import os import datasets import pyarrow.parquet as pq from huggingface_hub import hf_hub_download # Define configurations for each flavor. BUILDER_CONFIGS = [ datasets.BuilderConfig( name="sound_baseline", description="Physical dataset: baseline variant", data_dir="sound_baseline" ), datasets.BuilderConfig( name="sound_reflection", description="Physical dataset: reflection variant", data_dir="sound_reflection" ), datasets.BuilderConfig( name="sound_diffraction", description="Physical dataset: diffraction variant", data_dir="sound_diffraction" ), datasets.BuilderConfig( name="sound_combined", description="Physical dataset: combined variant", data_dir="sound_combined" ), datasets.BuilderConfig( name="lens_p1", description="Distortion dataset variant", data_dir="lens_p1" ), datasets.BuilderConfig( name="lens_p2", description="Distortion dataset variant", data_dir="lens_p2" ), datasets.BuilderConfig( name="ball_roll", description="Double image dataset variant", data_dir="ball_roll" ), datasets.BuilderConfig( name="ball_bounce", description="Double image dataset variant", data_dir="ball_bounce" ), ] class MyPhysicalDataset(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = BUILDER_CONFIGS VERSION = datasets.Version("1.1.0") def _info(self): if self.config.name in ["sound_baseline", "sound_reflection", "sound_diffraction", "sound_combined"]: features = datasets.Features({ "lat": datasets.Value("float"), "long": datasets.Value("float"), "db": datasets.Value("string"), "soundmap": datasets.Image(), # Expects a dict: {"bytes": ...} "osm": datasets.Image(), "temperature": datasets.Value("int32"), "humidity": datasets.Value("int32"), "yaw": datasets.Value("float"), "sample_id": datasets.Value("int32"), "soundmap_512": datasets.Image(), }) elif self.config.name in ["lens_p1", "lens_p2"]: features = datasets.Features({ "label_path": datasets.Value("string"), "fx": datasets.Value("float"), "k1": datasets.Value("float"), "k2": datasets.Value("float"), "k3": datasets.Value("float"), "p1": datasets.Value("float"), "p2": datasets.Value("float"), "cx": datasets.Value("float"), }) elif self.config.name in ["ball_roll", "ball_bounce"]: features = datasets.Features({ "ImgName": datasets.Value("string"), "StartHeight": datasets.Value("int32"), "GroundIncli": datasets.Value("float"), "InputTime": datasets.Value("int32"), "TargetTime": datasets.Value("int32"), "input_image": datasets.Image(), # Expects {"bytes": ...} "target_image": datasets.Image(), }) else: raise ValueError(f"Unknown config name: {self.config.name}") return datasets.DatasetInfo( description="Multiple variant physical tasks dataset stored as parquet files.", features=features, ) def _split_generators(self, dl_manager): # Use hf_hub_download to fetch the parquet files directly from the Hub. repo_id = "mspitzna/physicsgen" train_file = hf_hub_download(repo_id=repo_id, filename=f"{self.config.data_dir}/train.parquet", repo_type="dataset") test_file = hf_hub_download(repo_id=repo_id, filename=f"{self.config.data_dir}/test.parquet", repo_type="dataset") eval_file = hf_hub_download(repo_id=repo_id, filename=f"{self.config.data_dir}/eval.parquet", repo_type="dataset") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"parquet_file": train_file}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"parquet_file": test_file}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"parquet_file": eval_file}, ), ] def _generate_examples(self, parquet_file): table = pq.read_table(parquet_file) examples = table.to_pylist() # Wrap image bytes into the format expected by datasets.Image. if self.config.name in ["sound_baseline", "sound_reflection", "sound_diffraction", "sound_combined"]: for example in examples: for key in ["soundmap", "osm", "soundmap_512"]: if example.get(key) is not None and isinstance(example[key], bytes): example[key] = {"bytes": example[key]} elif self.config.name in ["ball_roll", "ball_bounce"]: for example in examples: for key in ["input_image", "target_image"]: if example.get(key) is not None and isinstance(example[key], bytes): example[key] = {"bytes": example[key]} for idx, row in enumerate(examples): yield idx, row