|
import argparse
|
|
import time
|
|
import numpy as np
|
|
import pinocchio as pin
|
|
import rerun as rr
|
|
import trimesh
|
|
|
|
class RerunURDF():
|
|
def __init__(self, robot_type):
|
|
self.name = robot_type
|
|
match robot_type:
|
|
case 'g1':
|
|
self.robot = pin.RobotWrapper.BuildFromURDF('robot_description/g1/g1_29dof_rev_1_0.urdf', 'robot_description/g1', pin.JointModelFreeFlyer())
|
|
self.Tpose = np.array([0,0,0.785,0,0,0,1,
|
|
-0.15,0,0,0.3,-0.15,0,
|
|
-0.15,0,0,0.3,-0.15,0,
|
|
0,0,0,
|
|
0, 1.57,0,1.57,0,0,0,
|
|
0,-1.57,0,1.57,0,0,0]).astype(np.float32)
|
|
case 'h1_2':
|
|
self.robot = pin.RobotWrapper.BuildFromURDF('robot_description/h1_2/h1_2_wo_hand.urdf', 'robot_description/h1_2', pin.JointModelFreeFlyer())
|
|
assert self.robot.model.nq == 7 + 12+1+14
|
|
self.Tpose = np.array([0,0,1.02,0,0,0,1,
|
|
0,-0.15,0,0.3,-0.15,0,
|
|
0,-0.15,0,0.3,-0.15,0,
|
|
0,
|
|
0, 1.57,0,1.57,0,0,0,
|
|
0,-1.57,0,1.57,0,0,0]).astype(np.float32)
|
|
case 'h1':
|
|
self.robot = pin.RobotWrapper.BuildFromURDF('robot_description/h1/h1.urdf', 'robot_description/h1', pin.JointModelFreeFlyer())
|
|
assert self.robot.model.nq == 7 + 10+1+8
|
|
self.Tpose = np.array([0,0,1.03,0,0,0,1,
|
|
0,0,-0.15,0.3,-0.15,
|
|
0,0,-0.15,0.3,-0.15,
|
|
0,
|
|
0, 1.57,0,1.57,
|
|
0,-1.57,0,1.57]).astype(np.float32)
|
|
case _:
|
|
print(robot_type)
|
|
raise ValueError('Invalid robot type')
|
|
|
|
|
|
|
|
|
|
|
|
self.link2mesh = self.get_link2mesh()
|
|
self.load_visual_mesh()
|
|
self.update()
|
|
|
|
def get_link2mesh(self):
|
|
link2mesh = {}
|
|
for visual in self.robot.visual_model.geometryObjects:
|
|
mesh = trimesh.load_mesh(visual.meshPath)
|
|
name = visual.name[:-2]
|
|
mesh.visual = trimesh.visual.ColorVisuals()
|
|
mesh.visual.vertex_colors = visual.meshColor
|
|
link2mesh[name] = mesh
|
|
return link2mesh
|
|
|
|
def load_visual_mesh(self):
|
|
self.robot.framesForwardKinematics(pin.neutral(self.robot.model))
|
|
for visual in self.robot.visual_model.geometryObjects:
|
|
frame_name = visual.name[:-2]
|
|
mesh = self.link2mesh[frame_name]
|
|
|
|
frame_id = self.robot.model.getFrameId(frame_name)
|
|
parent_joint_id = self.robot.model.frames[frame_id].parent
|
|
parent_joint_name = self.robot.model.names[parent_joint_id]
|
|
frame_tf = self.robot.data.oMf[frame_id]
|
|
joint_tf = self.robot.data.oMi[parent_joint_id]
|
|
rr.log(f'urdf_{self.name}/{parent_joint_name}',
|
|
rr.Transform3D(translation=joint_tf.translation,
|
|
mat3x3=joint_tf.rotation,
|
|
axis_length=0.01))
|
|
|
|
relative_tf = joint_tf.inverse() * frame_tf
|
|
mesh.apply_transform(relative_tf.homogeneous)
|
|
rr.log(f'urdf_{self.name}/{parent_joint_name}/{frame_name}',
|
|
rr.Mesh3D(
|
|
vertex_positions=mesh.vertices,
|
|
triangle_indices=mesh.faces,
|
|
vertex_normals=mesh.vertex_normals,
|
|
vertex_colors=mesh.visual.vertex_colors,
|
|
albedo_texture=None,
|
|
vertex_texcoords=None,
|
|
),
|
|
static=True)
|
|
|
|
def update(self, configuration = None):
|
|
self.robot.framesForwardKinematics(self.Tpose if configuration is None else configuration)
|
|
for visual in self.robot.visual_model.geometryObjects:
|
|
frame_name = visual.name[:-2]
|
|
frame_id = self.robot.model.getFrameId(frame_name)
|
|
parent_joint_id = self.robot.model.frames[frame_id].parent
|
|
parent_joint_name = self.robot.model.names[parent_joint_id]
|
|
joint_tf = self.robot.data.oMi[parent_joint_id]
|
|
rr.log(f'urdf_{self.name}/{parent_joint_name}',
|
|
rr.Transform3D(translation=joint_tf.translation,
|
|
mat3x3=joint_tf.rotation,
|
|
axis_length=0.01))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--file_name', type=str, help="File name", default='dance1_subject2')
|
|
parser.add_argument('--robot_type', type=str, help="Robot type", default='g1')
|
|
args = parser.parse_args()
|
|
|
|
rr.init(
|
|
'Reviz',
|
|
spawn=True
|
|
)
|
|
rr.log('', rr.ViewCoordinates.RIGHT_HAND_Z_UP, static=True)
|
|
|
|
file_name = args.file_name
|
|
robot_type = args.robot_type
|
|
csv_files = robot_type + '/' + file_name + '.csv'
|
|
data = np.genfromtxt(csv_files, delimiter=',')
|
|
|
|
rerun_urdf = RerunURDF(robot_type)
|
|
for frame_nr in range(data.shape[0]):
|
|
rr.set_time_sequence('frame_nr', frame_nr)
|
|
configuration = data[frame_nr, :]
|
|
rerun_urdf.update(configuration)
|
|
time.sleep(0.03)
|
|
|