File size: 3,986 Bytes
d1389bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
{}
---
**This is the dataset for training MSA-ASR model**
# MSA-ASR
Multilingual Speaker-Attributed Automatic Speech Recognition
### Demo
<video src="https://huggingface.co/nguyenvulebinh/MSA-ASR/resolve/main/demo_sa-asr.mp4" width="640" height="480" controls></video>
### Introduction
This repository provides an implementation of a Speaker-Attributed Automatic Speech Recognition model. The model performs both multilingual speech recognition and speaker embedding extraction, enabling speaker differentiation.
Model architecture

### Setup
```
git clone [email protected]:nguyenvulebinh/MSA-ASR.git
cd MSA-ASR
conda create -n MSA-ASR python=3.10
conda activate MSA-ASR
pip install -r requirements.txt
```
Test script:
```
python infer.py
```
### Training Dataset
*From ASR to SA-ASR dataset:*
- Segment ASR data into single-speaker turns.
- Match turns into group which may come from the same speaker by using speaker embedding cosine similarity.
- Pick a few groups, each group a few turns.
- Concatenate turns in random order.

*In total:*
- 15.5M turns
- 14k audio hours
- English only
Dataset is openly available in [HF Dataset](https://huggingface.co/datasets/nguyenvulebinh/spk-attribute)
*Example*
Audio
<audio controls>
<source src="https://huggingface.co/nguyenvulebinh/MSA-ASR/resolve/main/sample_augment.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
Label:
```code
spk_1 A 0.00 1.58 »spk_1
spk_1 A 0.00 1.58 Pacifica
spk_1 A 1.58 0.68 continues
spk_1 A 2.27 0.52 today
spk_1 A 2.79 0.24 to
spk_1 A 3.03 0.20 be
spk_1 A 3.23 0.14 a
spk_1 A 3.37 0.54 listener
spk_1 A 3.91 0.80 supported
spk_1 A 4.71 0.70 network
spk_1 A 5.42 0.38 of
spk_2 A 5.80 0.12 »spk_2
spk_2 A 5.80 0.12 At
spk_2 A 5.92 0.42 home,
spk_2 A 6.34 0.18 an
spk_2 A 6.52 0.38 Aed
spk_2 A 6.90 0.26 is
spk_2 A 7.16 0.18 an
spk_2 A 7.34 0.56 automated
spk_2 A 7.90 0.60 external
spk_2 A 8.50 0.90 defibrillator.
spk_2 A 9.40 0.40 It's
spk_2 A 9.81 0.08 the
spk_2 A 9.89 0.36 device
spk_2 A 10.25 0.08 you
spk_2 A 10.33 0.16 use
spk_2 A 10.49 0.12 when
spk_2 A 10.61 0.10 your
spk_2 A 10.73 0.16 heart
spk_2 A 10.89 0.18 goes
spk_2 A 11.07 0.12 into
spk_2 A 11.19 0.38 cardiac
spk_2 A 11.57 0.38 arrest
spk_2 A 11.95 0.18 to
spk_2 A 12.13 0.36 shock
spk_2 A 12.49 0.14 it
spk_2 A 12.63 0.28 back
spk_2 A 12.91 0.22 into
spk_2 A 13.13 0.06 a
spk_2 A 13.19 0.32 normal
spk_2 A 13.51 0.88 rhythm.
spk_1 A 14.40 1.38 »spk_1
spk_1 A 14.40 1.38 stations.
```
### Citation
```bibtex
@INPROCEEDINGS{10889116,
author={Nguyen, Thai-Binh and Waibel, Alexander},
booktitle={ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={MSA-ASR: Efficient Multilingual Speaker Attribution with frozen ASR Models},
year={2025},
volume={},
number={},
pages={1-5},
keywords={Training;Adaptation models;Limiting;Predictive models;Data models;Robustness;Multilingual;Data mining;Speech processing;Standards;speaker-attributed;asr;multilingual},
doi={10.1109/ICASSP49660.2025.10889116}}
@INPROCEEDINGS{10446589,
author={Nguyen, Thai-Binh and Waibel, Alexander},
booktitle={ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={Synthetic Conversations Improve Multi-Talker ASR},
year={2024},
volume={},
number={},
pages={10461-10465},
keywords={Systematics;Error analysis;Knowledge based systems;Oral communication;Signal processing;Data models;Acoustics;multi-talker;asr;synthetic conversation},
doi={10.1109/ICASSP48485.2024.10446589}}
```
### License
CC-BY-NC 4.0
### Contact
Contributions are welcome; feel free to create a PR or email me:
```
[Binh Nguyen](nguyenvulebinh[at]gmail.com)
``` |