|
"""Titanic""" |
|
|
|
from typing import List |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
DESCRIPTION = "Titanic dataset from the UCI ML repository." |
|
_HOMEPAGE = "https://www.kaggle.com/datasets/vinicius150987/titanic3" |
|
_URLS = ("https://www.kaggle.com/datasets/vinicius150987/titanic3") |
|
_CITATION = """""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/titanic/raw/main/titanic.csv" |
|
} |
|
features_types_per_config = { |
|
"survival": { |
|
"passenger_class": datasets.Value("int8"), |
|
"is_male": datasets.Value("bool"), |
|
"age": datasets.Value("float64"), |
|
"sibsp": datasets.Value("float64"), |
|
"parch": datasets.Value("float64"), |
|
"ticket": datasets.Value("string"), |
|
"fare": datasets.Value("float64"), |
|
"cabin": datasets.Value("string"), |
|
"embarked": datasets.Value("string"), |
|
"has_survived": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
}, |
|
|
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class TitanicConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(TitanicConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Titanic(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "survival" |
|
BUILDER_CONFIGS = [ |
|
TitanicConfig(name="survival", |
|
description="Titanic for binary classification.") |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath) |
|
data = self.preprocess(data) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data): |
|
data = data.rename(columns={"sex": "is_male"}) |
|
data = data[list(features_types_per_config[self.config.name].keys())] |
|
data.loc[:, "is_male"] = data.is_male.apply(lambda x: x == "male") |
|
data.loc[data.age == "?", "age"] = data.age.apply(lambda x: x if x != "?" else -1) |
|
|
|
return data |
|
|