Create process_for.grepp.py
Browse files- process_for.grepp.py +100 -0
process_for.grepp.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from vllm import LLM, SamplingParams
|
3 |
+
import argparse
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
def load_jsonl(file_path):
|
7 |
+
"""Load JSONL file line by line."""
|
8 |
+
data = []
|
9 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
10 |
+
for line in f:
|
11 |
+
data.append(json.loads(line.strip()))
|
12 |
+
return data
|
13 |
+
|
14 |
+
def save_jsonl(data, file_path):
|
15 |
+
"""Save data to JSONL file."""
|
16 |
+
with open(file_path, 'w', encoding='utf-8') as f:
|
17 |
+
for item in data:
|
18 |
+
f.write(json.dumps(item, ensure_ascii=False) + '\n')
|
19 |
+
|
20 |
+
def format_prompt(instruction, input_text):
|
21 |
+
"""Format the prompt for code generation."""
|
22 |
+
return f"""Below is a coding problem with instructions and example inputs. Write a solution in code.
|
23 |
+
|
24 |
+
Problem Description:
|
25 |
+
{instruction}
|
26 |
+
|
27 |
+
Example Inputs:
|
28 |
+
{input_text}
|
29 |
+
|
30 |
+
Write your solution code:"""
|
31 |
+
|
32 |
+
def main():
|
33 |
+
parser = argparse.ArgumentParser(description='Process JSONL file with CodeLlama model')
|
34 |
+
parser.add_argument('--input_file', type=str, required=True, help='Input JSONL file path')
|
35 |
+
parser.add_argument('--output_file', type=str, required=True, help='Output JSONL file path')
|
36 |
+
parser.add_argument('--batch_size', type=int, default=4, help='Batch size for inference')
|
37 |
+
args = parser.parse_args()
|
38 |
+
|
39 |
+
# Initialize the model
|
40 |
+
print("Loading CodeLlama model...")
|
41 |
+
model = LLM(
|
42 |
+
model="codellama/CodeLlama-7b-hf",
|
43 |
+
trust_remote_code=True,
|
44 |
+
tensor_parallel_size=1
|
45 |
+
)
|
46 |
+
|
47 |
+
# Set sampling parameters
|
48 |
+
sampling_params = SamplingParams(
|
49 |
+
temperature=0.2, # Lower temperature for more focused code generation
|
50 |
+
top_p=0.95,
|
51 |
+
max_tokens=2048, # Increased max tokens for longer code solutions
|
52 |
+
stop_tokens=["\n\n\n", "```"] # Stop at clear code boundaries
|
53 |
+
)
|
54 |
+
|
55 |
+
# Load data
|
56 |
+
print("Loading input data...")
|
57 |
+
data = load_jsonl(args.input_file)
|
58 |
+
|
59 |
+
# Prepare prompts
|
60 |
+
prompts = []
|
61 |
+
for item in data:
|
62 |
+
instruction = item.get('instruction', '')
|
63 |
+
input_text = item.get('input', '')
|
64 |
+
prompt = format_prompt(instruction, input_text)
|
65 |
+
prompts.append(prompt)
|
66 |
+
|
67 |
+
# Process in batches
|
68 |
+
print("Generating outputs...")
|
69 |
+
outputs = []
|
70 |
+
for i in tqdm(range(0, len(prompts), args.batch_size)):
|
71 |
+
batch_prompts = prompts[i:i + args.batch_size]
|
72 |
+
batch_outputs = model.generate(batch_prompts, sampling_params)
|
73 |
+
|
74 |
+
# Process outputs
|
75 |
+
for j, output in enumerate(batch_outputs):
|
76 |
+
idx = i + j
|
77 |
+
if idx < len(data):
|
78 |
+
# Clean the output to extract only the code
|
79 |
+
generated_code = output.outputs[0].text.strip()
|
80 |
+
# Remove any markdown code blocks if present
|
81 |
+
if generated_code.startswith("```"):
|
82 |
+
generated_code = generated_code.split("```")[1]
|
83 |
+
if generated_code.startswith("python"):
|
84 |
+
generated_code = generated_code[6:]
|
85 |
+
generated_code = generated_code.strip()
|
86 |
+
|
87 |
+
result = {
|
88 |
+
'instruction': data[idx]['instruction'],
|
89 |
+
'input': data[idx]['input'],
|
90 |
+
'output': generated_code
|
91 |
+
}
|
92 |
+
outputs.append(result)
|
93 |
+
|
94 |
+
# Save results
|
95 |
+
print("Saving results...")
|
96 |
+
save_jsonl(outputs, args.output_file)
|
97 |
+
print(f"Processing complete. Results saved to {args.output_file}")
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
main()
|