|
"""Hypo Dataset""" |
|
|
|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
_ENCODING_DICS = { |
|
"class": { |
|
"negative": 0, |
|
"compensatedhypothyroid": 1, |
|
"secondaryhypothyroid": 2, |
|
"primaryhypothyroid": 3 |
|
} |
|
} |
|
|
|
DESCRIPTION = "Hypo dataset." |
|
_HOMEPAGE = "" |
|
_URLS = ("") |
|
_CITATION = """""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/hypo/resolve/main/hypo.data" |
|
} |
|
features_types_per_config = { |
|
"hypo": { |
|
"age": datasets.Value("int64"), |
|
"sex": datasets.Value("string"), |
|
"on_thyroxine": datasets.Value("bool"), |
|
"query_on_thyroxine": datasets.Value("bool"), |
|
"on_antithyroid_medication": datasets.Value("bool"), |
|
"sick": datasets.Value("bool"), |
|
"pregnant": datasets.Value("bool"), |
|
"thyroid_surgery": datasets.Value("bool"), |
|
"I131_treatment": datasets.Value("bool"), |
|
"query_hypothyroid": datasets.Value("bool"), |
|
"query_hyperthyroid": datasets.Value("bool"), |
|
"lithium": datasets.Value("bool"), |
|
"goitre": datasets.Value("bool"), |
|
"tumor": datasets.Value("bool"), |
|
"hypopituitary": datasets.Value("bool"), |
|
"psych": datasets.Value("bool"), |
|
"TSH_measured": datasets.Value("bool"), |
|
"TSH": datasets.Value("string"), |
|
"T3_measured": datasets.Value("bool"), |
|
"T3": datasets.Value("float64"), |
|
"TT4_measured": datasets.Value("bool"), |
|
"TT4": datasets.Value("float64"), |
|
"T4U_measured": datasets.Value("bool"), |
|
"T4U": datasets.Value("float64"), |
|
"FTI_measured": datasets.Value("bool"), |
|
"FTI": datasets.Value("float64"), |
|
"TBG_measured": datasets.Value("string"), |
|
"referral_source": datasets.Value("string"), |
|
"class": datasets.ClassLabel(num_classes=4, |
|
names=("negative", "compensated hypothyroid", "secondary hypothyroid", "primary hypothyroid")) |
|
}, |
|
"has_hypo": { |
|
"age": datasets.Value("int64"), |
|
"sex": datasets.Value("string"), |
|
"on_thyroxine": datasets.Value("bool"), |
|
"query_on_thyroxine": datasets.Value("bool"), |
|
"on_antithyroid_medication": datasets.Value("bool"), |
|
"sick": datasets.Value("bool"), |
|
"pregnant": datasets.Value("bool"), |
|
"thyroid_surgery": datasets.Value("bool"), |
|
"I131_treatment": datasets.Value("bool"), |
|
"query_hypothyroid": datasets.Value("bool"), |
|
"query_hyperthyroid": datasets.Value("bool"), |
|
"lithium": datasets.Value("bool"), |
|
"goitre": datasets.Value("bool"), |
|
"tumor": datasets.Value("bool"), |
|
"hypopituitary": datasets.Value("bool"), |
|
"psych": datasets.Value("bool"), |
|
"TSH_measured": datasets.Value("bool"), |
|
"TSH": datasets.Value("string"), |
|
"T3_measured": datasets.Value("bool"), |
|
"T3": datasets.Value("string"), |
|
"TT4_measured": datasets.Value("bool"), |
|
"TT4": datasets.Value("float64"), |
|
"T4U_measured": datasets.Value("bool"), |
|
"T4U": datasets.Value("float64"), |
|
"FTI_measured": datasets.Value("bool"), |
|
"FTI": datasets.Value("float64"), |
|
"TBG_measured": datasets.Value("string"), |
|
"referral_source": datasets.Value("string"), |
|
"class": datasets.ClassLabel(num_classes=2) |
|
}, |
|
} |
|
|
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class HypoConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(HypoConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Hypo(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "hypo" |
|
BUILDER_CONFIGS = [ |
|
HypoConfig(name="hypo", description="Hypo for multiclass classification."), |
|
HypoConfig(name="has_hypo", description="Hypo for binary classification."), |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath) |
|
data = self.preprocess(data) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: |
|
data.drop("id", axis="columns", inplace=True) |
|
data.drop("TBG", axis="columns", inplace=True) |
|
|
|
data = data[data.age != "?"] |
|
data = data[data.sex != "?"] |
|
data = data[data.TSH != "?"] |
|
|
|
data.loc[data.T3 == "?", "T3"] = -1 |
|
data.loc[data.TT4 == "?", "TT4"] = -1 |
|
data.loc[data.T4U == "?", "T4U"] = -1 |
|
data.loc[data.FTI == "?", "FTI"] = -1 |
|
|
|
data = data.infer_objects() |
|
|
|
for feature in _ENCODING_DICS: |
|
encoding_function = partial(self.encode, feature) |
|
data[feature] = data[feature].apply(encoding_function) |
|
|
|
if self.config.name == "has_hypo": |
|
data["class"] = data["class"].apply(lambda x: 0 if x == 0 else 1) |
|
print("has hypo\n\n\n") |
|
|
|
print("classes") |
|
print(data["class"].unique()) |
|
|
|
return data[list(features_types_per_config[self.config.name].keys())] |
|
|
|
def encode(self, feature, value): |
|
if feature in _ENCODING_DICS: |
|
return _ENCODING_DICS[feature][value] |
|
raise ValueError(f"Unknown feature: {feature}") |
|
|