File size: 5,542 Bytes
c540bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91ac5a7
 
 
 
 
 
c540bf6
 
 
 
 
 
 
 
 
 
 
4d938e1
 
 
 
 
 
 
 
 
 
 
 
 
 
c540bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
4d938e1
 
 
c540bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91203a1
 
 
 
 
c540bf6
 
 
 
 
 
 
4d938e1
 
 
 
c540bf6
91203a1
 
4d938e1
c540bf6
 
4d938e1
 
 
 
c540bf6
91203a1
 
c540bf6
 
91203a1
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""Diamond Dataset"""

from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
    "carat",
    "cut",
    "color",
    "clarity",
    "depth",
    "table",
    "price",
    "observation_point_on_axis_x",
    "observation_point_on_axis_y",
    "observation_point_on_axis_z"
]

_ENCODING_DICS = {
    "cut": {
        "Fair": 0,
        "Good": 1,
        "Very Good": 2,
        "Premium": 3,
        "Ideal": 4
    },
    "clarity": {
        "IF": 0,
        "VVS1": 1,
        "VVS2": 2,
        "VS1": 3,
        "VS2": 4,
        "SI1": 5,
        "SI2": 6,
        "I1": 7
    }
}

DESCRIPTION = "Diamond quality dataset."
_HOMEPAGE = "https://www.kaggle.com/datasets/ulrikthygepedersen/diamonds"
_URLS = ("https://www.kaggle.com/datasets/ulrikthygepedersen/diamonds")
_CITATION = """"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/diamonds/raw/main/diamonds.csv",
}
features_types_per_config = {
    "encoding": {
        "feature": datasets.Value("string"),
        "original_value": datasets.Value("string"),
        "encoded_value":  datasets.Value("int8"),
    },
    
    "cut": {
        "carat": datasets.Value("float32"),
        "color": datasets.Value("string"),
        "clarity": datasets.Value("float32"),
        "depth": datasets.Value("float32"),
        "table": datasets.Value("float32"),
        "price": datasets.Value("float32"),
        "observation_point_on_axis_x": datasets.Value("float32"),
        "observation_point_on_axis_y": datasets.Value("float32"),
        "observation_point_on_axis_z": datasets.Value("float32"),
        "cut": datasets.ClassLabel(num_classes=5, names=("Fair", "Good", "Very Good", "Premium", "Ideal"))
    },

    "cut_binary": {
        "carat": datasets.Value("float32"),
        "color": datasets.Value("string"),
        "clarity": datasets.Value("float32"),
        "depth": datasets.Value("float32"),
        "table": datasets.Value("float32"),
        "price": datasets.Value("float32"),
        "observation_point_on_axis_x": datasets.Value("float32"),
        "observation_point_on_axis_y": datasets.Value("float32"),
        "observation_point_on_axis_z": datasets.Value("float32"),
        "cut": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
    },
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class DiamondConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(DiamondConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Diamond(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "cut"
    BUILDER_CONFIGS = [
        DiamondConfig(name="encoding", description="Encoding dictionaries for discrete features."),
        DiamondConfig(name="cut", description="5-ary classification, predict the cut quality of the diamond."),
        DiamondConfig(name="cut_binary", description="Binary classification."),
    ]


    def _info(self):
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
        ]
    
    def _generate_examples(self, filepath: str):
        if self.config.name == "encoding":
            data = self.encoding_dics()
        else:
            data = pandas.read_csv(filepath)
            data = self.preprocess(data, config=self.config.name)

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row

    def preprocess(self, data: pandas.DataFrame, config: str = "cut") -> pandas.DataFrame:
        data["clarity"] = data.clarity.apply(lambda x: x.replace("b", "").replace("'", ""))
        data["cut"] = data.cut.apply(lambda x: x.replace("b", "").replace("'", ""))
        data["color"] = data.color.astype(str)
        data["color"] = data.color.apply(lambda x: x[2]).replace("\"", "")

        for feature in _ENCODING_DICS:
            encoding_function = partial(self.encode, feature)
            data[feature] = data[feature].apply(encoding_function)
         
        data.columns = _BASE_FEATURE_NAMES
        data = data.drop_duplicates(subset=["carat", "color", "clarity", "depth", "table", "price", "cut"])

        if self.config.name == "cut_binary":
            data.cut = data.cut.apply(lambda x: 0 if x <= 2 else 1)            
        
        
        return data[list(features_types_per_config["cut"].keys())]

    def encode(self, feature, value):
        if feature in _ENCODING_DICS:
            return _ENCODING_DICS[feature][value]
        raise ValueError(f"Unknown feature: {feature}")

    def encoding_dics(self):
        data = [pandas.DataFrame([(feature, original, encoded) for original, encoded in d.items()])
                for feature, d in _ENCODING_DICS.items()]
        data = pandas.concat(data, axis="rows").reset_index()
        data.drop("index", axis="columns", inplace=True)
        data.columns = ["feature", "original_value", "encoded_value"]

        return data