File size: 5,608 Bytes
604734f
 
d45b5c1
38b9e9c
604734f
6295a5d
604734f
 
 
 
0633d18
604734f
 
 
 
0633d18
604734f
 
 
38b9e9c
0633d18
604734f
 
 
38b9e9c
0633d18
604734f
 
 
 
0633d18
604734f
 
 
 
0633d18
604734f
 
 
 
0633d18
604734f
 
 
 
0633d18
604734f
 
 
 
 
a5b9681
604734f
 
 
 
 
 
 
38b9e9c
604734f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b9e9c
604734f
 
 
 
 
38b9e9c
604734f
 
 
 
38b9e9c
a7ac9c1
 
 
 
604734f
 
38b9e9c
 
 
 
 
 
 
 
 
 
 
604734f
 
d45b5c1
 
 
6295a5d
38b9e9c
d45b5c1
 
 
 
 
6295a5d
d45b5c1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import datasets
import pyarrow.parquet as pq
from huggingface_hub import hf_hub_download

# Define configurations for each flavor.
BUILDER_CONFIGS = [
    datasets.BuilderConfig(
        name="sound_baseline",
        description="Physical dataset: baseline variant",
        data_dir="sound_baseline"
    ),
    datasets.BuilderConfig(
        name="sound_reflection",
        description="Physical dataset: reflection variant",
        data_dir="sound_reflection"
    ),
    datasets.BuilderConfig(
        name="sound_diffraction",
        description="Physical dataset: diffraction variant",
        data_dir="sound_diffraction"
    ),
    datasets.BuilderConfig(
        name="sound_combined",
        description="Physical dataset: combined variant",
        data_dir="sound_combined"
    ),
    datasets.BuilderConfig(
        name="lens_p1",
        description="Distortion dataset variant",
        data_dir="lens_p1"
    ),
    datasets.BuilderConfig(
        name="lens_p2",
        description="Distortion dataset variant",
        data_dir="lens_p2"
    ),
    datasets.BuilderConfig(
        name="ball_roll",
        description="Double image dataset variant",
        data_dir="ball_roll"
    ),
    datasets.BuilderConfig(
        name="ball_bounce",
        description="Double image dataset variant",
        data_dir="ball_bounce"
    ),
]

class MyPhysicalDataset(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = BUILDER_CONFIGS
    VERSION = datasets.Version("1.1.0")

    def _info(self):
        if self.config.name in ["sound_baseline", "sound_reflection", "sound_diffraction", "sound_combined"]:
            features = datasets.Features({
                "lat": datasets.Value("float"),
                "long": datasets.Value("float"),
                "db": datasets.Value("string"),
                "soundmap": datasets.Image(),    # Expects a dict: {"bytes": ...}
                "osm": datasets.Image(),
                "temperature": datasets.Value("int32"),
                "humidity": datasets.Value("int32"),
                "yaw": datasets.Value("float"),
                "sample_id": datasets.Value("int32"),
                "soundmap_512": datasets.Image(),
            })
        elif self.config.name in ["lens_p1", "lens_p2"]:
            features = datasets.Features({
                "label_path": datasets.Value("string"),
                "fx": datasets.Value("float"),
                "k1": datasets.Value("float"),
                "k2": datasets.Value("float"),
                "k3": datasets.Value("float"),
                "p1": datasets.Value("float"),
                "p2": datasets.Value("float"),
                "cx": datasets.Value("float"),
            })
        elif self.config.name in ["ball_roll", "ball_bounce"]:
            features = datasets.Features({
                "ImgName": datasets.Value("string"),
                "StartHeight": datasets.Value("int32"),
                "GroundIncli": datasets.Value("float"),
                "InputTime": datasets.Value("int32"),
                "TargetTime": datasets.Value("int32"),
                "input_image": datasets.Image(),   # Expects {"bytes": ...}
                "target_image": datasets.Image(),
            })
        else:
            raise ValueError(f"Unknown config name: {self.config.name}")
        return datasets.DatasetInfo(
            description="Multiple variant physical tasks dataset stored as parquet files.",
            features=features,
        )

    def _split_generators(self, dl_manager):
        # Use hf_hub_download to fetch the parquet files directly from the Hub.
        repo_id = "mspitzna/physicsgen" 
        train_file = hf_hub_download(repo_id=repo_id, filename=f"{self.config.data_dir}/train.parquet", repo_type="dataset")
        test_file = hf_hub_download(repo_id=repo_id, filename=f"{self.config.data_dir}/test.parquet", repo_type="dataset")
        eval_file = hf_hub_download(repo_id=repo_id, filename=f"{self.config.data_dir}/eval.parquet", repo_type="dataset")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"parquet_file": train_file},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"parquet_file": test_file},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"parquet_file": eval_file},
            ),
        ]

    def _generate_examples(self, parquet_file):
        table = pq.read_table(parquet_file)
        examples = table.to_pylist()

        # Wrap image bytes into the format expected by datasets.Image.
        if self.config.name in ["sound_baseline", "sound_reflection", "sound_diffraction", "sound_combined"]:
            for example in examples:
                for key in ["soundmap", "osm", "soundmap_512"]:
                    if example.get(key) is not None and isinstance(example[key], bytes):
                        example[key] = {"bytes": example[key]}
        elif self.config.name in ["ball_roll", "ball_bounce"]:
            for example in examples:
                for key in ["input_image", "target_image"]:
                    if example.get(key) is not None and isinstance(example[key], bytes):
                        example[key] = {"bytes": example[key]}
        for idx, row in enumerate(examples):
            yield idx, row