multimodalart HF Staff commited on
Commit
de70c0a
·
1 Parent(s): 42bb292

Update script.py

Browse files
Files changed (1) hide show
  1. script.py +30 -19
script.py CHANGED
@@ -4,7 +4,17 @@ from safetensors.torch import load_file
4
  from diffusers import AutoPipelineForText2Image
5
  import torch
6
  import re
 
7
 
 
 
 
 
 
 
 
 
 
8
  def do_train(script_args):
9
  # Pass all arguments to trainer.py
10
  subprocess.run(['python', 'trainer.py'] + script_args)
@@ -51,30 +61,31 @@ def do_inference(dataset_name, output_dir, num_tokens):
51
  repo_id=f"{username}/{output_dir}",
52
  repo_type="model",
53
  )
 
 
 
 
54
  def main():
55
  # Capture all arguments except the script name
56
- print(sys.argv)
57
  script_args = sys.argv[1:]
58
- print(script_args)
59
- # Extract dataset_name argument
60
- dataset_name = None
61
- output_dir = None
62
- for arg in script_args:
63
- if arg.startswith('--dataset_name='):
64
- dataset_name = arg.split('=')[1]
65
- continue
66
- if arg.startswith('--output_dir='):
67
- output_dir = arg.split('=')[1]
68
- continue
69
- if arg.startswith('--train_text_encoder_ti'):
70
- num_tokens = 0
71
- elif arg.startswith('--num_new_tokens_per_abstraction='):
72
- num_tokens = arg.split('=')[1]
73
- if dataset_name is None or output_dir is None:
74
- raise ValueError("Dataset name not provided.")
75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  do_train(script_args)
77
- do_inference(dataset_name, output_dir, num_tokens)
78
 
79
  if __name__ == "__main__":
80
  main()
 
4
  from diffusers import AutoPipelineForText2Image
5
  import torch
6
  import re
7
+ import argparse
8
 
9
+ def parse_arguments():
10
+ parser = argparse.ArgumentParser(description="Process script arguments.")
11
+ parser.add_argument('--dataset_name', required=True, help='Name of the dataset.')
12
+ parser.add_argument('--output_dir', required=True, help='Output directory.')
13
+ parser.add_argument('--num_new_tokens_per_abstraction', type=int, default=0, help='Number of new tokens per abstraction.')
14
+ parser.add_argument('--train_text_encoder_ti', action='store_true', help='Flag to train text encoder TI.')
15
+
16
+ return parser.parse_args()
17
+
18
  def do_train(script_args):
19
  # Pass all arguments to trainer.py
20
  subprocess.run(['python', 'trainer.py'] + script_args)
 
61
  repo_id=f"{username}/{output_dir}",
62
  repo_type="model",
63
  )
64
+
65
+ import sys
66
+ import argparse
67
+
68
  def main():
69
  # Capture all arguments except the script name
 
70
  script_args = sys.argv[1:]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
+ # Create the argument parser
73
+ parser = argparse.ArgumentParser()
74
+ parser.add_argument('--dataset_name', required=True)
75
+ parser.add_argument('--output_dir', required=True)
76
+ parser.add_argument('--num_new_tokens_per_abstraction', type=int, default=0)
77
+ parser.add_argument('--train_text_encoder_ti', action='store_true')
78
+
79
+ # Parse known arguments
80
+ args, _ = parser.parse_known_args(script_args)
81
+
82
+ # Set num_tokens to 0 if '--train_text_encoder_ti' is not present
83
+ if not args.train_text_encoder_ti:
84
+ args.num_new_tokens_per_abstraction = 0
85
+
86
+ # Proceed with training and inference
87
  do_train(script_args)
88
+ do_inference(args.dataset_name, args.output_dir, args.num_new_tokens_per_abstraction)
89
 
90
  if __name__ == "__main__":
91
  main()