File size: 3,986 Bytes
d1389bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
{}
---

**This is the dataset for training MSA-ASR model**

# MSA-ASR

Multilingual Speaker-Attributed Automatic Speech Recognition

### Demo

<video src="https://huggingface.co/nguyenvulebinh/MSA-ASR/resolve/main/demo_sa-asr.mp4" width="640" height="480" controls></video>

### Introduction

This repository provides an implementation of a Speaker-Attributed Automatic Speech Recognition model. The model performs both multilingual speech recognition and speaker embedding extraction, enabling speaker differentiation.

Model architecture

![MSA-ASR Model](https://github.com/nguyenvulebinh/MSA-ASR/blob/main/resource/model.png?raw=true)


### Setup

```
git clone [email protected]:nguyenvulebinh/MSA-ASR.git
cd MSA-ASR
conda create -n MSA-ASR python=3.10
conda activate MSA-ASR
pip install -r requirements.txt
```

Test script:

```
python infer.py
```

### Training Dataset

*From ASR to SA-ASR dataset:*

- Segment ASR data into single-speaker turns.
- Match turns into group which may come from the same speaker by using speaker embedding cosine similarity.
- Pick a few groups, each group a few turns.
- Concatenate turns in random order.

![MSA-ASR Dataset](https://github.com/nguyenvulebinh/MSA-ASR/blob/main/resource/sa_asr_data_pipeline.png?raw=true)

*In total:*

- 15.5M turns
- 14k audio hours
- English only

Dataset is openly available in [HF Dataset](https://huggingface.co/datasets/nguyenvulebinh/spk-attribute)

*Example*

Audio

<audio controls>
  <source src="https://huggingface.co/nguyenvulebinh/MSA-ASR/resolve/main/sample_augment.wav" type="audio/wav">
  Your browser does not support the audio element.
</audio>


Label:

```code
spk_1 A 0.00 1.58 »spk_1
spk_1 A 0.00 1.58 Pacifica
spk_1 A 1.58 0.68 continues
spk_1 A 2.27 0.52 today
spk_1 A 2.79 0.24 to
spk_1 A 3.03 0.20 be
spk_1 A 3.23 0.14 a
spk_1 A 3.37 0.54 listener
spk_1 A 3.91 0.80 supported
spk_1 A 4.71 0.70 network
spk_1 A 5.42 0.38 of
spk_2 A 5.80 0.12 »spk_2
spk_2 A 5.80 0.12 At
spk_2 A 5.92 0.42 home,
spk_2 A 6.34 0.18 an
spk_2 A 6.52 0.38 Aed
spk_2 A 6.90 0.26 is
spk_2 A 7.16 0.18 an
spk_2 A 7.34 0.56 automated
spk_2 A 7.90 0.60 external
spk_2 A 8.50 0.90 defibrillator.
spk_2 A 9.40 0.40 It's
spk_2 A 9.81 0.08 the
spk_2 A 9.89 0.36 device
spk_2 A 10.25 0.08 you
spk_2 A 10.33 0.16 use
spk_2 A 10.49 0.12 when
spk_2 A 10.61 0.10 your
spk_2 A 10.73 0.16 heart
spk_2 A 10.89 0.18 goes
spk_2 A 11.07 0.12 into
spk_2 A 11.19 0.38 cardiac
spk_2 A 11.57 0.38 arrest
spk_2 A 11.95 0.18 to
spk_2 A 12.13 0.36 shock
spk_2 A 12.49 0.14 it
spk_2 A 12.63 0.28 back
spk_2 A 12.91 0.22 into
spk_2 A 13.13 0.06 a
spk_2 A 13.19 0.32 normal
spk_2 A 13.51 0.88 rhythm.
spk_1 A 14.40 1.38 »spk_1
spk_1 A 14.40 1.38 stations.
```

### Citation

```bibtex
@INPROCEEDINGS{10889116,
  author={Nguyen, Thai-Binh and Waibel, Alexander},
  booktitle={ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 
  title={MSA-ASR: Efficient Multilingual Speaker Attribution with frozen ASR Models}, 
  year={2025},
  volume={},
  number={},
  pages={1-5},
  keywords={Training;Adaptation models;Limiting;Predictive models;Data models;Robustness;Multilingual;Data mining;Speech processing;Standards;speaker-attributed;asr;multilingual},
  doi={10.1109/ICASSP49660.2025.10889116}}

@INPROCEEDINGS{10446589,
  author={Nguyen, Thai-Binh and Waibel, Alexander},
  booktitle={ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 
  title={Synthetic Conversations Improve Multi-Talker ASR}, 
  year={2024},
  volume={},
  number={},
  pages={10461-10465},
  keywords={Systematics;Error analysis;Knowledge based systems;Oral communication;Signal processing;Data models;Acoustics;multi-talker;asr;synthetic conversation},
  doi={10.1109/ICASSP48485.2024.10446589}}


```

### License

CC-BY-NC 4.0

### Contact

Contributions are welcome; feel free to create a PR or email me:

```
[Binh Nguyen](nguyenvulebinh[at]gmail.com)
```