Commit
·
fa6ee2d
1
Parent(s):
77bc438
first version of the dump
Browse files- .gitattributes +2 -0
- .gitignore +4 -0
- README.md +44 -0
- download-and-process.py +219 -0
- materials-project.tar.gz +3 -0
.gitattributes
CHANGED
@@ -53,3 +53,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
+
materials-project.tar.gz filter=lfs diff=lfs merge=lfs -text
|
57 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
unzipped
|
2 |
+
*.hdf5
|
3 |
+
*.json
|
4 |
+
*.zip
|
README.md
CHANGED
@@ -1,3 +1,47 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
tags:
|
4 |
+
- chemistry
|
5 |
+
pretty_name: Materials Project
|
6 |
+
size_categories:
|
7 |
+
- 100K<n<1M
|
8 |
---
|
9 |
+
|
10 |
+
# Dataset
|
11 |
+
|
12 |
+
Materials project (2019 dump)
|
13 |
+
|
14 |
+
This dataset contains 133420 materials with formation energy per atom.
|
15 |
+
|
16 |
+
Processed from [mp.2019.04.01.json](https://figshare.com/articles/dataset/Graphs_of_Materials_Project_20190401/8097992)
|
17 |
+
|
18 |
+
# Download
|
19 |
+
|
20 |
+
Download link: [materials-project.tar.gz](https://huggingface.co/datasets/materials-toolkits/materials-project/raw/main/materials-project.tar.gz)
|
21 |
+
|
22 |
+
MD5 checksum `c132f3781f32cd17f3a92aa6501b9531`
|
23 |
+
|
24 |
+
# Content
|
25 |
+
|
26 |
+
Bundled in `materials-project.tar.gz`.
|
27 |
+
|
28 |
+
## Index (`index.json`)
|
29 |
+
|
30 |
+
list of dict:
|
31 |
+
* `index` (int) => index of the structure in data file.
|
32 |
+
* `id` (str) => id of Materials Project.
|
33 |
+
* `formula` (str) => formula.
|
34 |
+
* `natoms` (int) => number of atoms.
|
35 |
+
* `energy_pa` (float) => formation energy per atom.
|
36 |
+
|
37 |
+
## Data (`data.hdf5`)
|
38 |
+
|
39 |
+
fields:
|
40 |
+
* `structures` => a group containing structure information.
|
41 |
+
* `structures/cell` (float32) => lattice of the material.
|
42 |
+
* `structures/natoms` (int32) => number of atoms.
|
43 |
+
* `structures/energy_pa` (float32) => formation energy per atom.
|
44 |
+
* `structures/atoms_ptr` (int64) => position of the first atom of the structures in the `atoms` group.
|
45 |
+
* `atoms` => a group containing information about atoms.
|
46 |
+
* `atoms/positions` (float32) => the positions of the atoms.
|
47 |
+
* `atoms/atomic_number` (uint8) => the atomic number of the atoms.
|
download-and-process.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
|
3 |
+
import os
|
4 |
+
import io
|
5 |
+
import shutil
|
6 |
+
from typing import Optional
|
7 |
+
import requests
|
8 |
+
import hashlib
|
9 |
+
import math
|
10 |
+
import multiprocessing as mp
|
11 |
+
import json
|
12 |
+
import re
|
13 |
+
import tarfile
|
14 |
+
|
15 |
+
from ase.io import read
|
16 |
+
import numpy as np
|
17 |
+
import h5py
|
18 |
+
|
19 |
+
zip_file = "mp.2019.04.01.json.zip"
|
20 |
+
url = "https://figshare.com/ndownloader/articles/8097992/versions/2"
|
21 |
+
|
22 |
+
|
23 |
+
def download_raw_mp(path: Optional[str] = "."):
|
24 |
+
filename = os.path.join(path, zip_file)
|
25 |
+
|
26 |
+
sha1 = hashlib.sha1()
|
27 |
+
|
28 |
+
if os.path.exists(filename):
|
29 |
+
with open(filename, "rb") as f:
|
30 |
+
while True:
|
31 |
+
data = f.read(1 << 20)
|
32 |
+
if not data:
|
33 |
+
break
|
34 |
+
sha1.update(data)
|
35 |
+
return sha1.hexdigest()
|
36 |
+
|
37 |
+
r = requests.get(url, stream=True)
|
38 |
+
|
39 |
+
with open(zip_file, "wb") as f:
|
40 |
+
total_length = int(r.headers.get("content-length"))
|
41 |
+
for i, chunk in enumerate(r.iter_content(chunk_size=1 << 20)):
|
42 |
+
if chunk:
|
43 |
+
sha1.update(chunk)
|
44 |
+
f.write(chunk)
|
45 |
+
f.flush()
|
46 |
+
print(
|
47 |
+
f"[{i+1}/{int(math.ceil(total_length/(1<<20)))}] downloading {zip_file} ..."
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
def unzip(path: Optional[str] = "."):
|
52 |
+
temp_dir = os.path.join(path, "unzipped")
|
53 |
+
|
54 |
+
os.makedirs(temp_dir, exist_ok=True)
|
55 |
+
|
56 |
+
if not os.path.exists(os.path.join(temp_dir, "mp.2019.04.01.json.zip")):
|
57 |
+
print("unzip mp.2019.04.01.json.zip")
|
58 |
+
shutil.unpack_archive(zip_file, temp_dir)
|
59 |
+
|
60 |
+
if not os.path.exists(os.path.join(temp_dir, "mp.2019.04.01.json")):
|
61 |
+
print("unzip mp.2019.04.01.json")
|
62 |
+
shutil.unpack_archive(
|
63 |
+
os.path.join(temp_dir, "mp.2019.04.01.json.zip"),
|
64 |
+
temp_dir,
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
def gen_structure_from_json(filename: str, chunksize: Optional[int] = 1 << 20):
|
69 |
+
stack = None
|
70 |
+
with open(filename, "r") as fp:
|
71 |
+
count = 0
|
72 |
+
fp.seek(0, os.SEEK_END)
|
73 |
+
total = int(math.ceil(fp.tell() / chunksize))
|
74 |
+
fp.seek(0, os.SEEK_SET)
|
75 |
+
|
76 |
+
while True:
|
77 |
+
data = fp.read(chunksize)
|
78 |
+
|
79 |
+
print(f"[{count}/{total}] processing {filename} ...")
|
80 |
+
count += 1
|
81 |
+
|
82 |
+
if len(data) == 0:
|
83 |
+
break
|
84 |
+
|
85 |
+
if stack is None:
|
86 |
+
stack = data[data.find("{") + 1 :]
|
87 |
+
else:
|
88 |
+
stack += data
|
89 |
+
|
90 |
+
splited = re.split(r"}\s*,\s*{", stack)
|
91 |
+
for elem in splited[:-1]:
|
92 |
+
yield "{" + elem + "}"
|
93 |
+
|
94 |
+
stack = splited[-1]
|
95 |
+
|
96 |
+
stack = stack[: stack.rfind("}")]
|
97 |
+
yield "{" + stack + "}"
|
98 |
+
|
99 |
+
|
100 |
+
def parse_structure(json_str: str) -> tuple:
|
101 |
+
data = json.loads(json_str)
|
102 |
+
struct = read(io.StringIO(data["structure"]), format="cif")
|
103 |
+
|
104 |
+
cell = struct.cell.array
|
105 |
+
natoms = len(struct)
|
106 |
+
x = struct.get_scaled_positions()
|
107 |
+
formula = struct.get_chemical_formula()
|
108 |
+
z = struct.get_atomic_numbers()
|
109 |
+
|
110 |
+
material_id = data["material_id"]
|
111 |
+
energy_pa = data["formation_energy_per_atom"]
|
112 |
+
return material_id, natoms, formula, cell, x, z, energy_pa
|
113 |
+
|
114 |
+
|
115 |
+
def process_job(input_queue, output_queue):
|
116 |
+
while True:
|
117 |
+
job = input_queue.get()
|
118 |
+
|
119 |
+
if job is None:
|
120 |
+
break
|
121 |
+
|
122 |
+
output_queue.put(parse_structure(job))
|
123 |
+
|
124 |
+
|
125 |
+
def process(path: Optional[str] = ".", workers: Optional[int] = max(4, os.cpu_count())):
|
126 |
+
if os.path.exists(os.path.join(path, "index.json")) and os.path.exists(
|
127 |
+
os.path.join(path, "data.hdf5")
|
128 |
+
):
|
129 |
+
return
|
130 |
+
|
131 |
+
input_queue = mp.Queue()
|
132 |
+
output_queue = mp.Queue()
|
133 |
+
results = []
|
134 |
+
|
135 |
+
processes = []
|
136 |
+
for _ in range(workers):
|
137 |
+
p = mp.Process(target=process_job, args=(input_queue, output_queue))
|
138 |
+
p.start()
|
139 |
+
processes.append(p)
|
140 |
+
|
141 |
+
for elem in gen_structure_from_json(
|
142 |
+
os.path.join(path, "unzipped/mp.2019.04.01.json")
|
143 |
+
):
|
144 |
+
input_queue.put(elem)
|
145 |
+
|
146 |
+
if input_queue.qsize() > 2 * workers:
|
147 |
+
results.append(output_queue.get())
|
148 |
+
while not output_queue.empty():
|
149 |
+
results.append(output_queue.get())
|
150 |
+
|
151 |
+
for _ in range(workers):
|
152 |
+
input_queue.put(None)
|
153 |
+
|
154 |
+
for process in processes:
|
155 |
+
process.join()
|
156 |
+
|
157 |
+
while not output_queue.empty():
|
158 |
+
results.append(output_queue.get())
|
159 |
+
|
160 |
+
material_id = [material_id for material_id, _, _, _, _, _, _ in results]
|
161 |
+
formula = [formula for _, _, formula, _, _, _, _ in results]
|
162 |
+
|
163 |
+
natoms = np.array([natoms for _, natoms, _, _, _, _, _ in results], dtype=np.int64)
|
164 |
+
atoms_ptr = np.pad(natoms.cumsum(0), (1, 0)).astype(np.int64)
|
165 |
+
idx = np.arange(len(results), dtype=np.int64)
|
166 |
+
|
167 |
+
cell = np.stack(
|
168 |
+
[cell for _, _, _, cell, _, _, _ in results], axis=0, dtype=np.float32
|
169 |
+
)
|
170 |
+
x = np.concatenate([x for _, _, _, _, x, _, _ in results], axis=0, dtype=np.float32)
|
171 |
+
z = np.concatenate([z for _, _, _, _, _, z, _ in results], axis=0, dtype=np.int64)
|
172 |
+
energy_pa = np.array(
|
173 |
+
[energy_pa for _, _, _, _, _, _, energy_pa in results], dtype=np.float32
|
174 |
+
)
|
175 |
+
|
176 |
+
index = [
|
177 |
+
{
|
178 |
+
"index": int(i),
|
179 |
+
"id": str(m_id),
|
180 |
+
"formula": str(f),
|
181 |
+
"natoms": int(n),
|
182 |
+
"energy_pa": float(e),
|
183 |
+
}
|
184 |
+
for i, m_id, f, n, e in zip(idx, material_id, formula, natoms, energy_pa)
|
185 |
+
]
|
186 |
+
with open(os.path.join(path, "index.json"), "w") as fp:
|
187 |
+
json.dump(index, fp)
|
188 |
+
|
189 |
+
f = h5py.File("data.hdf5", "w")
|
190 |
+
|
191 |
+
structures = f.create_group("structures")
|
192 |
+
structures.create_dataset("cell", data=cell, dtype=np.float32)
|
193 |
+
structures.create_dataset("natoms", data=natoms, dtype=np.int32)
|
194 |
+
structures.create_dataset("energy_pa", data=energy_pa, dtype=np.float32)
|
195 |
+
structures.create_dataset("atoms_ptr", data=atoms_ptr, dtype=np.int64)
|
196 |
+
|
197 |
+
atoms = f.create_group("atoms")
|
198 |
+
atoms.create_dataset("positions", data=x, dtype=np.float32)
|
199 |
+
atoms.create_dataset("atomic_number", data=z, dtype=np.uint8)
|
200 |
+
|
201 |
+
f.close()
|
202 |
+
|
203 |
+
|
204 |
+
def compress(path: Optional[str] = "."):
|
205 |
+
output_file = os.path.join(path, "materials-project.tar.gz")
|
206 |
+
|
207 |
+
if os.path.exists(output_file):
|
208 |
+
return
|
209 |
+
|
210 |
+
print("compress into materials-project.tar.gz")
|
211 |
+
with tarfile.open(output_file, "w:gz") as tar:
|
212 |
+
tar.add(os.path.join(path, "index.json"))
|
213 |
+
tar.add(os.path.join(path, "data.hdf5"))
|
214 |
+
|
215 |
+
|
216 |
+
download_raw_mp()
|
217 |
+
unzip()
|
218 |
+
process()
|
219 |
+
compress()
|
materials-project.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcf27bb6a544f3cb28ab686ca98ba0977b8ef0d4445e14a63990c8cb91a4158b
|
3 |
+
size 40789247
|