden_state) flattened_split_lengths = [ sum(_split_lengths) + (self.encoder.number_of_terminal_tokens if self.params.add_terminals else 0) for _split_lengths in batch_data["split_lengths"] ] flattened_split_lengths = torch.as_tensor(flattened_split_lengths, dtype=torch.long) encodings = self.emb_layer_pooling( last_hidden_state, flattened_split_lengths) # [BS, self.out_dim] else: # 'pooler_output' refers to the first token's (aka. CLS) representation obtained form # the last hidden layer, and hence its dimension [BS, self.out_dim] pooler_output = bert_outputs.get("pooler_output") # [BS, self.out_dim] if pooler_output is None: msg = f"The chosen pretrained bert ({self.params.pretrained_model_name_or_path}) " \ "has no key 'pooler_output' in its output dictionary (maybe the selected " \ "choice of transformers model has no CLS kind-of token?). " \ "Continuing to obtain the first representation of the last hidden state " \ "due to the passed-in value for embedder output pooling type param: " \ f"{self.params.embedder_output_pooling_type}. " \ f"If you wish to pool differently (eg. mean pooling), change the param " \ f"value in configs and run training." logger.error(msg) last_hidden_state = bert_outputs.get("last_hidden_state") # [BS, SEQ_LEN, EMD_DIM] if last_hidden_state is None: msg = f"The choice of pretrained bert model " \ f"({self.params.pretrained_model_name_or_path}) " \ f"has no key 'last_hidden_state' in its output dictionary." raise ValueError(msg) pooler_output = last_hidden_state[:, 0, :] # [BS, self.out_dim] encodings = self.dropout(pooler_output) batch_data.update({"seq_embs": encodings}) return batch_data def get_sequence_classifier_cls(classifier_type: str, embedder_type: str = None): try: classifier_type = SequenceClassificationType(classifier_type) except ValueError as e: msg = f"Neural Nets' sequence classification module expects classifier_type to be amongst" \ f" {[v.value for v in SequenceClassificationType.__members__.values()]}" \ f" but found '{classifier_type}'." raise ValueError(msg) from e try: embedder_type = EmbedderType(embedder_type) except ValueError as e: msg = f"Neural Nets' sequence classification module expects embedder_type to be amongst " \ f" {[v.value for v in EmbedderType.__members__.values()]} " \ f" but found '{embedder_type}'." raise ValueError(msg) from e if ( embedder_type == EmbedderType.BERT and classifier_type not in [SequenceClassificationType.EMBEDDER] ): msg = f"To use the embedder_type '{EmbedderType.BERT.value}', " \ f"classifier_type must be '{SequenceClassificationType.EMBEDDER.value}'." raise ValueError(msg) # disambiguation between glove, bert and non-pretrained embedders def _resolve_and_return_embedder_class(_embedder_type): return { EmbedderType.NONE: EmbedderForSequenceClassification, EmbedderType.GLOVE: EmbedderForSequenceClassification, EmbedderType.BERT: BertForSequenceClassification }[_embedder_type] return { SequenceClassificationType.EMBEDDER: _resolve_and_return_embedder_class(embedder_type), SequenceClassificationType.CNN: CnnForSequenceClassification, SequenceClassificationType.LSTM: LstmForSequenceClassification, }[classifier_type]
"""Tests for citrine.informatics.rows.""" import pytest from citrine.gemtables.rows import MaterialRunByTemplate, Row from gemd.entity.link_by_uid import LinkByUID @pytest.fixture(params=[ MaterialRunByTemplate(templates=[ LinkByUID(scope="templates", id="density"), LinkByUID(scope="templates", id="ingredients") ]), MaterialRunByTemplate(templates=[ LinkByUID(scope="templates", id="density"), LinkByUID(scope="templates", id="ingredients") ], tags=[ "foo::bar", "some::tag" ] ), ]) def row(request): return request.param def test_deser_from_parent(row): # Serialize and deserialize the rows, making sure they are round-trip serializable row_data = row.dump() row_deserialized = Row.build(row_data) assert row == row_deserialized def test_invalid_eq(row): other = None assert not row == other def test_invalid_deser(): with pytest.raises(ValueError): Row.build({}) with pytest.raises(ValueError): Row.build({"type": "foo"})
#!/usr/bin/env python3 # Copyright (C) 2019 Freie Universität Berlin # # This file is subject to the terms and conditions of the GNU Lesser # General Public License v2.1. See the file LICENSE in the top level # directory for more details. import sys from testrunner import run def testfunc(child): child.expect_exact("UDP event triggered: 0030") child.expect_exact("Received UDP packet from [fe80::2]:38663:") child.expect_exact("00000000 01 23 45 67 89 AB CD EF") child.expect_exact("UDP message successfully sent") child.expect_exact("IP event triggered: 0030") child.expect_exact("Received IP packet from [fe80::2]:") child.expect_exact("00000000 01 23 45 67 89 AB CD EF") child.expect_exact("IP message successfully sent") if __name__ == "__main__": sys.exit(run(testfunc))
""" Check that multiple BEP can be assigned to a single cast listener. """ import support from java import awt support.compileJava("test006j.java") import test006j def f(evt): pass m = test006j() m.componentShown = f m.componentHidden = f m.fireComponentShown(awt.event.ComponentEvent(awt.Container(), 0)) m.fireComponentMoved(awt.event.ComponentEvent(awt.Container(), 0))
import sys from configparser import ConfigParser from steam.client import SteamClient from dota2.client import Dota2Client import logging from random import randint import os #-> Mudar diretorio aqui se necessário paginaspath = os.path.dirname(os.path.abspath(__file__)) botspath = os.path.join(paginaspath, 'bots.ini') bot = ConfigParser() bot.read(botspath) ############VARS########### counterslot = 0 ########BOTCONFIGS######### bot_user = sys.argv[1] bot_pass = sys.argv[2] bot_sec = sys.argv[3] lobby_name = sys.argv[4] ##########PLAYERS########## #-Usar FOR aqui se quiser player1 = int(sys.argv[5])#-------- player1time = sys.argv[6] player2 = int(sys.argv[7])#-------- player2time = sys.argv[8] player3 = int(sys.argv[9])#-------- player3time = sys.argv[10] player4 = int(sys.argv[11])#-------- player4time = sys.argv[12] player5 = int(sys.argv[13])#-------- player5time = sys.argv[14] player6 = int(sys.argv[15])#-------- player6time = sys.argv[16] player7 = int(sys.argv[17])#-------- player7time = sys.argv[18] player8 = int(sys.argv[19])#-------- player8time = sys.argv[20] player9 = int(sys.argv[21])#-------- player9time = sys.argv[22] player10 = int(sys.argv[23])#-------- player10time = sys.argv[24] ############################ playerslot = { 1: { 'id': player1, 'slot': None, }, 2:{ 'id': player2, 'slot': None, }, 3:{ 'id': player3, 'slot': None, }, 4:{ 'id': player4, 'slot': None, }, 5:{ 'id': player5, 'slot': None, }, 6:{ 'id': player6, 'slot': None, }, 7:{ 'id': player7, 'slot': None, }, 8:{ 'id': player8, 'slot': None, }, 9:{ 'id': player9, 'slot': None, }, 10:{ 'id': player10, 'slot': None, }, } ############################ client = SteamClient() dota = Dota2Client(client) dota.verbose_debug = False def converteridto32(steamid): cc = int(steamid) - 76561197960265728 return cc @client.on('logged_on') def start_dota(): dota.launch() #print('Dota iniciou') @dota.on('ready') def create_dolex_lobby(): global counterslot #bot[bot_sec]['estado'] = 'ocupado' #with open(botspath, 'w') as configfile: # bot.write(configfile) bot_name = client.username pass_value = randint(0, 9999) dota.abandon_current_game() dota.leave_practice_lobby() dota.create_tournament_lobby(password=str(pass_value), tournament_game_id=None, tournament_id=0, options={ 'allow_cheats': False, 'visibility': 0, 'server_region': 10, #10-> Brazil 'game_mode': 2, # 2-> CAPTAINS MODE, 1-> ALL PICK 'game_name': lobby_name, }) dota.sleep(1) dota.join_practice_lobby_team() dota.sleep(1) #Usar aqui FOR se quiser dps dota.invite_to_lobby(player1) dota.invite_to_lobby(player2) dota.invite_to_lobby(player3) dota.invite_to_lobby(player4) dota.invite_to_lobby(player5) dota.invite_to_lobby(player6) dota.invite_to_lobby(player7) dota.invite_to_lobby(player8) dota.invite_to_lobby(player9) dota.invite_to_lobby(player10) dota.channels.join_lobby_channel() bot[bot_sec]['chatipo'] = 'lobbycriado' bot[bot_sec]['conteudo'] = 'O bot criou a sala '+lobby_name+' com a seguinte senha: '+str(pass_value)+'.' with open(botspath, 'w') as configfile: bot.write(configfile) dota.sleep(1) bot[bot_sec]['chatipo'] = 'nada' bot[bot_sec]['conteudo'] = 'nada' with open(botspath, 'w') as configfile: bot.write(configfile) dota.sleep(9) if dota.lobby: if dota.channels.join_lobby_channel() is not None: lobby_chat = dota.channels.lobby lobby_chat.send('Obrigado por jogar na Dolex.') else: None #print('Nao foi possivel entrar no chat da lobby.') else: None #print('Nao foi possivel entrar na sala.') dota.sleep(1) for cont in range(0,180,+1): if cont == 0: dota.channels.lobby.send('Faltam 3 minutos para começar a partida') if cont == 60: dota.channels.lobby.send('Faltam 2 minutos para começar a partida') if cont == 120: dota.channels.lobby.send('Falta 1 minuto para começar a partida') if cont == 170: dota.channels.lobby.send('Partida começa em:') for n in range(10,0,-1): dota.channels.lobby.send(str(n)) dota.sleep(1) for x in range(0, len(playerslot), +1): if playerslot[x+1]['slot'] is not None: counterslot += 1 if playerslot[x+1]['slot'] is None: bot[bot_sec]['chatipo'] = 'banirplayerdapla'#'tirarpontosplayer' bot[bot_sec]['conteudo'] = str(playerslot[x+1]['id']) with open(botspath, 'w') as configfile: bot.write(configfile) dota.sleep(1) if counterslot == 10: #dps '== 10' dota.launch_practice_lobby() elif counterslot < 10: bot[bot_sec]['estado'] = 'livre' bot[bot_sec]['comecou'] = 'nao' with open(botspath, 'w') as configfile: bot.write(configfile) dota.sleep(1) bot[bot_sec]['chatipo'] = 'playersnaoforamparaolobby' bot[bot_sec]['conteudo'] = 'O bot não conseguiu iniciar partida por falta de jogadores.' with open(botspath, 'w') as configfile: bot.write(configfile) dota.sleep(1) bot[bot_sec]['chatipo'] = 'nada' bot[bot_sec]['conteudo'] = 'nada' with open(botspath, 'w') as configfile: bot.write(configfile) dota.channels.lobby.send('Sem jogadores suficientes para começar partida.') dota.leave_practice_lobby() dota.sleep(1) dota.exit() exit() dota.sleep(1) @dota.socache.on(('updated', dota.socache.ESOType.CSODOTALobby)) def lobby_match_update(obj): #print('Algum lobby foi alterado...') if obj.match_outcome: if obj.match_outcome == 2: bot[bot_sec]['chatipo'] = 'radganhou' bot[bot_sec]['conteudo'] = 'O time Radiant ganhou.' with open(botspath, 'w') as configfile: bot.write(configfile) dota.sleep(1) bot[bot_sec]['chatipo'] = 'nada' bot[bot_sec]['conteudo'] = 'nada' with open(botspath, 'w') as configfile: bot.write(configfile) dota.sleep(1) dota.exit() bot[bot_sec]['comecou'] = 'nao' bot[bot_sec]['estado'] = 'livre' with open(botspath, 'w') as configfile: bot.write(configfile) client.sleep(1) exit() elif obj.match_outcome == 3: bot[bot_sec]['chatipo'] = 'dirganhou' bot[bot_sec]['conteudo'] = 'O time Dire ganhou.' with open(botspath, 'w') as configfile: bot.write(configfile) dota.sleep(1) bot[bot_sec]['chatipo'] = 'nada' bot[bot_sec]['conteudo'] = 'nada' with open(botspath, 'w') as configfile: bot.write(configfile) dota.sleep(1) dota.exit() bot[bot_sec]['comecou'] = 'nao' bot[bot_sec]['estado'] = 'livre' with open(botspath, 'w') as configfile: bot.write(configfile) client.sleep(1) exit() elif obj.match_outcome == 66: bot[bot_sec]['comecou'] = 'nao' bot[bot_sec]['estado'] = 'livre' with open(botspath, 'w') as configfile: bot.write(configfile) client.sleep(1) exit() elif obj.match_outcome == 68: bot[bot_sec]['comecou'] = 'nao' bot[bot_sec]['estado'] = 'livre' with open(botspath, 'w') as configfile: bot.write(configfile) client.sleep(1) exit() elif obj.match_outcome == 67: bot[bot_sec]['comecou'] = 'nao' bot[bot_sec]['estado'] = 'livre' with open(botspath, 'w') as configfile: bot.write(configfile) client.sleep(1) exit() elif obj.match_outcome == 0: bot[bot_sec]['comecou'] = 'nao' bot[bot_sec]['estado'] = 'livre' with open(botspath, 'w') as configfile: bot.write(configfile) client.sleep(1) exit() elif obj.match_outcome == 65: bot[bot_sec]['comecou'] = 'nao' bot[bot_sec]['estado'] = 'livre' with open(botspath, 'w') as configfile: bot.write(configfile) client.sleep(1) exit() elif obj.match_outcome == 64: bot[bot_sec]['comecou'] = 'nao' bot[bot_sec]['estado'] = 'livre' with open(botspath, 'w') as configfile: bot.write(configfile) client.sleep(1) exit() ######################################## # obj.match_outcome : # -DireVictory = 3 # -NotScored_Canceled = 68 # -NotScored_Leaver = 65 # -NotScored_NeverStarted = 67 # -NotScored_PoorNetworkConditions = 64 # -NotScored_ServerCrash = 66 # -RadVictory = 2 # -Unknown = 0 ########################################## if obj.members: global playerslot for i in range(len(obj.members)): # for aqui tbm depois se quiser if obj.members[i].id == player1: steam32 = converteridto32(player1) if player1time == 'rad': if obj.members[i].team == 0: playerslot[1]['slot'] = obj.members[i].name if obj.members[i].team == 1: playerslot[1]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[1]['slot'] = None elif player1time == 'dir': if obj.members[i].team == 1: playerslot[1]['slot'] = obj.members[i].name if obj.members[i].team == 0: playerslot[1]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[1]['slot'] = None if obj.members[i].id == player2: steam32 = converteridto32(player2) if player2time == 'rad': if obj.members[i].team == 0: playerslot[2]['slot'] = obj.members[i].name if obj.members[i].team == 1: playerslot[2]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[2]['slot'] = None elif player2time == 'dir': if obj.members[i].team == 1: playerslot[2]['slot'] = obj.members[i].name if obj.members[i].team == 0: playerslot[2]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[2]['slot'] = None if obj.members[i].id == player3: steam32 = converteridto32(player3) if player3time == 'rad': if obj.members[i].team == 0: playerslot[3]['slot'] = obj.members[i].name if obj.members[i].team == 1: playerslot[3]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[3]['slot'] = None elif player3time == 'dir': if obj.members[i].team == 1: playerslot[3]['slot'] = obj.members[i].name if obj.members[i].team == 0: playerslot[3]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[3]['slot'] = None if obj.members[i].id == player4: steam32 = converteridto32(player4) if player4time == 'rad': if obj.members[i].team == 0: playerslot[4]['slot'] = obj.members[i].name if obj.members[i].team == 1: playerslot[4]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[4]['slot'] = None elif player4time == 'dir': if obj.members[i].team == 1: playerslot[4]['slot'] = obj.members[i].name if obj.members[i].team == 0: playerslot[4]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[4]['slot'] = None if obj.members[i].id == player5: steam32 = converteridto32(player5) if player5time == 'rad': if obj.members[i].team == 0: playerslot[5]['slot'] = obj.members[i].name if obj.members[i].team == 1: playerslot[5]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[5]['slot'] = None elif player5time == 'dir': if obj.members[i].team == 1: playerslot[5]['slot'] = obj.members[i].name if obj.members[i].team == 0: playerslot[5]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[5]['slot'] = None if obj.members[i].id == player6: steam32 = converteridto32(player6) if player6time == 'rad': if obj.members[i].team == 0: playerslot[6]['slot'] = obj.members[i].name if obj.members[i].team == 1: playerslot[6]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[6]['slot'] = None elif player6time == 'dir': if obj.members[i].team == 1: playerslot[6]['slot'] = obj.members[i].name if obj.members[i].team == 0: playerslot[6]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[6]['slot'] = None if obj.members[i].id == player7: steam32 = converteridto32(player7) if player7time == 'rad': if obj.members[i].team == 0: playerslot[7]['slot'] = obj.members[i].name if obj.members[i].team == 1: playerslot[7]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[7]['slot'] = None elif player7time == 'dir': if obj.members[i].team == 1: playerslot[7]['slot'] = obj.members[i].name if obj.members[i].team == 0: playerslot[7]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[7]['slot'] = None if obj.members[i].id == player8: steam32 = converteridto32(player8) if player8time == 'rad': if obj.members[i].team == 0: playerslot[8]['slot'] = obj.members[i].name if obj.members[i].team == 1: playerslot[8]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[8]['slot'] = None elif player8time == 'dir': if obj.members[i].team == 1: playerslot[8]['slot'] = obj.members[i].name if obj.members[i].team == 0: playerslot[8]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[8]['slot'] = None if obj.members[i].id == player9: steam32 = converteridto32(player9) if player9time == 'rad': if obj.members[i].team == 0: playerslot[9]['slot'] = obj.members[i].name if obj.members[i].team == 1: playerslot[9]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[9]['slot'] = None elif player9time == 'dir': if obj.members[i].team == 1: playerslot[9]['slot'] = obj.members[i].name if obj.members[i].team == 0: playerslot[9]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[9]['slot'] = None if obj.members[i].id == player10: steam32 = converteridto32(player10) if player10time == 'rad': if obj.members[i].team == 0: playerslot[10]['slot'] = obj.members[i].name if obj.members[i].team == 1: playerslot[10]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[10]['slot'] = None elif player10time == 'dir': if obj.members[i].team == 1: playerslot[10]['slot'] = obj.members[i].name if obj.members[i].team == 0: playerslot[10]['slot'] = None dota.practice_lobby_kick(account_id=steam32) if obj.members[i].team == 4: playerslot[10]['slot'] = None client.cli_login(username=bot_user, password=bot_pass) client.run_forever()
from collections import defaultdict from dataclasses import dataclass from math import ceil from typing import Dict, List @dataclass class Reactant: quantity: int ID: str @dataclass class Reaction: output: Reactant dependencies: List[Reactant] def ore_required_for(target: Reactant, reactions: Dict[str, Reaction]) -> int: """Return the units of ORE needed to produce the target.""" ore = 0 excess: Dict[str, int] = defaultdict(int) needed = [target] while needed: cur = needed.pop() if cur.ID == "ORE": ore += cur.quantity continue # Account for excess: take = min(excess[cur.ID], cur.quantity) excess[cur.ID] -= take cur.quantity -= take if not cur.quantity: continue producing_reaction = reactions[cur.ID] needed_reactions = ceil(cur.quantity / producing_reaction.output.quantity) excess[cur.ID] += ( producing_reaction.output.quantity * needed_reactions - cur.quantity ) for dep in producing_reaction.dependencies: needed.append(Reactant(ID=dep.ID, quantity=dep.quantity * needed_reactions)) return ore def binary_search(max_ore: int, lower: int, upper: int, reactions: Dict[str, Reaction]): """Return the max fuel possible to produce with the given ore supply.""" assert lower < upper while lower + 1 < upper: mid = (lower + upper) // 2 value = ore_required_for(Reactant(ID="FUEL", quantity=mid), reactions) if value > max_ore: upper = mid elif value < max_ore: lower = mid else: lower = upper = mid return lower # Parse input: reactions: Dict[str, Reaction] = {} with open("input.txt") as f: for line in f: inp, out = line.strip().split("=>") result = Reactant(quantity=int(out.split()[0]), ID=out.split()[1]) reactants = [ Reactant(quantity=int(part.split()[0]), ID=part.split()[1]) for part in inp.split(",") ] reactions[result.ID] = Reaction(result, reactants) ore_to_fuel = ore_required_for(Reactant(ID="FUEL", quantity=1), reactions) print("Part 1:", ore_to_fuel) # For the binary search, ore / ore_per_fuel is a lower limit, and twice that is a solid upper limit. ore_available = 1000000000000 print( "Part 2:", binary_search( max_ore=ore_available, lower=ore_available // ore_to_fuel, upper=ore_available // ore_to_fuel * 2, reactions=reactions, ), )
from .di import DiContainer as _DiContainer def di_container(main_file_path): """ :type main_file_path: str :rtype: gold_digger.di.DiContainer """ return _DiContainer(main_file_path) _DiContainer.set_up_root_logger()
import os import sys import boto3 from dateutil import parser from botocore.exceptions import ClientError def get_latest_ami(ec2_conn, ami_filter, nodetype): try: latest = None response = ec2_conn.describe_images(Filters=ami_filter) if len(response['Images']) != 0: print('[INFO] AMIs found:') for image in response['Images']: print('ImageId: '+image['ImageId']+' | Name: '+image['Name']+' | CreationDate: '+image['CreationDate']) if not latest: latest = image continue if parser.parse(image['CreationDate']) > parser.parse(latest['CreationDate']): latest = image return latest else: print('[ERR] No AMIs found!') sys.exit('[ERR] No AMIs found!') except ClientError as error: print('[ERR] '+str(error)) raise def run_ec2(ec2_conn, aws_region, image_id, instance_type, subnet_id, security_group_id, instance_profile_arn, assessment_template_arn, timeout_s, tags): try: response = ec2_conn.run_instances( ImageId=image_id, InstanceType=instance_type, MaxCount=1, MinCount=1, TagSpecifications=[{'ResourceType': 'instance', 'Tags': tags}], SubnetId=subnet_id, SecurityGroupIds=[security_group_id], UserData="\n".join([ "#!/bin/bash", "curl -O https://d1wk0tztpsntt1.cloudfront.net/linux/latest/install", "/bin/bash install", "/etc/init.d/awsagent start", "echo -e '\n[INFO] Starting assessment...'", "assessment_run_arn=`aws inspector start-assessment-run --assessment-template-arn {} --region {} | jq -r .assessmentRunArn`", "status='unknown'", "timeout_s={}", "sleep_s=60", "repeates=$((timeout_s/sleep_s))", "echo -e '\n[INFO] Monitoring assessment status...'", "while [[ $status != 'COMPLETED' && $status != 'FAILED' && $repeates -gt 1 ]]; do", "let repeates=$repeates-1", "status=`aws inspector describe-assessment-runs --assessment-run $assessment_run_arn --region {} | jq -r .assessmentRuns[].state`", "echo `date` '| STATUS:' $status", "sleep $sleep_s", "done", "echo -e '\n[INFO] Assessment finished.'", "echo '[INFO] Shutting down...'", "/sbin/shutdown -h now" ]).format(assessment_template_arn, aws_region, timeout_s, aws_region), IamInstanceProfile={'Arn': instance_profile_arn}, InstanceInitiatedShutdownBehavior='terminate' ) instance_id = response.get("Instances")[0].get("InstanceId") return instance_id except ClientError as error: print('[ERR] '+str(error)) raise def handler(event, context): # event received print('[INFO] Event received: '+str(event)) # prep session = boto3.session.Session() aws_region = session.region_name nodetype = event.get('nodetype') # environment variables capture instance_type = os.environ['instance_type'] subnet_id = os.environ['subnet_id'] security_group_id = os.environ['security_group_id'] instance_profile_arn = os.environ['instance_profile_arn'] assessment_template_arn = os.environ['assessment_template_arn'] timeout_s = os.environ['timeout_s'] # create ec2 service client ec2_conn = boto3.client('ec2', region_name=aws_region) # get latest AMI ID based on filters ami_filter = [ { 'Name': 'tag:nodetype', 'Values': [nodetype] }, { 'Name': 'state', 'Values': ['available'] } ] latest_ami = get_latest_ami(ec2_conn, ami_filter, nodetype) print('[INFO] The latest AMI:') print('ImageId: '+latest_ami['ImageId']+' | Name: '+latest_ami['Name']+' | CreationDate: '+latest_ami['CreationDate']) # run ec2 instance and start AWS Inspector assessment tags = [ { 'Key': 'Name', 'Value': 'aws-inspector-test-'+nodetype }, { 'Key': 'AWSInspectorScan', 'Value': 'true' }, { 'Key': 'Nodetype', 'Value': nodetype }, { 'Key': 'ImageId', 'Value': latest_ami['ImageId'] } ] test_instance_id = run_ec2( ec2_conn, aws_region, latest_ami['ImageId'], instance_type, subnet_id, security_group_id, instance_profile_arn, assessment_template_arn, timeout_s, tags ) print('[INFO] Test Instance started: '+test_instance_id) # the end print('[INFO] All good! Quitting...')
#Оператор цикла for for i in range(5): print("Hello")#В результате “Hello” будет выведено пять раз lst = [1, 3, 5, 7, 9] for i in lst: print(i ** 2) #Также можно пройти по всем буквам в строке. word_str = "Hello, world!" for l in word_str: print(l) #Строка “Hello, world!” будет напечатана в столбик.
import pandas as pd import os import numpy as np import json import glob import sys import time #from git import Repo def find_range(x,a,b,option='within'): """ Find indices of data within or outside range [a,b] Inputs: ------- x - numpy.ndarray Data to search a - float or int Minimum value b - float or int Maximum value option - String 'within' or 'outside' Output: ------- inds - numpy.ndarray Indices of x that fall within or outside specified range """ if option=='within': return np.where(np.logical_and(x>=a, x<=b))[0] elif option=='outside': return np.where(np.logical_or(x < a, x > b))[0] else: raise ValueError('unrecognized option paramter: {}'.format(option)) def rms(data): """ Computes root-mean-squared voltage of a signal Input: ----- data - numpy.ndarray Output: ------ rms_value - float """ return np.power(np.mean(np.power(data.astype('float32'),2)),0.5) def write_probe_json(output_file, channels, offset, scaling, mask, surface_channel, air_channel, vertical_pos, horizontal_pos): """ Writes a json file containing information about one Neuropixels probe. Inputs: ------- output_file : file path Location for writing the json file channels : numpy.ndarray (384 x 0) Probe channel numbers offset : numpy.ndarray (384 x 0) Offset of each channel from zero scaling : numpy.ndarray (384 x 0) Relative noise level on each channel mask : numpy.ndarray (384 x 0) 1 if channel contains valid data, 0 otherwise surface_channel : Int Index of channel at brain surface air_channel : Int Index of channel at interface between saline/agar and air vertical_pos : numpy.ndarray (384 x 0) Distance (in microns) of each channel from the probe tip horizontal_pos : numpy.ndarray (384 x 0) Distance (in microns) of each channel from the probe edge Outputs: -------- output_file.json (written to disk) """ with open(output_file, 'w') as outfile: json.dump( { 'channel' : channels.tolist(), 'offset' : offset.tolist(), 'scaling' : scaling.tolist(), 'mask' : mask.tolist(), 'surface_channel' : surface_channel, 'air_channel' : air_channel, 'vertical_pos' : vertical_pos.tolist(), 'horizontal_pos' : horizontal_pos.tolist() }, outfile, indent = 4, separators = (',', ': ') ) def read_probe_json(input_file): """ Reads a json file containing information about one Neuropixels probe. Inputs: ------- input_file : file path Location of file to read Outputs: -------- mask : numpy.ndarray (384 x 0) 1 if channel contains valid data, 0 otherwise offset : numpy.ndarray (384 x 0) Offset of each channel from zero scaling : numpy.ndarray (384 x 0) Relative noise level on each channel surface_channel : Int Index of channel at brain surface air_channel : Int Index of channel at interface between saline/agar and air """ with open(input_file) as data_file: data = json.load(data_file) scaling = np.array(data['scaling']) mask = np.array(data['mask']) offset = np.array(data['offset']) surface_channel = data['surface_channel'] air_channel = data['air_channel'] return mask, offset, scaling, surface_channel, air_channel def write_cluster_group_tsv(IDs, quality, output_directory, filename = 'cluster_group.tsv'): """ Writes a tab-separated cluster_group.tsv file Inputs: ------- IDs : list List of cluster IDs quality : list Quality ratings for each unit (same size as IDs) output_directory : String Location to save the file Outputs: -------- cluster_group.tsv (written to disk) """ df = pd.DataFrame(data={'cluster_id' : IDs, 'group': quality}) print('Saving data...') df.to_csv(os.path.join(output_directory, filename), sep='\t', index=False) def read_cluster_group_tsv(filename): """ Reads a tab-separated cluster_group.tsv file from disk Inputs: ------- filename : String Full path of file Outputs: -------- IDs : list List of cluster IDs quality : list Quality ratings for each unit (same size as IDs) """ info = pd.read_csv(filename, sep='\t') cluster_ids = info['cluster_id'].values.astype('int') try: cluster_quality = info['group'].values except KeyError: cluster_quality = info['KSLabel'].values return cluster_ids, cluster_quality def load(folder, filename): """ Loads a numpy file from a folder. Inputs: ------- folder : String Directory containing the file to load filename : String Name of the numpy file Outputs: -------- data : numpy.ndarray File contents """ return np.load(os.path.join(folder, filename)) def load_kilosort_data(folder, sample_rate = None, convert_to_seconds = True, use_master_clock = False, include_pcs = False, template_zero_padding= 21): """ Loads Kilosort output files from a directory Inputs: ------- folder : String Location of Kilosort output directory sample_rate : float (optional) AP band sample rate in Hz convert_to_seconds : bool (optional) Flags whether to return spike times in seconds (requires sample_rate to be set) use_master_clock : bool (optional) Flags whether to load spike times that have been converted to the master clock timebase include_pcs : bool (optional) Flags whether to load spike principal components (large file) template_zero_padding : int (default = 21) Number of zeros added to the beginning of each template Outputs: -------- spike_times : numpy.ndarray (N x 0) Times for N spikes spike_clusters : numpy.ndarray (N x 0) Cluster IDs for N spikes spike_templates : numpy.ndarray (N x 0) Template IDs for N spikes amplitudes : numpy.ndarray (N x 0) Amplitudes for N spikes unwhitened_temps : numpy.ndarray (M x samples x channels) Templates for M units channel_map : numpy.ndarray Channels from original data file used for sorting cluster_ids : Python list Cluster IDs for M units cluster_quality : Python list Quality ratings from cluster_group.tsv file pc_features (optinal) : numpy.ndarray (N x channels x num_PCs) PC features for each spike pc_feature_ind (optional) : numpy.ndarray (M x channels) Channels used for PC calculation for each unit """ if use_master_clock: spike_times = load(folder,'spike_times_master_clock.npy') else: spike_times = load(folder,'spike_times.npy') spike_clusters = load(folder,'spike_clusters.npy') spike_templates = load(folder, 'spike_templates.npy') amplitudes = load(folder,'amplitudes.npy') templates = load(folder,'templates.npy') unwhitening_mat = load(folder,'whitening_mat_inv.npy') channel_map = np.squeeze(load(folder, 'channel_map.npy')) if include_pcs: pc_features = load(folder, 'pc_features.npy') pc_feature_ind = load(folder, 'pc_feature_ind.npy') templates = templates[:,template_zero_padding:,:] # remove zeros spike_clusters = np.squeeze(spike_clusters) # fix dimensions spike_templates = np.squeeze(spike_templates) # fix dimensions spike_times = np.squeeze(spike_times)# fix dimensions if convert_to_seconds and sample_rate is not None: spike_times = spike_times / sample_rate unwhitened_temps = np.zeros((templates.shape)) for temp_idx in range(templates.shape[0]): unwhitened_temps[temp_idx,:,:] = np.dot(np.ascontiguousarray(templates[temp_idx,:,:]),np.ascontiguousarray(unwhitening_mat)) try: cluster_ids, cluster_quality = read_cluster_group_tsv(os.path.join(folder, 'cluster_group.tsv')) except OSError: cluster_ids = np.unique(spike_clusters) cluster_quality = ['unsorted'] * cluster_ids.size if not include_pcs: return spike_times, spike_clusters, spike_templates, amplitudes, unwhitened_temps, channel_map, cluster_ids, cluster_quality else: return spike_times, spike_clusters, spike_templates, amplitudes, unwhitened_temps, channel_map, cluster_ids, cluster_quality, pc_features, pc_feature_ind def get_spike_depths(spike_templates, pc_features, pc_feature_ind): """ Calculates the distance (in microns) of individual spikes from the probe tip This implementation is based on Matlab code from github.com/cortex-lab/spikes Input: ----- spike_templates : numpy.ndarray (N x 0) Template IDs for N spikes pc_features : numpy.ndarray (N x channels x num_PCs) PC features for each spike pc_feature_ind : numpy.ndarray (M x channels) Channels used for PC calculation for each unit Output: ------ spike_depths : numpy.ndarray (N x 0) Distance (in microns) from each spike waveform from the probe tip """ pc_features_copy = np.copy(pc_features) pc_features_copy = np.squeeze(pc_features_copy[:,0,:]) pc_features_copy[pc_features_copy < 0] = 0 pc_power = pow(pc_features_copy, 2) spike_feat_ind = pc_feature_ind[spike_templates, :] spike_depths = np.sum(spike_feat_ind * pc_power, 1) / np.sum(pc_power,1) return spike_depths * 10 def get_spike_amplitudes(spike_templates, templates, amplitudes): """ Calculates the amplitude of individual spikes, based on the original template plus a scaling factor This implementation is based on Matlab code from github.com/cortex-lab/spikes Inputs: ------- spike_templates : numpy.ndarray (N x 0) Template IDs for N spikes templates : numpy.ndarray (M x samples x channels) Unwhitened templates for M units amplitudes : numpy.ndarray (N x 0) Amplitudes for N spikes Outputs: -------- spike_amplitudes : numpy.ndarray (N x 0) Amplitudes for N spikes """ template_amplitudes = np.max(np.max(templates,1) - np.min(templates,1),1) spike_amplitudes = template_amplitudes[spike_templates] * amplitudes return np.squeeze(spike_amplitudes) def get_repo_commit_date_and_hash(repo_location): """ Finds the date and hash of the latest commit in a git repository Input: ------ repo_location - String Local directory containing the git repository Outputs: -------- commit_date - String Date string of the latest commit commit_hash - String Hash of the latest commit """ if os.path.exists(repo_location): repo = Repo(repo_location) headcommit = repo.head.commit commit_date = time.strftime("%a, %d %b %Y %H:%M", time.gmtime(headcommit.committed_date)) commit_hash = headcommit.hexsha else: commit_date = 'repository not available' commit_hash = 'repository not available' return commit_date, commit_hash def printProgressBar(iteration, total, prefix = '', suffix = '', decimals = 0, length = 40, fill = '▒'): """ Call in a loop to create terminal progress bar Code from https://stackoverflow.com/questions/3173320/text-progress-bar-in-the-console Inputs: ------- iteration - Int Current iteration total - Int Total iterations prefix - Str (optional) Prefix string suffix - Str (optional) Suffix string decimals - Int (optional) Positive number of decimals in percent complete length - Int (optional) Character length of bar fill - Str (optional) Bar fill character Outputs: -------- None """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '░' * (length - filledLength) sys.stdout.write('\r%s %s %s%% %s' % (prefix, bar, percent, suffix)) sys.stdout.flush() if iteration == total: print()
#!/usr/bin/env python import sys from setuptools import find_packages, setup requirements = ['torch'] assert sys.version_info[0] == 3 if sys.version_info[1] < 7: requirements.append('dataclasses') dev_requirements = {'dev': ['mypy>=0.660', 'pycodestyle>=2.4.0']} test_requirements = ['pytest>=4.1.1'] setup( name='ML-ToolBox', version='0.1', description='ML ToolBox for PyTorch', author='Zonglin Li', author_email='[email protected]', url='https://github.com/zli117/ML-ToolBox', packages=find_packages(exclude=('test',)), install_requires=requirements, extras_require=dev_requirements, tests_require=test_requirements, classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ])
import os from meaningless.bible_base_extractor import BaseExtractor from meaningless.utilities import xml_file_interface class XMLExtractor(BaseExtractor): """ An base extractor object that retrieves Bible passages from an XML file """ def __init__(self, translation='NIV', show_passage_numbers=True, output_as_list=False, strip_excess_whitespace_from_list=False, default_directory=os.getcwd(), use_ascii_punctuation=False): super().__init__(xml_file_interface.read, translation, show_passage_numbers, output_as_list, strip_excess_whitespace_from_list, default_directory, use_ascii_punctuation, file_extension='.xml', read_key_as_string=True)
from sympy.core.numbers import RealNumber from ..syms import syms import numpy as np from sklearn.linear_model.base import LinearRegression from ..sym_predict import register_sym_predict def sym_predict_linear(estimator): if hasattr(estimator, 'intercept_'): expression = RealNumber(estimator.intercept_[0]) else: expression = RealNumber(0) symbols = syms(estimator) for coef, sym in zip(np.ravel(estimator.coef_), symbols): expression += RealNumber(coef) * sym return expression register_sym_predict(LinearRegression, sym_predict_linear)
import sys sys.path.append("../") from settings import (NES_PALETTE_HEX, animation_settings) from core import sprite ColScottOConnorWalkRight01 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "d":NES_PALETTE_HEX[0, 6], "l":NES_PALETTE_HEX[1, 6], "w":NES_PALETTE_HEX[3, 0], }, matrix = [ "x14b6x2", "x11b3d1l5b1x1", "x7b4d1l9b1", "x4b3d1l13b1", "x2b2d1l16b1", "x1b1d1l14w1l1w1l1b1", "b1d1l1d3l7d3l3w1b1x1", "x1b1d1b3d8w2d1l1b3x1", "x2b1x3b6d1w4d2b1x2", "x11b1d1w3d3b1x2", "x10b1d1w3d4b1x2", "x10b1d1w2d1w2d2b1x2", "x10b1d1w5d1l2b1x1", "x11b1d1w4d1l2b1x1", "x10b1d4w3d1b1x2", "x9b1d4w1d4b1x2", "x10b1d2w4d1b1x3", "x11b1d1w5d1b1x2", "x12b1d1w4d1b1x2", "x12b1d2w4b1x2", "x11b1d1w6b1x2", "x10b1d1w7b1x2", "x10b1d1w1d1w4b1x3", "x9b1d1l1d1w1d2w2b1x3", "x8b1d1l3d1w3b1x4", "x8b1d1l3d2b2x5", "x9b1d1l3d1b1x6", "x10b1d5b1x5", "x11b2d1l2b1x5", "x13b3x6", ] ) ColScottOConnorWalkRight02 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "d":NES_PALETTE_HEX[0, 6], "l":NES_PALETTE_HEX[1, 6], "w":NES_PALETTE_HEX[3, 0], }, matrix = [ "x15b5x5", "x13b2d1l4b1x4", "x11b2d1l7b1x3", "x9b2d1l9b1x3", "x7b2d1l11b1x3", "x4b3d1l9w1l1w1l1b1x3", "x1b3d1l9d3l2w1b1x4", "b1d1l10d4w1d2b1x2b2x1", "x1b1d4l4d2w1d2w3d1b1x1b1l2b1", "x2b4d4w2d3w3d1b3l2b1", "x6b2d1w3d3w4b1w2d1l1b1", "x8b1d1w1d5w7d1b1", "x9b1d6w6d1b1x1", "x10b2w2d4w3d1b1x2", "x10b1d4w1d4b1x4", "x9b1d7b3x5", "x9b1d2w2d4b1x6", "x7b2d1w5d2w2b1x5", "x5b2d2w6d2w2b1x5", "x2b3d2w7d2w4b1x4", "x1b1d3w1d1w7b1d1w4b1x4", "b1d1l2d1w8b2d1w5b1x3", "b1d1l2d1w1d1w5b1x1b1d1w5b1x3", "b1d1l2b1w1d1w4b1x3b1d1w3d1b1x3", "b1d1l1b3w1d1w1b2x4b1d4w1b1x3", "x1b2x3b3x6b1d1w3b1x4", "x16b1d3b1x4", "x17b1d1l2b1x3", "x17b1d1l3b1x2", "x17b6x2", ] ) ColScottOConnorWalkRight03 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "d":NES_PALETTE_HEX[0, 6], "l":NES_PALETTE_HEX[1, 6], "w":NES_PALETTE_HEX[3, 0], }, matrix = [ "x14b5x2", "x12b2d1l4b1x1", "x10b2d1l7b1", "x9b1d1l9b1", "x8b1d1l10b1", "x7b1d1l7w1l1w1l1b1", "x1b2x2b2d1l6d2l2w1b1x1", "b1d1l1b2d1l6d1w2d1l1b3x1", "x1b1d1l8d1w4d2b1x2", "x2b1d2l4d3w3d3b1x2", "x3b2d4b1d1w3d4b1x2", "x5b5d1w2d1w3b2x2", "x9b1d2w5l2b1x1", "x10b1w1d1w4l2b1x1", "x9b1d7b2x2", "x9b1d2w3d2b1x3", "x8b1d2w5b1x4", "x9b1d1w6b1x3", "x10b1d1w5b1x3", "x10b1d1w6b1x2", "x10b1d2w5b1x2", "x9b1d3w5b1x2", "x8b1d3w6b1x2", "x8b1d2w1d1w4b1x3", "x8b1d3w2d2w1b1x3", "x9b1d3w3b1x4", "x9b1d2l1d2b1x5", "x9b1d1l3b1x6", "x10b1l4b1x5", "x11b4x6", ] ) ColScottOConnorWalkRight04 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "d":NES_PALETTE_HEX[0, 6], "l":NES_PALETTE_HEX[1, 6], "w":NES_PALETTE_HEX[3, 0], }, matrix = [ "x16b4x5", "x13b3l4b1x4", "x11b2d1l7b1x3", "x8b3d1l9b1x3", "x6b2d1l12b1x3", "x4b2d1l10w1l1w1l1b1x3", "x1b3d1l9d3l2w1b1x4", "b1d1l10d2w2d1l1b3x4", "x1b1d5l3d2w5d2b1x2b2x1", "x2b5d3b1d1w4d3b1x1b1l2b1", "x7b4w2d6b2d1l2b1", "x9b1d1w1d1w3d2b1d2w1d2b1", "x9b1d1w5l2d1w5b1", "x9b1d2w4l2d2w3b1x1", "x10b1d3w2d4w1d2b1x1", "x9b1d6w1d4b2x2", "x9b1d3w5b3x4", "x7b2d1w1d2w6b1x5", "x5b2d2w3d2w6b1x4", "x4b1d2w6d1w6b1x4", "x3b1d1w8d1w7b1x3", "x2b1d2w7b2d1w6b1x3", "x1b1d1l2d1w5b1x1b1d1w7b1x2", "x1b1d1l2b1w4b1x2b1d1w6d1b1x2", "x1b1d1l1b1x1b4x4b1d1w3d2w1b1x2", "x2b2x10b1d1w1d2w2b2x2", "x15b1d1w3d1l1b1x2", "x16b1d3l3b1x1", "x17b2d1l4b1", "x18b1d4b1x1", "x19b4x2", ] ) KabukiQuantumFighterBG01 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "p":NES_PALETTE_HEX[0, 4], "o":NES_PALETTE_HEX[1, 7], "l":NES_PALETTE_HEX[2, 7], "g":NES_PALETTE_HEX[3, 11], }, matrix = [ "b16" + "b4p1o1l1o3b1p1b2p1b1", "b4p1b3p1b3p1b1p1b1" + "b1o1b2p1l1o3p1o1p1b4", "b2p1b13" + "b1o1b1p1o1l1o5p2b1p1b1", "b16" + "b1p1b1p1o2b1o2b1o2b4", "b5p1b5l1b4" + "b1p1b1p2b2o1p1b2p2b3", "b1p1b5p1b5p1b2" + "b1o1b1p1o1b2l1o1b2o1p1b1p1b1", "b5p1b5p1b4" + "b1o1b1o1p1b2l1o1b2o2b3", "b2o1b2p1b2p1b2p1b2p1b1" + "b5o1l1b2o2b3p1b1", "p1b1l1b5p1b5p1b1" + "b1o1b4o1b2o1b6", "b2o1b1p3b1p1b1o1l1o1b1p1b1" + "b1p1b2o1b2l1o1b2o1b2p1b1", "b16" + "b5o1b4o1b5", "b1p2o1p1b1p4b1p1l1p2b1" + "b1o1b1o1b1o1b4o1b3p1b1", "b16" + "b1p1b1l1b2o1b2o1b2p1b1p1b1", "b1p4b1p2o1p1b1p4b1" + "b1p1b1o2b2l1o1b2p2b3", "b16" + "b1p1b1l1o1b1l1o3b1o1p1b1p1b1", "b1l1p3b1p4b1p2o1p1b1" + "b1p1b1o2b1o1l1o1p1b1p1o1b3", "b16" + "b3o2b1o3p1b1o1p1b1p1b1", "b2p1b1o1l1o1b1p1b1p3b1p1b1" + "b1o1b1l1o1b1l1o3b1p1b2p1b1", "p1b1p1b5p1b5p1b1" + "b1o1b1o2b1o3p1b1p2b1p1b1", "b2p1b2p1b2p1b2o1b2p1b1" + "b1p1b1o2b1l1o3b1p2b3", "b5p1b5o1b4" + "b1p1b1o2b1o1l1o2b1o1p1b1p1b1", "b1p3b3p1o1p1b3p3" + "b1o1b1l1o1b1l1o2p1b1p1b2p1b1", "b5p1b5p1b4" + "b1p1b1o2b1l2o1p1b1o1p1b3", "b2o1b2p1b2p1b2p1b2p1b1" +"b4o1b1o1p1l1o1b1p1o1b1p1b1", "p1b1l1b5p1b5p1b1" + "b3p1b2p4b1p2b3", "b2o1b1p3b1p1b1o1l1o1b1p1b1" + "b1p1b2p1b2o1b1p1b1p1b2p1b1", "b16" + "b3p1b2p1b1p1b3p1b1p1b1", "b1p2o1p1b1p4b1p1l1p2b1" + "b1p1b1p1b12", "b16" + "b7p1b4p1b3", "b1p4b1p2o1p1b1p4b1" + "b16", "b16" + "b16", "b1g15" + "b1g15", ] ) KabukiQuantumFighterBG02 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "r":NES_PALETTE_HEX[2, 8], "l":NES_PALETTE_HEX[2, 9], "g":NES_PALETTE_HEX[1, 11], }, matrix = [ "b1g1b4g4b6" + "b16", "b1g1b1g1l1b1g2b1g1b2g1b3" + "b16", "b3g2b6g1b4" + "b16", "b1g1b1g1l1b1g2b1g1b1g2b1g1b1" + "b16", "b1g1b4l1g2b7" + "b16", "b1g1b1g1l1b1g2b1g1b2g1b1g1b1" + "b16", "b3g2b6g1b4" + "b16", "b1g1b1g1l1b1l1g2b2g1b2g1b1" + "b16", "b1g1b4g4b6" + "b16", "b1g1b1g1l1b1g2b1g1b2g1b3" + "b8g8", "b3g2b6g1b4" + "b8g1l1g1l2g2l1", "b1g1b1g1l1b1g2b1g1b1g2b1g1b1" + "b8g2b1g3b1g1", "b1g1b4l1g2b7" + "b8g1b1g2b2g2", "b1g1b1g1l1b1g2b1g1b2g1b1g1b1" + "b16", "b3g2b6g1b4" + "b16", "b1g1b1g1l1b1l1g2b2g1b2g1b1" + "b16", "b1g1b4g4b6" + "b16", "b1g1b1g1l1b1g2b1g1b2g1b3" + "b16", "b3g2b6g1b4" + "b16", "b1g1b1g1l1b1g2b1g1b1g2b1g1b1" + "b16", "b1g1b4l1g2b7" + "b16", "b1g1b1g1l1b1g2b1g1b2g1b1g1b1" + "b16", "b3g2b6g1b4" + "b16", "b1g1b1g1l1b1l1g2b2g1b2g1b1" + "b16", "b1g1b4g4b6" + "b16", "b1g1b1g1l1b1g2b1g1b2g1b3" + "b8g8", "b3g2b6g1b4" + "b8g1l1g1l2g2l1", "b1g1b1g1l1b1g2b1g1b1g2b1g1b1" + "b8g2b1g3b1g1", "b1g1b4l1g2b7" + "b8g1b1g2b2g2", "b1g1b1g1l1b1g2b1g1b2g1b1g1b1" + "b16", "b3g2b6g1b4" + "b16", "r16" + "r16", ] ) kabukiquantumfighter_animation = animation_settings( sprite_list=[[ColScottOConnorWalkRight01, ColScottOConnorWalkRight02, ColScottOConnorWalkRight03, ColScottOConnorWalkRight04], ], bg_sprites=[KabukiQuantumFighterBG01, KabukiQuantumFighterBG02,], xoffs=[[0, -1, 0, -1], ], yoffs=[[0, -1, 0, 0], ], frame_time=0.030, spbg_ratio=5, center=True, bg_scroll_speed=(1, 0), cycles_per_char=5, reversible="horizontal", )
"""Numerical timestepping methods for stochastic differential equation (SDE) systems.""" import sympy import symnum.numpy as snp import symnum.diffops.symbolic as diffops def euler_maruyama_step(drift_func, diff_coeff): """Construct Euler-Maruyama integrator step function.""" def forward_func(z, x, v, δ): return x + δ * drift_func(x, z) + δ ** 0.5 * diff_coeff(x, z) @ v return forward_func def milstein_step(drift_func, diff_coeff, noise_type="diagonal"): """Construct Milstein scheme step function.""" if noise_type in ("scalar", "diagonal"): def forward_func(z, x, v, δ): δω = snp.sqrt(δ) * v a = drift_func(x, z) B = diff_coeff(x, z) if noise_type == "diagonal": B_dB_dx = snp.array( [B[i, i] * B[i, i].diff(x[i]) for i in range(v.shape[0])] ) else: B_dB_dx = snp.array( [(B * B[i].diff(x)).sum() for i in range(x.shape[0])] ) x_ = x + δ * a + B @ δω + B_dB_dx * (δω ** 2 - δ) / 2 return snp.array([sympy.simplify(x_[i]) for i in range(x.shape[0])]) else: raise NotImplementedError(f"Noise type {noise_type} not implemented.") return forward_func def strong_order_1p5_step(drift_func, diff_coeff, noise_type="additive"): """Construct strong-order 1.5 Taylor scheme step function.""" if noise_type == "additive": def forward_func(z, x, v, δ): dim_noise = v.shape[0] // 2 δω = snp.sqrt(δ) * v[:dim_noise] δζ = δ * snp.sqrt(δ) * (v[:dim_noise] + v[dim_noise:] / snp.sqrt(3)) / 2 x_ = ( x + δ * drift_func(x, z) + diff_coeff(x, z) @ δω + (δ ** 2 / 2) * diffusion_operator(drift_func, diff_coeff)(drift_func)(x, z) + sum( Lj_operator(diff_coeff, j)(drift_func)(x, z) * δζ[j] for j in range(dim_noise) ) ) return snp.array([sympy.simplify(x_[i]) for i in range(x.shape[0])]) elif noise_type == "scalar": def forward_func(z, x, v, δ): δω = snp.sqrt(δ) * v[:1] δζ = δ * snp.sqrt(δ) * (v[:1] + v[1:] / snp.sqrt(3)) / 2 x_ = ( x + δ * drift_func(x, z) + diff_coeff(x, z) @ δω + Lj_operator(diff_coeff, 0)(diff_coeff)(x, z) @ (δω ** 2 - δ) / 2 + Lj_operator(diff_coeff, 0)(drift_func)(x, z) * δζ + diffusion_operator(drift_func, diff_coeff)( lambda x, z: diff_coeff(x, z)[:, 0] )(x, z) * (δω * δ - δζ) + (δ ** 2 / 2) * diffusion_operator(drift_func, diff_coeff)(drift_func)(x, z) + Lj_operator(diff_coeff, 0)(Lj_operator(diff_coeff, 0)(diff_coeff))( x, z ) @ (δω ** 3 / 3 - δ * δω) ) return snp.array([sympy.simplify(x_[i]) for i in range(x.shape[0])]) else: raise NotImplementedError(f"Noise type {noise_type} not implemented.") return forward_func def diffusion_operator(drift_func, diff_coeff): """Construct diffusion operator for autonomous Ito stochastic differential equation. Diffusion operator here refers to the partial differential operator which is the infintesimal generator of the stochastic process. Args: drift_func (Callable[[SymbolicArray, SymbolicArray], SymbolicArray]): Function defining drift term of diffusion, accepting symbolic state and parameter vectors (1D arrays) as arguments and returning a symbolic vector (1D array) drift term. diff_coeff (Callable[[SymbolicArray, SymbolicArray], SymbolicArray]): Function defining diffusion coefficient term, accepting symbolic state and parameter vectors (1D arrays) as arguments and returning a symbolic matrix (2D array) diffusion coefficient term. """ def _diffusion_operator(func): def diffusion_operator_func(x, z): a = drift_func(x, z) B = diff_coeff(x, z) return ( diffops.jacobian_vector_product(func)(x, z)(a) + diffops.matrix_hessian_product(func)(x, z)(B @ B.T) / 2 ) return diffusion_operator_func return _diffusion_operator def Lj_operator(diff_coeff, j=0): """Construct Lj operator for autonomous Ito stochastic differential equation. Lj operator here refers to the Lʲ partial differential operator defined in Equation 3.2 in Chapter 5 of Kloeden and Platen (1992) Lʲf(x) = ∑ₖ Bₖⱼ(x) ∂ₖf(x) Args: diff_coeff (Callable[[SymbolicArray, SymbolicArray], SymbolicArray]): Function defining diffusion coefficient term, accepting symbolic state and parameter vectors (1D arrays) as arguments and returning a symbolic matrix (2D array) diffusion coefficient term. j (int): Column index of diffusion coefficient term (zero-based). """ def Lj(func): def Lj_func(x, z): B = diff_coeff(x, z) return diffops.jacobian_vector_product(func)(x, z)(B[:, j]) return Lj_func return Lj
__author__ = 'lorenzo' import dtk import pickle import sentence_encoder import dataset_reader from tree import Tree import numpy class DatasetCreator: def __init__(self, file = "/Users/lorenzo/Documents/Universita/PHD/Lavori/DSTK/RTE/RTE3_dev_processed.xml.svm", dtk_params={"LAMBDA":1.0, "dimension":1024}, encoder_params=[1024, 1, "pos"]): self.file = file self.dtk_params = dtk_params self.encoder_params = encoder_params dt = dtk.DT(**dtk_params) #dir2 = "/Users/lorenzo/Documents/Universita/PHD/Lavori/DSTK/RTE" #file = "RTE3_dev_processed.xml.svm" #test = "RTE3_test_processed.xml" filename = "dtk " + str(sorted(list(dtk_params.items()))) filename2 = "encoder " + str(list(encoder_params)) try: D1 = pickle.load(open(filename, "rb")) self.D1 = D1 except: print("No file found for dtk, generating one") Data = dataset_reader.Dataset(self.file) trees = [Tree(string=pairs[0]) for pairs in Data.pairs] D1 = [] for t in trees[1:]: D1.append(dt.dt(t)) D1 = numpy.array(D1) pickle.dump(D1, open(filename, "wb")) self.D1 = D1 #raise try: self.D2 = pickle.load(open(filename2, "rb")) except: print("No file found for sentence encoder, generating one") Data = dataset_reader.Dataset(self.file) trees = [Tree(string=pairs[0]) for pairs in Data.pairs] D2 = [] for t in trees[1:]: D2.append(sentence_encoder.encoder(t.sentence, *encoder_params)) D2 = numpy.array(D2) pickle.dump(D2, open(filename2, "wb")) self.D2 = D2 #raise def get_d(self): return [self.D1, self.D2]
from decouple import config from flask import Flask, request from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = config('POSTGRES') db = SQLAlchemy(app) # entity needs to be placed after app and db is created from entity.output import Output from entity.input import Input # can be used to creade tables from the entity classes db.create_all() @app.route('/output') def show_output(): output = Output.query.all() results = [ { "id": res.id, "userId": res.user_id, "amount": res.amount, "note": res.note, "time_created": res.time_created } for res in output] return {"count": len(results), "output": results} @app.route('/input') def show_input(): input = Input.query.all() results = [ { "id": res.id, "userId": res.user_id, "amount": res.amount, "note": res.note, "time_created": res.time_created } for res in input] return {"count": len(results), "input": results} @app.route('/output/new', methods=['GET']) def new_output(): if 'user_id' and 'amount' in request.args: user_id = str(request.args.get('user_id')) amount = float(request.args.get('amount')) # note is optional, if no value present it will use an empty string note = str(request.args.get('note', '')) output = Output(user_id=user_id, amount=amount, note=note) db.session.add(output) db.session.commit() return 'Output created!' else: return "No User and/or amount provided!" @app.route('/input/new', methods=['GET']) def new_input(): if 'user_id' and 'amount' in request.args: user_id = str(request.args.get('user_id')) amount = float(request.args.get('amount')) # note is optional, if no value present it will use an empty string note = str(request.args.get('note', '')) input = Input(user_id=user_id, amount=amount, note=note) db.session.add(input) db.session.commit() return 'Input created!' else: return "No User and/or amount provided!" @app.route('/input/delete', methods=['GET']) def delete_input(): if 'id' in request.args: id = str(request.args.get('id')) Input.query.filter_by(id=id).delete() db.session.commit() return 'Input deleted!' else: return "No ID provided!" @app.route('/output/delete', methods=['GET']) def delete_output(): if 'id' in request.args: id = str(request.args.get('id')) Output.query.filter_by(id=id).delete() db.session.commit() return 'Output deleted!' else: return "No ID provided!" if __name__ == '__main__': app.run()
"""Diagnostics support for Synology DSM.""" from __future__ import annotations from synology_dsm.api.surveillance_station.camera import SynoCamera from homeassistant.components.diagnostics import async_redact_data from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_PASSWORD, CONF_USERNAME from homeassistant.core import HomeAssistant from .const import CONF_DEVICE_TOKEN, DOMAIN from .models import SynologyDSMData TO_REDACT = {CONF_USERNAME, CONF_PASSWORD, CONF_DEVICE_TOKEN} async def async_get_config_entry_diagnostics( hass: HomeAssistant, entry: ConfigEntry ) -> dict: """Return diagnostics for a config entry.""" data: SynologyDSMData = hass.data[DOMAIN][entry.unique_id] syno_api = data.api dsm_info = syno_api.dsm.information diag_data = { "entry": async_redact_data(entry.as_dict(), TO_REDACT), "device_info": { "model": dsm_info.model, "version": dsm_info.version_string, "ram": dsm_info.ram, "uptime": dsm_info.uptime, "temperature": dsm_info.temperature, }, "network": {"interfaces": {}}, "storage": {"disks": {}, "volumes": {}}, "surveillance_station": {"cameras": {}}, "upgrade": {}, "utilisation": {}, "is_system_loaded": True, "api_details": { "fetching_entities": syno_api._fetching_entities, # pylint: disable=protected-access }, } if syno_api.network is not None: intf: dict for intf in syno_api.network.interfaces: diag_data["network"]["interfaces"][intf["id"]] = { # type: ignore[index] "type": intf["type"], "ip": intf["ip"], } if syno_api.storage is not None: disk: dict for disk in syno_api.storage.disks: diag_data["storage"]["disks"][disk["id"]] = { # type: ignore[index] "name": disk["name"], "vendor": disk["vendor"], "model": disk["model"], "device": disk["device"], "temp": disk["temp"], "size_total": disk["size_total"], } volume: dict for volume in syno_api.storage.volumes: diag_data["storage"]["volumes"][volume["id"]] = { # type: ignore[index] "name": volume["fs_type"], "size": volume["size"], } if syno_api.surveillance_station is not None: camera: SynoCamera for camera in syno_api.surveillance_station.get_all_cameras(): diag_data["surveillance_station"]["cameras"][camera.id] = { # type: ignore[index] "name": camera.name, "is_enabled": camera.is_enabled, "is_motion_detection_enabled": camera.is_motion_detection_enabled, "model": camera.model, "resolution": camera.resolution, } if syno_api.upgrade is not None: diag_data["upgrade"] = { "update_available": syno_api.upgrade.update_available, "available_version": syno_api.upgrade.available_version, "reboot_needed": syno_api.upgrade.reboot_needed, "service_restarts": syno_api.upgrade.service_restarts, } if syno_api.utilisation is not None: diag_data["utilisation"] = { "cpu": syno_api.utilisation.cpu, "memory": syno_api.utilisation.memory, "network": syno_api.utilisation.network, } return diag_data
# Copyright 2018-2021 The glTF-Blender-IO authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import bpy import typing from io_scene_gltf2_msfs.io.com import gltf2_io from io_scene_gltf2_msfs.blender.exp.gltf2_blender_gather_cache import cached from io_scene_gltf2_msfs.blender.exp import gltf2_blender_gather_nodes from io_scene_gltf2_msfs.blender.exp import gltf2_blender_gather_joints from io_scene_gltf2_msfs.blender.exp import gltf2_blender_gather_skins from io_scene_gltf2_msfs.io.exp.gltf2_io_user_extensions import export_user_extensions @cached def gather_animation_channel_target( channels: typing.Tuple[bpy.types.FCurve], blender_object: bpy.types.Object, bake_bone: typing.Union[str, None], bake_channel: typing.Union[str, None], driver_obj, export_settings, ) -> gltf2_io.AnimationChannelTarget: animation_channel_target = gltf2_io.AnimationChannelTarget( extensions=__gather_extensions( channels, blender_object, export_settings, bake_bone ), extras=__gather_extras(channels, blender_object, export_settings, bake_bone), node=__gather_node( channels, blender_object, export_settings, bake_bone, driver_obj ), path=__gather_path( channels, blender_object, export_settings, bake_bone, bake_channel ), ) export_user_extensions( "gather_animation_channel_target_hook", export_settings, animation_channel_target, channels, blender_object, bake_bone, bake_channel, ) return animation_channel_target def __gather_extensions( channels: typing.Tuple[bpy.types.FCurve], blender_object: bpy.types.Object, export_settings, bake_bone: typing.Union[str, None], ) -> typing.Any: return None def __gather_extras( channels: typing.Tuple[bpy.types.FCurve], blender_object: bpy.types.Object, export_settings, bake_bone: typing.Union[str, None], ) -> typing.Any: return None def __gather_node( channels: typing.Tuple[bpy.types.FCurve], blender_object: bpy.types.Object, export_settings, bake_bone: typing.Union[str, None], driver_obj, ) -> gltf2_io.Node: if driver_obj is not None: return gltf2_blender_gather_nodes.gather_node( driver_obj, driver_obj.library.name if driver_obj.library else None, None, None, export_settings, ) if blender_object.type == "ARMATURE": # TODO: get joint from fcurve data_path and gather_joint if bake_bone is not None: blender_bone = blender_object.pose.bones[bake_bone] else: blender_bone = blender_object.path_resolve( channels[0].data_path.rsplit(".", 1)[0] ) if isinstance(blender_bone, bpy.types.PoseBone): if export_settings["gltf_def_bones"] is False: obj = blender_object.proxy if blender_object.proxy else blender_object return gltf2_blender_gather_joints.gather_joint( obj, blender_bone, export_settings ) else: bones, _, _ = gltf2_blender_gather_skins.get_bone_tree( None, blender_object ) if blender_bone.name in [b.name for b in bones]: obj = ( blender_object.proxy if blender_object.proxy else blender_object ) return gltf2_blender_gather_joints.gather_joint( obj, blender_bone, export_settings ) return gltf2_blender_gather_nodes.gather_node( blender_object, blender_object.library.name if blender_object.library else None, None, None, export_settings, ) def __gather_path( channels: typing.Tuple[bpy.types.FCurve], blender_object: bpy.types.Object, export_settings, bake_bone: typing.Union[str, None], bake_channel: typing.Union[str, None], ) -> str: if bake_channel is None: # Note: channels has some None items only for SK if some SK are not animated target = [c for c in channels if c is not None][0].data_path.split(".")[-1] else: target = bake_channel path = { "delta_location": "translation", "delta_rotation_euler": "rotation", "location": "translation", "rotation_axis_angle": "rotation", "rotation_euler": "rotation", "rotation_quaternion": "rotation", "scale": "scale", "value": "weights", }.get(target) if target is None: return None return path
import smartpy as sp class SoccerBetFactory(sp.Contract): def __init__(self, admin): self.init( admin=admin, games=sp.map(tkey=sp.TInt), archived_games = sp.map(tkey = sp.TInt), remainder=sp.tez(0) ) @sp.entry_point def new_game(self, params): sp.verify_equal(sp.sender, self.data.admin,message="Error: you cannot initialize a new game") sp.verify(~ self.data.games.contains(params.game_id),message="Error: this game id already exists") self.data.games[params.game_id] = sp.record( team_a=params.team_a, team_b=params.team_b, status=sp.int(0), match_timestamp = params.match_timestamp, outcome=sp.int(-1), total_bet_amount=sp.tez(0), bet_amount_on=sp.record(team_a=sp.tez(0), team_b=sp.tez(0), tie=sp.tez(0)), redeemed=sp.int(0), bets_by_choice=sp.record(team_a=sp.int(0), team_b=sp.int(0), tie=sp.int(0)), bet_amount_by_user=sp.map(tkey=sp.TAddress, tvalue=sp.TRecord(timestamp=sp.TTimestamp,team_a=sp.TMutez,team_b=sp.TMutez, tie=sp.TMutez)), jackpot=sp.tez(0) ) @sp.entry_point def bet_on_team_a(self, game_id): self.add_bet(sp.record(game_id=game_id, choice=sp.int(0))) @sp.entry_point def bet_on_team_b(self, game_id): self.add_bet(sp.record(game_id=game_id, choice=sp.int(1))) @sp.entry_point def bet_on_tie(self, game_id): self.add_bet(sp.record(game_id=game_id, choice=sp.int(2))) @sp.private_lambda(with_storage="read-write", with_operations=False, wrap_call=True) def add_bet(self, params): sp.verify(self.data.games.contains(params.game_id)) game = self.data.games[params.game_id] sp.verify(sp.now < game.match_timestamp,message = "Error, you cannot place a bet anymore") bet_by_user=game.bet_amount_by_user[sp.sender] sp.if ~game.bet_amount_by_user.contains(sp.sender): game.bet_amount_by_user[sp.sender] = sp.record( timestamp=sp.now, team_a=sp.tez(0), team_b=sp.tez(0), tie=sp.tez(0)) sp.if params.choice == 0: bet_by_user.team_a += sp.amount game.bet_amount_on.team_a += sp.amount game.bets_by_choice.team_a += sp.int(1) sp.if params.choice == 1: bet_by_user.team_b += sp.amount game.bet_amount_on.team_b += sp.amount game.bets_by_choice.team_b += sp.int(1) sp.if params.choice == 2: bet_by_user.tie += sp.amount game.bet_amount_on.tie += sp.amount game.bets_by_choice.tie += sp.int(1) game.total_bet_amount = game.bet_amount_on.team_a + game.bet_amount_on.team_b + game.bet_amount_on.tie @sp.entry_point def unbet_on_team_a(self, game_id): self.remove_bet(sp.record(game_id=game_id, choice=sp.int(0))) @sp.entry_point def unbet_on_team_b(self, game_id): self.remove_bet(sp.record(game_id=game_id, choice=sp.int(1))) @sp.entry_point def unbet_on_tie(self, game_id): self.remove_bet(sp.record(game_id=game_id, choice=sp.int(2))) @sp.entry_point def unbet_all(self, game_id): self.remove_bet(sp.record(game_id=game_id, choice=sp.int(-1))) @sp.private_lambda(with_storage="read-write", with_operations=True, wrap_call=True) def remove_bet(self, params): sp.verify(self.data.games.contains(params.game_id),message="Error: this match does not exist") game = self.data.games[params.game_id] sp.verify(game.bet_amount_by_user.contains(sp.sender),message="Error: you do not have any bets to remove") sp.verify(sp.now < game.match_timestamp, message = "Error, you cannot remove a bet anymore") amount_to_send = sp.local("amount_to_send", sp.tez(0)) bet_by_user = game.bet_amount_by_user[sp.sender] one_day = sp.int(86000) service_fee = sp.local("service_fee", sp.tez(0)) fee_multiplier = sp.local("fee_multiplier", sp.nat(0)) time_diff = sp.local("time_diff", sp.int(0)) time_diff.value = self.data.games[params.game_id].match_timestamp - bet_by_user.timestamp sp.if time_diff.value < one_day: time_diff.value = sp.fst(sp.ediv(time_diff.value,3600).open_some()) fee_multiplier.value = sp.as_nat(2000-sp.mul(83,time_diff.value)) sp.if params.choice == 0: sp.verify(bet_by_user.team_a > sp.tez(0), message="Error: you have not placed any bets on this outcome") game.bet_amount_on.team_a -= bet_by_user.team_a amount_to_send.value = bet_by_user.team_a self.data.games[params.game_id].bets_by_choice.team_a -= sp.int(1) service_fee.value = sp.mul(fee_multiplier.value, bet_by_user.team_a) bet_by_user.team_a = sp.tez(0) sp.if params.choice == 1: sp.verify(bet_by_user.team_b > sp.tez(0), message="Error: you have not placed any bets on this outcome") game.bet_amount_on.team_b -= bet_by_user.team_b amount_to_send.value = bet_by_user.team_b self.data.games[params.game_id].bets_by_choice.team_b -= sp.int(1) service_fee.value = sp.mul(fee_multiplier.value, bet_by_user.team_b) bet_by_user.team_b = sp.tez(0) sp.if params.choice == 2: sp.verify(bet_by_user.tie > sp.tez(0), message="Error: you have not placed any bets on this outcome") game.bet_amount_on.tie -= bet_by_user.tie amount_to_send.value = bet_by_user.tie self.data.games[params.game_id].bets_by_choice.tie -= sp.int(1) service_fee.value = sp.mul(fee_multiplier.value, bet_by_user.tie) bet_by_user.tie = sp.tez(0) sp.if params.choice == -1: sp.if bet_by_user.team_a>sp.tez(0): game.bet_amount_on.team_a -= bet_by_user.team_a amount_to_send.value = bet_by_user.team_a self.data.games[params.game_id].bets_by_choice.team_a -= sp.int(1) sp.if bet_by_user.team_b>sp.tez(0): game.bet_amount_on.team_b -= bet_by_user.team_b amount_to_send.value += bet_by_user.team_b self.data.games[params.game_id].bets_by_choice.team_b -= sp.int(1) sp.if bet_by_user.tie>sp.tez(0): game.bet_amount_on.tie -= bet_by_user.tie amount_to_send.value += bet_by_user.tie self.data.games[params.game_id].bets_by_choice.tie -= sp.int(1) service_fee.value = sp.mul(fee_multiplier.value, bet_by_user.team_a+bet_by_user.team_b+bet_by_user.tie) bet_by_user.team_a = sp.tez(0) bet_by_user.team_b = sp.tez(0) bet_by_user.tie = sp.tez(0) sp.if time_diff.value < one_day: service_fee.value = sp.split_tokens(service_fee.value, 1, 10000) game.jackpot+=service_fee.value sp.send(sp.sender, amount_to_send.value - service_fee.value) game.total_bet_amount = game.bet_amount_on.team_a + game.bet_amount_on.team_b + game.bet_amount_on.tie sp.if (bet_by_user.team_a == sp.mutez(0)) & (bet_by_user.team_b == sp.tez(0)) & (bet_by_user.tie == sp.tez(0)): del game.bet_amount_by_user[sp.sender] @sp.private_lambda(with_storage="read-write", with_operations=False, wrap_call=True) def archive_game(self, params): sp.verify(self.data.games.contains(params.game_id), message = "Error: this match does not exist") game = self.data.games[params.game_id] sp.verify(game.outcome!=-1, message = "Error: current game is already archived") self.data.archived_games[params.game_id] = game @sp.entry_point def redeem_tez(self, game_id): sp.verify(self.data.games.contains(game_id),message="Error: this match does not exist anymore!") game = self.data.games[game_id] sp.verify(game.bet_amount_by_user.contains(sp.sender),message="Error: you did not place a bet on this match") sp.verify(game.outcome != -1, message = "Error, you cannot redeem your winnings yet") bet_by_user = game.bet_amount_by_user[sp.sender] total_bet_by_user=bet_by_user.team_a + bet_by_user.team_b + bet_by_user.tie sp.verify((game.outcome == sp.int(10)) | ((game.outcome == sp.int(0)) & (bet_by_user.team_a > sp.tez(0))) | ((game.outcome == sp.int(1)) & (bet_by_user.team_b > sp.tez(0))) | ((game.outcome == sp.int(2)) & (bet_by_user.tie > sp.tez(0))), message="Error: you have lost your bet! :(") amount_to_send = sp.local("amount_to_send", sp.tez(0)) jackpot_share = sp.local("jackpot_share", sp.tez(0)) repayment_allowed=sp.bool(False) # If a game is postponed or delayed, each player gets his money back sp.if game.outcome == sp.int(10): amount_to_send.value = bet_by_user.team_a + bet_by_user.team_b + bet_by_user.tie jackpot_share.value+=sp.split_tokens(game.jackpot,sp.utils.mutez_to_nat(bet_by_user.team_a+bet_by_user.team_b+bet_by_user.tie),sp.utils.mutez_to_nat(game.total_bet_amount)) bet_by_user.team_a = sp.tez(0) bet_by_user.team_b = sp.tez(0) bet_by_user.tie = sp.tez(0) sp.if game.outcome == sp.int(0): sp.if game.bet_amount_on.team_a>sp.tez(0): amount_to_send.value = sp.split_tokens(bet_by_user.team_a, sp.utils.mutez_to_nat(game.total_bet_amount), sp.utils.mutez_to_nat(game.bet_amount_on.team_a)) jackpot_share.value+=sp.split_tokens(game.jackpot,sp.utils.mutez_to_nat(bet_by_user.team_a),sp.utils.mutez_to_nat(game.bet_amount_on.team_a)) bet_by_user.team_a = sp.tez(0) sp.else: amount_to_send.value=total_bet_by_user jackpot_share.value+=sp.split_tokens(game.jackpot,sp.utils.mutez_to_nat(total_bet_by_user),sp.utils.mutez_to_nat(game.total_bet_amount)) bet_by_user.team_b=sp.tez(0) bet_by_user.tie=sp.tez(0) repayment_allowed=True sp.if game.outcome == sp.int(1): sp.if game.bet_amount_on.team_b>sp.tez(0): amount_to_send.value = sp.split_tokens(bet_by_user.team_b, sp.utils.mutez_to_nat(game.total_bet_amount), sp.utils.mutez_to_nat(game.bet_amount_on.team_b)) jackpot_share.value+=sp.split_tokens(game.jackpot,sp.utils.mutez_to_nat(bet_by_user.team_b),sp.utils.mutez_to_nat(game.bet_amount_on.team_b)) bet_by_user.team_b = sp.tez(0) sp.else: amount_to_send.value=total_bet_by_user jackpot_share.value+=sp.split_tokens(game.jackpot,sp.utils.mutez_to_nat(total_bet_by_user),sp.utils.mutez_to_nat(game.total_bet_amount)) bet_by_user.team_a=sp.tez(0) bet_by_user.tie=sp.tez(0) repayment_allowed=True sp.if game.outcome == sp.int(2): sp.if game.bet_amount_on.tie>sp.tez(0): amount_to_send.value = sp.split_tokens(bet_by_user.tie, sp.utils.mutez_to_nat(game.total_bet_amount), sp.utils.mutez_to_nat(game.bet_amount_on.tie)) jackpot_share.value+=sp.split_tokens(game.jackpot,sp.utils.mutez_to_nat(bet_by_user.tie),sp.utils.mutez_to_nat(game.bet_amount_on.tie)) bet_by_user.tie = sp.tez(0) sp.else: amount_to_send.value=total_bet_by_user jackpot_share.value+=sp.split_tokens(game.jackpot,sp.utils.mutez_to_nat(total_bet_by_user),sp.utils.mutez_to_nat(game.total_bet_amount)) bet_by_user.team_a=sp.tez(0) bet_by_user.team_b=sp.tez(0) repayment_allowed=True game.jackpot-=jackpot_share.value sp.send(sp.sender, amount_to_send.value+jackpot_share.value) game.redeemed += 1 sp.if (bet_by_user.team_a == sp.mutez(0)) & (bet_by_user.team_b == sp.tez(0)) & (bet_by_user.tie == sp.tez(0)): del game.bet_amount_by_user[sp.sender] sp.if repayment_allowed==False: sp.if (game.outcome == sp.int(0)) & (game.redeemed == game.bets_by_choice.team_a): del self.data.games[game_id] sp.else: sp.if (game.outcome == sp.int(1)) & (game.redeemed == game.bets_by_choice.team_b): del self.data.games[game_id] sp.else: sp.if (game.outcome == sp.int(2)) & (game.redeemed == game.bets_by_choice.tie): del self.data.games[game_id] sp.else: sp.if sp.len(game.bet_amount_by_user)==0: del self.data.games[game_id] # Below entry points mimick the future oracle behaviour and are not meant to stay @sp.entry_point def set_outcome(self, params): sp.verify_equal(self.data.games[params.game_id].outcome, -1, "Error: current game outcome has already been set") sp.verify_equal(sp.sender, self.data.admin, message = "Error: you cannot update the game status") sp.verify((params.choice == 0) | (params.choice == 1) | (params.choice == 2) | (params.choice == 10), message = "Error: entered value must be comprised in {0;1;2}") sp.verify(self.data.games.contains(params.game_id), message = "Error: this match does not exist") game = self.data.games[params.game_id] sp.if params.choice != 10: sp.verify(sp.now > game.match_timestamp, message = "Error: match has not started yet") game.outcome = params.choice sp.if (game.bet_amount_on.team_a == sp.tez(0)) & (game.bet_amount_on.team_b == sp.tez(0)) & (game.bet_amount_on.tie == sp.tez(0)): sp.if game.jackpot>sp.tez(0): self.data.remainder+=game.jackpot game.jackpot=sp.tez(0) del self.data.games[params.game_id] sp.else: self.archive_game(params) # Above entry points mimick the future oracle behaviour and are not meant to stay @sp.add_test(name="Test Match Contract") def test(): scenario = sp.test_scenario() admin = sp.test_account("Admin") alice = sp.test_account("Alice") bob = sp.test_account("Bob") gabriel = sp.test_account("Gabriel") eloi = sp.test_account("Eloi") pierre_antoine = sp.test_account("Pierre-Antoine") victor = sp.test_account("Victor") jean_francois = sp.test_account("Jean-Francois") mathis = sp.test_account("Mathis") enguerrand = sp.test_account("Enguerrand") hennequin = sp.test_account("Hennequin") berger = sp.test_account("Berger") levillain = sp.test_account("Levillain") olivier = sp.test_account("Olivier") pascal = sp.test_account("Pascal") game1 = 1 factory = SoccerBetFactory(admin.address) scenario += factory scenario.h1("Testing game initialization") scenario += factory.new_game(sp.record( game_id=game1, team_a="France", team_b="Angleterre", match_timestamp = sp.timestamp_from_utc(2022, 1, 1, 1, 1, 1) )).run(sender=admin) game2 = 2 scenario += factory.new_game(sp.record( game_id=game2, team_a="Nice", team_b="Marseille", match_timestamp = sp.timestamp_from_utc(2022, 1, 1, 1, 1, 1) )).run(sender=admin) game3 = 3 scenario += factory.new_game(sp.record( game_id=game3, team_a="Lorient", team_b="Vannes", match_timestamp = sp.timestamp_from_utc(2022, 1, 1, 1, 1, 1) )).run(sender=admin) game5 = 5 scenario += factory.new_game(sp.record( game_id=game5, team_a="Olympique Lyonnais", team_b="PSG", match_timestamp = sp.timestamp_from_utc(2022, 1, 1, 1, 1, 1) )).run(sender=admin) game6 = 6 scenario += factory.new_game(sp.record( game_id=game6, team_a="Luxembourg", team_b="Malte", match_timestamp = sp.timestamp_from_utc(2022, 1, 1, 1, 1, 1) )).run(sender=admin) game7 = 7 scenario += factory.new_game(sp.record( game_id=game7, team_a="Irlande", team_b="Ecosse", match_timestamp = sp.timestamp_from_utc(2022, 1, 1, 1, 1, 40) )).run(sender=admin) game8 = 8 scenario += factory.new_game(sp.record( game_id=game8, team_a="Allemagne", team_b="Pologne", match_timestamp = sp.timestamp_from_utc(2022, 1, 1, 1, 1, 3) )).run(sender=admin) scenario.h1("Testing bet placing") # Betting on game 1 scenario += factory.bet_on_team_a(game1).run( sender=pierre_antoine.address, amount=sp.tez(2000)) scenario += factory.bet_on_team_b(game1).run( sender=victor.address, amount=sp.tez(5000)) scenario += factory.bet_on_team_a(game1).run(sender=alice.address, amount=sp.tez(100), now=sp.timestamp_from_utc(2022, 1, 1, 1, 1, 0)) scenario += factory.bet_on_team_b(game1).run( sender=mathis.address, amount=sp.tez(1000)) scenario += factory.bet_on_tie(game1).run( sender=bob.address,amount=sp.tez(2000)) # Betting on game 2 scenario += factory.bet_on_team_b(game2).run( sender=mathis.address, amount=sp.tez(7500)) scenario += factory.bet_on_team_b(game2).run( sender=enguerrand.address, amount=sp.tez(500)) scenario += factory.bet_on_team_b(game2).run( sender=alice.address, amount=sp.tez(1000)) scenario += factory.bet_on_team_b(game2).run( sender=bob.address, amount=sp.tez(1000)) scenario += factory.bet_on_team_a(game2).run( sender=gabriel.address, amount=sp.tez(10000)) # Betting on game 3 scenario += factory.bet_on_team_a(game3).run( sender = alice.address, amount=sp.tez(3000), now = sp.timestamp(1546297200)) scenario += factory.bet_on_team_b(game3).run( sender = bob.address, amount = sp.tez(1000), now = sp.timestamp(1546297200)) scenario += factory.bet_on_team_b(game3).run( sender = eloi.address, amount = sp.tez(2000), now = sp.timestamp(1546297200)) scenario += factory.bet_on_team_a(game3).run( sender = gabriel.address, amount = sp.tez(4000), now = sp.timestamp(1546297200)) scenario += factory.bet_on_team_a(game3).run( sender = levillain.address, amount = sp.tez(4000), now = sp.timestamp(1546297200)) scenario += factory.bet_on_team_a(game3).run( sender = pascal.address, amount = sp.tez(4000), now = sp.timestamp(1546297200)) scenario += factory.bet_on_team_a(game3).run( sender = olivier.address, amount = sp.tez(4000), now = sp.timestamp(1546297200)) # Betting on game 5 scenario += factory.bet_on_team_b(game5).run(sender=mathis.address, amount=sp.tez(100), now=sp.timestamp_from_utc(2022, 1, 1, 1, 1, 0)) scenario += factory.unbet_on_team_b(game5).run(sender=mathis.address) scenario += factory.bet_on_tie(game5).run(sender=mathis.address, amount=sp.tez(7500)) scenario += factory.bet_on_team_a(game5).run(sender=enguerrand.address, amount=sp.tez(500)) scenario += factory.bet_on_team_b(game5).run(sender=enguerrand.address, amount=sp.tez(2500)) # Testing an outcome cannot be set twice scenario += factory.set_outcome(sp.record( game_id = game1, choice = 2, )).run(sender = admin.address, valid=False) scenario.h1("Testing bet removal") scenario += factory.unbet_on_tie(game1).run(sender=bob.address) scenario.h1("Testing outcome") scenario += factory.set_outcome(sp.record(game_id = game1, choice = 1)).run(sender=admin.address, now = sp.timestamp(1640998862)) scenario += factory.set_outcome(sp.record(game_id = game2, choice = 1)).run(sender=admin.address, now = sp.timestamp(1640998862)) # Testing the deletion of games with no bet records scenario += factory.set_outcome(sp.record(game_id = game6, choice = 1)).run(sender=admin.address, now = sp.timestamp(1640998862)) # Testing cancelled/postponed outcome scenario += factory.set_outcome(sp.record(game_id = game5, choice = 10)).run(sender=admin.address, now = sp.timestamp(1640998862)) scenario.h1("Testing losers can recover their bet amount when there is no bet on the actual outcome") # scenario += factory.bet_on_team_a(game8).run(sender=enguerrand.address, amount=sp.tez(2500), now=sp.timestamp_from_utc(2022, 1, 1, 1, 1, 1)) # scenario += factory.set_outcome(sp.record(game_id = game8, choice = 1)).run(sender=admin.address, now=sp.timestamp_from_utc(2022, 1, 1, 1, 1, 3)) # scenario += factory.redeem_tez(game8).run(sender=enguerrand.address, now=sp.timestamp_from_utc(2022, 1, 1, 1, 1, 4)) scenario.h1("Testing players can remove all their bets at once") scenario += factory.bet_on_team_a(game8).run(sender=enguerrand.address, amount=sp.tez(2500), now=sp.timestamp_from_utc(2022, 1, 1, 1, 1, 1)) scenario += factory.bet_on_team_b(game8).run(sender=enguerrand.address, amount=sp.tez(2500), now=sp.timestamp_from_utc(2022, 1, 1, 1, 1, 1)) scenario += factory.bet_on_tie(game8).run(sender=enguerrand.address, amount=sp.tez(2500), now=sp.timestamp_from_utc(2022, 1, 1, 1, 1, 1)) scenario += factory.unbet_all(game8).run(sender=enguerrand.address, now=sp.timestamp_from_utc(2022, 1, 1, 1, 1, 2)) scenario.h1("Testing contract's remainder increase when no-bet games are deleted") scenario += factory.bet_on_team_b(game7).run(sender=enguerrand.address, amount=sp.tez(2500), now=sp.timestamp_from_utc(2022, 1, 1, 1, 1, 1)) scenario += factory.unbet_on_team_b(game7).run(sender=enguerrand.address, now=sp.timestamp_from_utc(2022, 1, 1, 1, 1, 20)) scenario += factory.set_outcome(sp.record(game_id = game7, choice = 1)).run(sender=admin.address, now=sp.timestamp_from_utc(2022, 1, 1, 1, 1, 59)) scenario.verify(factory.data.remainder>sp.tez(0)) scenario.h1("Testing winnings withdrawal ") scenario += factory.redeem_tez(game1).run(sender=mathis.address) scenario += factory.redeem_tez(game1).run(sender=victor.address) scenario += factory.redeem_tez(game2).run(sender=alice.address) scenario += factory.redeem_tez(game2).run(sender=mathis.address) scenario += factory.redeem_tez(game2).run(sender=enguerrand.address) # Testing Bob can redeem a winning bet while having lost another one scenario += factory.redeem_tez(game2).run(sender=bob.address) # Testing Alice cannot redeem gains from a game she did not bet on scenario += factory.redeem_tez(game1).run(sender=alice.address, valid=False) # Testing Pierre-Antoine cannot redeem gains from a bet he lost scenario += factory.redeem_tez(game1).run(sender=pierre_antoine.address, valid=False) # Testing players can recover their bet amount when a game is cancelled/postponed scenario += factory.redeem_tez(game5).run(sender=mathis.address) scenario += factory.redeem_tez(game5).run(sender=enguerrand.address) scenario.h1("Setting outcome but match has not started") scenario += factory.set_outcome(sp.record( game_id=game2, choice=2, )).run(sender=admin.address, valid=False) scenario += factory.set_outcome(sp.record( game_id=game1, choice=2, )).run(sender=admin.address, valid=False)
# Generated by Django 2.2.1 on 2019-05-01 16:13 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('mapper', '0002_auto_20190430_2053'), ] operations = [ migrations.CreateModel( name='Peptide', fields=[ ('sequence', models.CharField(max_length=64, primary_key=True, serialize=False)), ('requests', models.IntegerField()), ], ), migrations.CreateModel( name='Region', fields=[ ('id', models.CharField(max_length=10, primary_key=True, serialize=False)), ('chromosome', models.CharField(max_length=3)), ('start', models.IntegerField()), ('end', models.IntegerField()), ('strand', models.IntegerField()), ], ), migrations.CreateModel( name='SpanGroup', fields=[ ('id', models.CharField(max_length=10, primary_key=True, serialize=False)), ('chromosome', models.CharField(max_length=3)), ('start', models.IntegerField()), ('end', models.IntegerField()), ], ), migrations.CreateModel( name='SpanGroup_Regions', fields=[ ('id', models.CharField(max_length=10, primary_key=True, serialize=False)), ('region', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='mapper.Region')), ('span_group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='mapper.SpanGroup')), ], ), migrations.CreateModel( name='Peptide_SpanGroups', fields=[ ('id', models.CharField(max_length=10, primary_key=True, serialize=False)), ('peptide', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='mapper.Peptide')), ('span_group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='mapper.SpanGroup')), ], ), ]
from .abt_buy import AbtBuyBenchmark # noqa: F401 from .amazon_google import AmazonGoogleBenchmark # noqa: F401 from .beer import BeerBenchmark # noqa: F401 from .company import CompanyBenchmark # noqa: F401 from .dblp_acm_structured import DBLP_ACM_StructuredBenchmark # noqa: F401 from .dblp_scholar_structured import DBLPScholarStructuredBenchmark # noqa: F401 from .fodors_zagats import FodorsZagatsBenchmark # noqa: F401 from .itunes_amazon_structured import ITunesAmazonStructuredBenchmark # noqa: F401 from .walmart_amazon_structured import WalmartAmazonStructuredBenchmark # noqa: F401
import time import ipaddress from nubia import command, argument import pandas as pd from suzieq.cli.sqcmds.command import SqCommand from suzieq.sqobjects.routes import RoutesObj @command("route", help="Act on Routes") class RouteCmd(SqCommand): def __init__( self, engine: str = "", hostname: str = "", start_time: str = "", end_time: str = "", view: str = "latest", namespace: str = "", format: str = "", query_str: str = ' ', columns: str = "default", ) -> None: super().__init__( engine=engine, hostname=hostname, start_time=start_time, end_time=end_time, view=view, namespace=namespace, columns=columns, format=format, query_str=query_str, sqobj=RoutesObj, ) self.json_print_handler = self._json_print_handler def _json_print_handler(self, input): """This handler calls the code to print the IPNetwork as a string""" if isinstance(input, ipaddress.IPv4Network): return ipaddress.IPv4Network.__str__(input) elif isinstance(input, ipaddress.IPv6Network): return ipaddress.IPv6Network.__str__(input) return input def _get_ipvers(self, value: str) -> int: """Return the IP version in use""" if ':' in value: ipvers = 6 elif '.' in value: ipvers = 4 else: ipvers = '' return ipvers @command("show") @argument("prefix", description="Prefix, in quotes, to filter show on") @argument("vrf", description="VRF to qualify") @argument("protocol", description="routing protocol to qualify") @argument("prefixlen", description="must be of the form " "[<|<=|>=|>|!] length") def show(self, prefix: str = "", vrf: str = '', protocol: str = "", prefixlen: str = ""): """ Show Routes info """ if self.columns is None: return # Get the default display field names now = time.time() if self.columns != ["default"]: self.ctxt.sort_fields = None else: self.ctxt.sort_fields = [] df = self._invoke_sqobj(self.sqobj.get, hostname=self.hostname, prefix=prefix.split(), vrf=vrf.split(), protocol=protocol.split(), columns=self.columns, namespace=self.namespace, prefixlen=prefixlen, query_str=self.query_str, ) self.ctxt.exec_time = "{:5.4f}s".format(time.time() - now) return self._gen_output(df) @command("summarize") @argument("vrf", description="VRF to qualify") def summarize(self, vrf: str = ''): """ Show Routes info """ # Get the default display field names now = time.time() df = self._invoke_sqobj(self.sqobj.summarize, hostname=self.hostname, vrf=vrf.split(), namespace=self.namespace, query_str=self.query_str, ) self.ctxt.exec_time = "{:5.4f}s".format(time.time() - now) return self._gen_output(df, json_orient='columns') @command('lpm') @argument("address", description="IP Address, in quotes, for lpm query") @argument("vrf", description="specific VRF to qualify") def lpm(self, address: str = '', vrf: str = ''): """ Show the Longest Prefix Match on a given prefix, vrf """ if self.columns is None: return now = time.time() if self.columns != ["default"]: self.ctxt.sort_fields = None else: self.ctxt.sort_fields = [] if not address: print('address is mandatory parameter') return df = self._invoke_sqobj(self.sqobj.lpm, hostname=self.hostname, address=address, vrf=vrf.split(), ipvers=self._get_ipvers(address), columns=self.columns, namespace=self.namespace, query_str=self.query_str, ) self.ctxt.exec_time = "{:5.4f}s".format(time.time() - now) return self._gen_output(df)
""" Author: Anthony Perez A collection of ImageDatasource classes which allow loading of generic image collections by name. """ import ee from gee_tools.datasources.interface import MultiImageDatasource, GlobalImageDatasource, SingleImageDatasource, DatasourceError class GenericSingleImageDatasource(SingleImageDatasource): """Generic SingleImageDatasource for loading an image by name or arguments to ee.Image.""" def build_img_coll(self, image_args=None): if image_args is None: raise ValueError('image_args must be provided, but was None') self.img = ee.Image(image_args) self.coll = ee.ImageCollection(self.img) def get_img_coll(self): return self.coll class GenericGlobalImageDatasource(GlobalImageDatasource): """Generic GlobalImageDatasource for loading an image by name or arguments to ee.ImageCollection.""" def build_img_coll(self, coll_args=None): if coll_args is None: raise ValueError('coll_args must be provided, but was None') self.coll = ee.ImageCollection(coll_args) \ .filterDate(self.start_date, self.end_date) \ .sort('system:time_start') def get_img_coll(self): return self.coll class GenericMultiImageDatasource(MultiImageDatasource): """Generic GlobalImageDatasource for loading an image by name or arguments to ee.ImageCollection.""" def build_img_coll(self, coll_args=None): if coll_args is None: raise ValueError('coll_args must be provided, but was None') self.coll = ee.ImageCollection(coll_args) \ .filterDate(self.start_date, self.end_date) \ .filterBounds(self.filterpoly) \ .sort('system:time_start') def get_img_coll(self): return self.coll
import abc import os class Config: BASE_DIR = os.path.dirname(__file__) DATA_DIR = os.path.join(BASE_DIR, 'data') VOCABS_DIR = os.path.join(DATA_DIR, 'vocabs') CHECKPOINTS_DIR = os.path.join(DATA_DIR, 'checkpoints') class UniEnViConfig: PROBLEM = 'uni_en_vi' MODEL = 'transformer' CHECKPOINT_PATH = os.path.join(Config.CHECKPOINTS_DIR, 'unienvi', 'model.ckpt-best') VOCAB_DIR = Config.VOCABS_DIR HPARAMS = 'transformer_base_single_gpu' class UniViEnConfig: PROBLEM = 'uni_vi_en' MODEL = 'transformer' CHECKPOINT_PATH = os.path.join(Config.CHECKPOINTS_DIR, 'univien', 'model.ckpt-best') VOCAB_DIR = Config.VOCABS_DIR HPARAMS = 'transformer_base_single_gpu'
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def tree2str(self, t: TreeNode) -> str: def dfs(root): if not root: return '' # 左子树为空右子树不为空,要加一个() if not root.left and root.right: return str(root.val) + '()' + '(' + dfs(root.right) + ')' # 左子树不为空右子树为空 elif root.left and not root.right: return str(root.val) + '(' + dfs(root.left) + ')' # 左右子树都为空 elif not root.left and not root.right: return str(root.val) return str(root.val) + '(' + dfs(root.left) + ')' + '(' + dfs(root.right) + ')' return dfs(t)