code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Dict = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : float | Decimal , snake_case : float = 10**-10 ) -> float: """simple docstring""" a : Dict = a while True: a : Any = Decimal(snake_case ) - ( Decimal(eval(snake_case ) ) / Decimal(eval(str(diff(snake_case ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case ) ) < precision: # noqa: S307 return float(snake_case ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
345
1
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline UpperCamelCase : List[str] = logging.get_logger(__name__) @add_end_docstrings(a_ ) class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Optional[int] , **UpperCAmelCase_ : Dict): """simple docstring""" super().__init__(**UpperCAmelCase_) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""") # No specific FOR_XXX available yet def __call__( self : List[Any] , UpperCAmelCase_ : Union[np.ndarray, bytes, str] , **UpperCAmelCase_ : Tuple): """simple docstring""" return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , **UpperCAmelCase_ : List[str]): """simple docstring""" a : Optional[Any] = {} if "candidate_labels" in kwargs: a : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: a : List[str] = kwargs['hypothesis_template'] return preprocess_params, {}, {} def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple="This is a sound of {}."): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): if audio.startswith('http://') or audio.startswith('https://'): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png a : Tuple = requests.get(UpperCAmelCase_).content else: with open(UpperCAmelCase_ , 'rb') as f: a : str = f.read() if isinstance(UpperCAmelCase_ , UpperCAmelCase_): a : Tuple = ffmpeg_read(UpperCAmelCase_ , self.feature_extractor.sampling_rate) if not isinstance(UpperCAmelCase_ , np.ndarray): raise ValueError('We expect a numpy ndarray as input') if len(audio.shape) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline') a : Union[str, Any] = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt') a : Optional[Any] = candidate_labels a : List[str] = [hypothesis_template.format(UpperCAmelCase_) for x in candidate_labels] a : Tuple = self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework , padding=UpperCAmelCase_) a : List[str] = [text_inputs] return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : List[str]): """simple docstring""" a : List[str] = model_inputs.pop('candidate_labels') a : str = model_inputs.pop('text_inputs') if isinstance(text_inputs[0] , UpperCAmelCase_): a : int = text_inputs[0] else: # Batching case. a : Optional[Any] = text_inputs[0][0] a : Tuple = self.model(**UpperCAmelCase_ , **UpperCAmelCase_) a : int = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : List[Any]): """simple docstring""" a : Any = model_outputs.pop('candidate_labels') a : List[str] = model_outputs['logits'][0] if self.framework == "pt": a : Optional[Any] = logits.softmax(dim=0) a : Optional[Any] = probs.tolist() else: raise ValueError('`tf` framework not supported.') a : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCAmelCase_ , UpperCAmelCase_) , key=lambda UpperCAmelCase_: -x[0]) ] return result
345
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=1_3 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=9_9 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : int=3_2 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int="last" , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=0 , ): """simple docstring""" a : Tuple = parent a : Optional[Any] = batch_size a : Tuple = seq_length a : Union[str, Any] = is_training a : List[str] = use_input_lengths a : Union[str, Any] = use_token_type_ids a : Optional[int] = use_labels a : int = gelu_activation a : Dict = sinusoidal_embeddings a : Any = causal a : Optional[int] = asm a : int = n_langs a : List[str] = vocab_size a : List[str] = n_special a : List[str] = hidden_size a : Any = num_hidden_layers a : Union[str, Any] = num_attention_heads a : Optional[Any] = hidden_dropout_prob a : str = attention_probs_dropout_prob a : Dict = max_position_embeddings a : Union[str, Any] = type_sequence_label_size a : str = initializer_range a : List[Any] = num_labels a : Union[str, Any] = num_choices a : Optional[Any] = summary_type a : Optional[Any] = use_proj a : Optional[Any] = scope a : Dict = bos_token_id def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) a : Optional[int] = None if self.use_input_lengths: a : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a : int = None if self.use_token_type_ids: a : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a : Optional[Any] = None a : Tuple = None a : Optional[Any] = None if self.use_labels: a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : Optional[Any] = ids_tensor([self.batch_size] , 2).float() a : Dict = ids_tensor([self.batch_size] , self.num_choices) a : Any = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Any = XLMModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_ , lengths=UpperCAmelCase_ , langs=UpperCAmelCase_) a : str = model(UpperCAmelCase_ , langs=UpperCAmelCase_) a : int = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , ): """simple docstring""" a : Optional[Any] = XLMWithLMHeadModel(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Union[str, Any] = XLMForQuestionAnsweringSimple(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_) a : Tuple = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) a : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , ): """simple docstring""" a : Any = XLMForQuestionAnswering(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_) a : Dict = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , p_mask=UpperCAmelCase_ , ) a : int = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , ) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() a : int = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , ): """simple docstring""" a : Dict = XLMForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_) a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , ): """simple docstring""" a : Dict = self.num_labels a : int = XLMForTokenClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , ): """simple docstring""" a : str = self.num_choices a : Dict = XLMForMultipleChoice(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : str = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Any = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : int = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Union[str, Any] = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" A : int = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A : Optional[Any] = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=False): """simple docstring""" a : List[Any] = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": a : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) a : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[Any] = XLMModelTester(self) a : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , emb_dim=3_7) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_attentions in attentions] , [True] * len(UpperCAmelCase_)) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(UpperCAmelCase_): # adds PAD dummy token a : List[str] = min_length + idx + 1 a : Optional[Any] = min_length + idx + 1 a : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Union[str, Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase_) , ) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(UpperCAmelCase_): # adds PAD dummy token a : int = min_length + idx + 1 a : Any = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase_) , ) pass @slow def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Union[str, Any] = XLMModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(UpperCAmelCase_) a : List[Any] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase_) # the president a : Dict = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference a : Optional[Any] = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase_)
345
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) a : List[str] = str(bin(snake_case ) )[2:] # remove the leading "0b" a : Any = str(bin(snake_case ) )[2:] a : Optional[Any] = max(len(snake_case ) , len(snake_case ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case ) , b_binary.zfill(snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
345
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase : List[str] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Any = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = "blenderbot-small" A : Union[str, Any] = ["past_key_values"] A : List[str] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , UpperCAmelCase_ : List[Any]=5_0_2_6_5 , UpperCAmelCase_ : Any=5_1_2 , UpperCAmelCase_ : Optional[Any]=8 , UpperCAmelCase_ : Tuple=2_0_4_8 , UpperCAmelCase_ : Optional[int]=1_6 , UpperCAmelCase_ : str=8 , UpperCAmelCase_ : Optional[int]=2_0_4_8 , UpperCAmelCase_ : Tuple=1_6 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Any=5_1_2 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Union[str, Any]=2 , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : List[Any] = vocab_size a : Optional[Any] = max_position_embeddings a : Optional[Any] = d_model a : Dict = encoder_ffn_dim a : List[Any] = encoder_layers a : Dict = encoder_attention_heads a : Optional[int] = decoder_ffn_dim a : Optional[int] = decoder_layers a : Tuple = decoder_attention_heads a : List[str] = dropout a : List[Any] = attention_dropout a : Dict = activation_dropout a : Tuple = activation_function a : Union[str, Any] = init_std a : Tuple = encoder_layerdrop a : List[str] = decoder_layerdrop a : Optional[int] = use_cache a : str = encoder_layers a : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , forced_eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) class UpperCamelCase ( a_ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: a : Union[str, Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: a : Any = {0: 'batch'} a : Union[str, Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: a : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} a : Union[str, Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase_ , direction='inputs') elif self.task == "causal-lm": # TODO: figure this case out. a : Optional[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: a , a : Any = self.num_layers for i in range(UpperCAmelCase_): a : Tuple = {0: 'batch', 2: 'past_sequence + sequence'} a : List[Any] = {0: 'batch', 2: 'past_sequence + sequence'} else: a : str = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ]) return common_inputs @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: a : Dict = super().outputs else: a : Union[str, Any] = super(UpperCAmelCase_ , self).outputs if self.use_past: a , a : Optional[Any] = self.num_layers for i in range(UpperCAmelCase_): a : Optional[int] = {0: 'batch', 2: 'past_sequence + sequence'} a : Dict = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): """simple docstring""" a : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # Generate decoder inputs a : Optional[Any] = seq_length if not self.use_past else 1 a : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) a : Optional[int] = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} a : Union[str, Any] = dict(**UpperCAmelCase_ , **UpperCAmelCase_) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch a , a : int = common_inputs['input_ids'].shape a : Optional[int] = common_inputs['decoder_input_ids'].shape[1] a , a : Tuple = self.num_attention_heads a : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) a : List[Any] = decoder_seq_length + 3 a : Optional[int] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) a : Dict = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCAmelCase_ , UpperCAmelCase_)] , dim=1) a : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered a , a : List[Any] = self.num_layers a : Union[str, Any] = min(UpperCAmelCase_ , UpperCAmelCase_) a : Optional[int] = max(UpperCAmelCase_ , UpperCAmelCase_) - min_num_layers a : Tuple = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCAmelCase_): common_inputs["past_key_values"].append( ( torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), )) # TODO: test this. a : Dict = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCAmelCase_ , UpperCAmelCase_): common_inputs["past_key_values"].append((torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_))) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): """simple docstring""" a : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch a , a : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values a : Any = seqlen + 2 a , a : Optional[int] = self.num_layers a , a : int = self.num_attention_heads a : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) a : Dict = common_inputs['attention_mask'].dtype a : Tuple = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCAmelCase_ , UpperCAmelCase_ , dtype=UpperCAmelCase_)] , dim=1) a : Dict = [ (torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_)) for _ in range(UpperCAmelCase_) ] return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): """simple docstring""" a : Optional[int] = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a : List[str] = tokenizer.num_special_tokens_to_add(UpperCAmelCase_) a : Any = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase_) # Generate dummy inputs according to compute batch and sequence a : Optional[Any] = [' '.join([tokenizer.unk_token]) * seq_length] * batch_size a : List[str] = dict(tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_)) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: a : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_) elif self.task == "causal-lm": a : str = self._generate_dummy_inputs_for_causal_lm( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_) else: a : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: a : Optional[Any] = super()._flatten_past_key_values_(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) else: a : Any = super(UpperCAmelCase_ , self)._flatten_past_key_values_( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
345
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Tuple = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : str = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = "encodec" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict=[1.5, 3.0, 6.0, 12.0, 24.0] , UpperCAmelCase_ : int=2_4_0_0_0 , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Tuple=1_2_8 , UpperCAmelCase_ : List[Any]=3_2 , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : Optional[Any]=[8, 5, 4, 2] , UpperCAmelCase_ : str="weight_norm" , UpperCAmelCase_ : List[str]=7 , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : int="reflect" , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : Dict=1_0_2_4 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Any=True , **UpperCAmelCase_ : List[Any] , ): """simple docstring""" a : List[Any] = target_bandwidths a : str = sampling_rate a : int = audio_channels a : str = normalize a : str = chunk_length_s a : Tuple = overlap a : Optional[int] = hidden_size a : Union[str, Any] = num_filters a : List[str] = num_residual_layers a : Union[str, Any] = upsampling_ratios a : str = norm_type a : List[str] = kernel_size a : Union[str, Any] = last_kernel_size a : List[Any] = residual_kernel_size a : Any = dilation_growth_rate a : Any = use_causal_conv a : List[str] = pad_mode a : Optional[int] = compress a : List[Any] = num_lstm_layers a : Optional[Any] = trim_right_ratio a : Any = codebook_size a : Any = codebook_dim if codebook_dim is not None else hidden_size a : Dict = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""") super().__init__(**UpperCAmelCase_) @property def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length)) @property def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Optional[int] = np.prod(self.upsampling_ratios) return math.ceil(self.sampling_rate / hop_length) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return int(1_0_0_0 * self.target_bandwidths[-1] // (self.frame_rate * 1_0))
345
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = "data2vec-audio" def __init__( self : Dict , UpperCAmelCase_ : Optional[int]=3_2 , UpperCAmelCase_ : Union[str, Any]=7_6_8 , UpperCAmelCase_ : Dict=1_2 , UpperCAmelCase_ : str=1_2 , UpperCAmelCase_ : Optional[Any]=3_0_7_2 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : str=1e-5 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase_ : Dict=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : int=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=1_6 , UpperCAmelCase_ : Optional[Any]=1_9 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=0.05 , UpperCAmelCase_ : Dict=1_0 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Tuple=1_0 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Any="sum" , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=2_5_6 , UpperCAmelCase_ : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase_ : Optional[Any]=(5, 3, 3, 1, 1) , UpperCAmelCase_ : Optional[int]=(1, 2, 3, 1, 1) , UpperCAmelCase_ : int=5_1_2 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : int , ): """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) a : List[Any] = hidden_size a : Any = feat_extract_activation a : Any = list(UpperCAmelCase_) a : Optional[int] = list(UpperCAmelCase_) a : Dict = list(UpperCAmelCase_) a : Tuple = conv_bias a : str = num_conv_pos_embeddings a : Dict = num_conv_pos_embedding_groups a : Optional[Any] = conv_pos_kernel_size a : Any = len(self.conv_dim) a : Tuple = num_hidden_layers a : Any = intermediate_size a : Any = hidden_act a : Dict = num_attention_heads a : Dict = hidden_dropout a : Union[str, Any] = attention_dropout a : Dict = activation_dropout a : Optional[int] = feat_proj_dropout a : Tuple = final_dropout a : Union[str, Any] = layerdrop a : Tuple = layer_norm_eps a : Dict = initializer_range a : Tuple = vocab_size a : int = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a : List[str] = mask_time_prob a : int = mask_time_length a : Optional[int] = mask_time_min_masks a : Dict = mask_feature_prob a : List[str] = mask_feature_length a : str = mask_feature_min_masks # ctc loss a : str = ctc_loss_reduction a : Optional[Any] = ctc_zero_infinity # adapter a : List[str] = add_adapter a : Optional[Any] = adapter_kernel_size a : int = adapter_stride a : str = num_adapter_layers a : Optional[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a : List[Any] = list(UpperCAmelCase_) a : List[str] = list(UpperCAmelCase_) a : str = list(UpperCAmelCase_) a : Optional[Any] = xvector_output_dim @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return math.prod(self.conv_stride)
345
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : List[str] = logging.get_logger(__name__) # TODO Update this UpperCamelCase : Any = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = "esm" def __init__( self : str , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=7_6_8 , UpperCAmelCase_ : Dict=1_2 , UpperCAmelCase_ : Optional[int]=1_2 , UpperCAmelCase_ : List[Any]=3_0_7_2 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[Any]=1_0_2_6 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : int=1e-12 , UpperCAmelCase_ : int="absolute" , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Dict=None , **UpperCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , mask_token_id=UpperCAmelCase_ , **UpperCAmelCase_) a : int = vocab_size a : Dict = hidden_size a : Tuple = num_hidden_layers a : Dict = num_attention_heads a : Dict = intermediate_size a : List[Any] = hidden_dropout_prob a : int = attention_probs_dropout_prob a : int = max_position_embeddings a : List[Any] = initializer_range a : Tuple = layer_norm_eps a : Dict = position_embedding_type a : Optional[Any] = use_cache a : List[str] = emb_layer_norm_before a : Optional[Any] = token_dropout a : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.') a : Optional[int] = EsmFoldConfig() elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): a : Optional[int] = EsmFoldConfig(**UpperCAmelCase_) a : Any = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!') a : int = get_default_vocab_list() else: a : List[Any] = vocab_list else: a : Optional[Any] = None a : Union[str, Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , UpperCAmelCase_): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!') def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : List[Any] = super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase_): a : int = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase : """simple docstring""" A : str = None A : bool = True A : bool = False A : bool = False A : bool = False A : float = 0 A : bool = True A : bool = False A : int = 128 A : "TrunkConfig" = None def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" if self.trunk is None: a : Any = TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase_): a : Dict = TrunkConfig(**self.trunk) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : str = asdict(self) a : List[Any] = self.trunk.to_dict() return output @dataclass class UpperCamelCase : """simple docstring""" A : int = 48 A : int = 1024 A : int = 128 A : int = 32 A : int = 32 A : int = 32 A : float = 0 A : float = 0 A : bool = False A : int = 4 A : Optional[int] = 128 A : "StructureModuleConfig" = None def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" if self.structure_module is None: a : Optional[Any] = StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase_): a : Tuple = StructureModuleConfig(**self.structure_module) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""") if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""") if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""") a : str = self.sequence_state_dim // self.sequence_head_width a : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""") if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""") if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""") if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""") def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : List[Any] = asdict(self) a : Dict = self.structure_module.to_dict() return output @dataclass class UpperCamelCase : """simple docstring""" A : int = 384 A : int = 128 A : int = 16 A : int = 128 A : int = 12 A : int = 4 A : int = 8 A : float = 0.1 A : int = 8 A : int = 1 A : int = 2 A : int = 7 A : int = 10 A : float = 1E-8 A : float = 1E5 def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return asdict(self) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
345
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase : Optional[Any] = logging.getLogger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = "masked_bert" def __init__( self : Tuple , UpperCAmelCase_ : List[Any]=3_0_5_2_2 , UpperCAmelCase_ : str=7_6_8 , UpperCAmelCase_ : Optional[Any]=1_2 , UpperCAmelCase_ : Optional[int]=1_2 , UpperCAmelCase_ : Union[str, Any]=3_0_7_2 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[Any]=1e-12 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Dict="topK" , UpperCAmelCase_ : str="constant" , UpperCAmelCase_ : Optional[Any]=0.0 , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) a : Union[str, Any] = vocab_size a : List[Any] = hidden_size a : List[str] = num_hidden_layers a : Any = num_attention_heads a : Optional[Any] = hidden_act a : str = intermediate_size a : Dict = hidden_dropout_prob a : Any = attention_probs_dropout_prob a : Any = max_position_embeddings a : Dict = type_vocab_size a : List[str] = initializer_range a : int = layer_norm_eps a : Dict = pruning_method a : List[str] = mask_init a : Union[str, Any] = mask_scale
345
1
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: """simple docstring""" a : Union[str, Any] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } a : Optional[int] = Dataset.from_dict(snake_case ) return dataset class UpperCamelCase ( a_ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Optional[int] = get_dataset() a : Dict = make_duplicate_clusters(UpperCAmelCase_ , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Tuple = get_dataset() a , a : List[str] = deduplicate_dataset(UpperCAmelCase_) self.assertEqual(len(UpperCAmelCase_) , 2) print(UpperCAmelCase_) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCAmelCase_)
345
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any): """simple docstring""" super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) a : str = {} def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int): """simple docstring""" a : Dict = super().add_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.') def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=1 , **UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Any = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) else: a : int = [] for i in range(UpperCAmelCase_): a : Union[str, Any] = placeholder_token + f"""_{i}""" self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""") a : Any = output def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=1.0): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): a : Any = [] for i in range(len(UpperCAmelCase_)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCAmelCase_)) return output for placeholder_token in self.token_map: if placeholder_token in text: a : List[Any] = self.token_map[placeholder_token] a : int = tokens[: 1 + int(len(UpperCAmelCase_) * prop_tokens_to_load)] if vector_shuffle: a : List[Any] = copy.copy(UpperCAmelCase_) random.shuffle(UpperCAmelCase_) a : List[str] = text.replace(UpperCAmelCase_ , ' '.join(UpperCAmelCase_)) return text def __call__( self : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[int]=1.0 , **UpperCAmelCase_ : str): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1.0 , **UpperCAmelCase_ : Dict): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , )
345
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Union[str, Any]=0.9_99 , snake_case : Tuple="cosine" , ) -> str: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case : str ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) a : Optional[Any] = [] for i in range(snake_case ): a : Optional[int] = i / num_diffusion_timesteps a : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case ) / alpha_bar_fn(snake_case ) , snake_case ) ) return torch.tensor(snake_case , dtype=torch.floataa ) class UpperCamelCase ( a_ , a_ ): """simple docstring""" A : str = [e.name for e in KarrasDiffusionSchedulers] A : Union[str, Any] = 2 @register_to_config def __init__( self : Any , UpperCAmelCase_ : int = 1_0_0_0 , UpperCAmelCase_ : float = 0.0_00_85 , UpperCAmelCase_ : float = 0.0_12 , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , UpperCAmelCase_ : str = "epsilon" , UpperCAmelCase_ : Optional[bool] = False , UpperCAmelCase_ : Optional[bool] = False , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : str = "linspace" , UpperCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: a : List[Any] = torch.tensor(UpperCAmelCase_ , dtype=torch.floataa) elif beta_schedule == "linear": a : Tuple = torch.linspace(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a : str = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCAmelCase_ , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a : Tuple = betas_for_alpha_bar(UpperCAmelCase_ , alpha_transform_type='cosine') elif beta_schedule == "exp": a : List[Any] = betas_for_alpha_bar(UpperCAmelCase_ , alpha_transform_type='exp') else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""") a : int = 1.0 - self.betas a : Any = torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) a : Tuple = use_karras_sigmas def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : int=None): """simple docstring""" if schedule_timesteps is None: a : List[str] = self.timesteps a : Optional[int] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: a : Any = 1 if len(UpperCAmelCase_) > 1 else 0 else: a : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_) else timestep a : Any = self._index_counter[timestep_int] return indices[pos].item() @property def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" a : Any = self.index_for_timestep(UpperCAmelCase_) a : Optional[int] = self.sigmas[step_index] a : int = sample / ((sigma**2 + 1) ** 0.5) return sample def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, torch.device] = None , UpperCAmelCase_ : Optional[int] = None , ): """simple docstring""" a : Any = num_inference_steps a : Optional[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": a : int = np.linspace(0 , num_train_timesteps - 1 , UpperCAmelCase_ , dtype=UpperCAmelCase_)[::-1].copy() elif self.config.timestep_spacing == "leading": a : Dict = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a : Optional[Any] = (np.arange(0 , UpperCAmelCase_) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": a : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a : Dict = (np.arange(UpperCAmelCase_ , 0 , -step_ratio)).round().copy().astype(UpperCAmelCase_) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""") a : List[Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) a : str = np.log(UpperCAmelCase_) a : Any = np.interp(UpperCAmelCase_ , np.arange(0 , len(UpperCAmelCase_)) , UpperCAmelCase_) if self.config.use_karras_sigmas: a : Optional[int] = self._convert_to_karras(in_sigmas=UpperCAmelCase_ , num_inference_steps=self.num_inference_steps) a : List[str] = np.array([self._sigma_to_t(UpperCAmelCase_ , UpperCAmelCase_) for sigma in sigmas]) a : List[Any] = np.concatenate([sigmas, [0.0]]).astype(np.floataa) a : str = torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_) a : Optional[int] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]) a : str = torch.from_numpy(UpperCAmelCase_) a : Optional[int] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) if str(UpperCAmelCase_).startswith('mps'): # mps does not support float64 a : Optional[Any] = timesteps.to(UpperCAmelCase_ , dtype=torch.floataa) else: a : List[str] = timesteps.to(device=UpperCAmelCase_) # empty dt and derivative a : Tuple = None a : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter a : Optional[Any] = defaultdict(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" a : str = np.log(UpperCAmelCase_) # get distribution a : int = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range a : Union[str, Any] = np.cumsum((dists >= 0) , axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) a : Union[str, Any] = low_idx + 1 a : Tuple = log_sigmas[low_idx] a : str = log_sigmas[high_idx] # interpolate sigmas a : List[Any] = (low - log_sigma) / (low - high) a : str = np.clip(UpperCAmelCase_ , 0 , 1) # transform interpolation to time range a : str = (1 - w) * low_idx + w * high_idx a : List[Any] = t.reshape(sigma.shape) return t def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Dict): """simple docstring""" a : float = in_sigmas[-1].item() a : float = in_sigmas[0].item() a : int = 7.0 # 7.0 is the value used in the paper a : Any = np.linspace(0 , 1 , UpperCAmelCase_) a : List[Any] = sigma_min ** (1 / rho) a : Any = sigma_max ** (1 / rho) a : str = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" return self.dt is None def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , UpperCAmelCase_ : Union[float, torch.FloatTensor] , UpperCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , UpperCAmelCase_ : bool = True , ): """simple docstring""" a : Optional[int] = self.index_for_timestep(UpperCAmelCase_) # advance index counter by 1 a : Optional[Any] = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: a : Tuple = self.sigmas[step_index] a : Dict = self.sigmas[step_index + 1] else: # 2nd order / Heun's method a : List[str] = self.sigmas[step_index - 1] a : Optional[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API a : Any = 0 a : Optional[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": a : Any = sigma_hat if self.state_in_first_order else sigma_next a : str = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": a : List[str] = sigma_hat if self.state_in_first_order else sigma_next a : Tuple = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": a : Optional[int] = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""") if self.config.clip_sample: a : Any = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order a : Any = (sample - pred_original_sample) / sigma_hat # 3. delta timestep a : Any = sigma_next - sigma_hat # store for 2nd order step a : str = derivative a : Any = dt a : Optional[int] = sample else: # 2. 2nd order / Heun's method a : str = (sample - pred_original_sample) / sigma_next a : List[str] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample a : str = self.dt a : Optional[int] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" a : Optional[Any] = None a : Optional[Any] = None a : List[str] = None a : int = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.FloatTensor , ): """simple docstring""" a : int = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_): # mps does not support float64 a : Dict = self.timesteps.to(original_samples.device , dtype=torch.floataa) a : Union[str, Any] = timesteps.to(original_samples.device , dtype=torch.floataa) else: a : Dict = self.timesteps.to(original_samples.device) a : Optional[Any] = timesteps.to(original_samples.device) a : Dict = [self.index_for_timestep(UpperCAmelCase_ , UpperCAmelCase_) for t in timesteps] a : List[Any] = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): a : Optional[Any] = sigma.unsqueeze(-1) a : Tuple = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int]): """simple docstring""" return self.config.num_train_timesteps
345
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[Any]: """simple docstring""" a : Union[str, Any] = SwinConfig() a : Optional[int] = swin_name.split('_' ) a : Union[str, Any] = name_split[1] a : Dict = int(name_split[4] ) a : Union[str, Any] = int(name_split[3][-1] ) if model_size == "tiny": a : Optional[Any] = 96 a : Any = (2, 2, 6, 2) a : List[str] = (3, 6, 12, 24) elif model_size == "small": a : int = 96 a : List[str] = (2, 2, 18, 2) a : int = (3, 6, 12, 24) elif model_size == "base": a : Tuple = 128 a : Optional[int] = (2, 2, 18, 2) a : List[Any] = (4, 8, 16, 32) else: a : Dict = 192 a : str = (2, 2, 18, 2) a : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: a : Any = 21_841 else: a : str = 1_000 a : str = 'huggingface/label-files' a : Optional[Any] = 'imagenet-1k-id2label.json' a : Dict = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) a : Tuple = {int(snake_case ): v for k, v in idalabel.items()} a : int = idalabel a : str = {v: k for k, v in idalabel.items()} a : Dict = img_size a : List[Any] = num_classes a : str = embed_dim a : Dict = depths a : Union[str, Any] = num_heads a : int = window_size return config def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[int]: """simple docstring""" if "patch_embed.proj" in name: a : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a : Tuple = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a : Optional[int] = 'encoder.' + name if "attn.proj" in name: a : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: a : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a : Any = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": a : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": a : List[str] = 'layernorm.bias' if "head" in name: a : Union[str, Any] = name.replace('head' , 'classifier' ) else: a : List[Any] = 'swin.' + name return name def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): a : Any = orig_state_dict.pop(snake_case ) if "mask" in key: continue elif "qkv" in key: a : Optional[Any] = key.split('.' ) a : Dict = int(key_split[1] ) a : Optional[int] = int(key_split[3] ) a : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a : Optional[Any] = val[:dim, :] a : List[Any] = val[ dim : dim * 2, : ] a : List[Any] = val[-dim:, :] else: a : Dict = val[ :dim ] a : Union[str, Any] = val[ dim : dim * 2 ] a : Union[str, Any] = val[ -dim: ] else: a : Dict = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Dict ) -> List[str]: """simple docstring""" a : Any = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() a : str = get_swin_config(snake_case ) a : Optional[int] = SwinForImageClassification(snake_case ) model.eval() a : Union[str, Any] = convert_state_dict(timm_model.state_dict() , snake_case ) model.load_state_dict(snake_case ) a : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) a : str = Image.open(requests.get(snake_case , stream=snake_case ).raw ) a : Union[str, Any] = image_processor(images=snake_case , return_tensors='pt' ) a : int = timm_model(inputs['pixel_values'] ) a : Optional[int] = model(**snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCamelCase : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
345
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig UpperCamelCase : List[Any] = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = "albert" def __init__( self : int , UpperCAmelCase_ : Optional[int]=3_0_0_0_0 , UpperCAmelCase_ : int=1_2_8 , UpperCAmelCase_ : List[str]=4_0_9_6 , UpperCAmelCase_ : Dict=1_2 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=6_4 , UpperCAmelCase_ : int=1_6_3_8_4 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : List[Any]="gelu_new" , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Union[str, Any]=5_1_2 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : str=1e-12 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Any="absolute" , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Optional[Any]=3 , **UpperCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_) a : str = vocab_size a : Dict = embedding_size a : List[str] = hidden_size a : Tuple = num_hidden_layers a : Tuple = num_hidden_groups a : Optional[int] = num_attention_heads a : Optional[int] = inner_group_num a : Dict = hidden_act a : Optional[Any] = intermediate_size a : Any = hidden_dropout_prob a : List[str] = attention_probs_dropout_prob a : Tuple = max_position_embeddings a : Optional[int] = type_vocab_size a : Any = initializer_range a : str = layer_norm_eps a : List[Any] = classifier_dropout_prob a : Tuple = position_embedding_type class UpperCamelCase ( a_ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" if self.task == "multiple-choice": a : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: a : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
345
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class UpperCamelCase : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase_ : Tuple): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden a : Dict = deepcopy(UpperCAmelCase_) elif os.path.exists(UpperCAmelCase_): with io.open(UpperCAmelCase_ , 'r' , encoding='utf-8') as f: a : Union[str, Any] = json.load(UpperCAmelCase_) else: try: a : Union[str, Any] = baseaa.urlsafe_baadecode(UpperCAmelCase_).decode('utf-8') a : List[str] = json.loads(UpperCAmelCase_) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""") a : Optional[int] = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : str = self.get_value('zero_optimization.stage' , -1) # offload a : Any = False if self.is_zeroa() or self.is_zeroa(): a : Tuple = set(['cpu', 'nvme']) a : int = set( [ self.get_value('zero_optimization.offload_optimizer.device'), self.get_value('zero_optimization.offload_param.device'), ]) if len(offload_devices & offload_devices_valid) > 0: a : List[str] = True def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Dict): """simple docstring""" a : List[str] = self.config # find the config node of interest if it exists a : int = ds_key_long.split('.') a : Union[str, Any] = nodes.pop() for node in nodes: a : Union[str, Any] = config.get(UpperCAmelCase_) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=None): """simple docstring""" a , a : int = self.find_config_node(UpperCAmelCase_) if config is None: return default return config.get(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=False): """simple docstring""" a : Any = self.config # find the config node of interest if it exists a : Optional[Any] = ds_key_long.split('.') for node in nodes: a : List[str] = config a : int = config.get(UpperCAmelCase_) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""") else: return # if found remove it if parent_config is not None: parent_config.pop(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : str): """simple docstring""" a : List[str] = self.get_value(UpperCAmelCase_) return False if value is None else bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : List[Any] = self.get_value(UpperCAmelCase_) return False if value is None else not bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 3 def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return self._offload class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : int): """simple docstring""" a : Union[str, Any] = engine def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): """simple docstring""" self.engine.backward(UpperCAmelCase_ , **UpperCAmelCase_) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any): """simple docstring""" super().__init__(UpperCAmelCase_ , device_placement=UpperCAmelCase_ , scaler=UpperCAmelCase_) a : List[str] = hasattr(self.optimizer , 'overflow') def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Dict=None): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]=0.0_01 , UpperCAmelCase_ : List[Any]=0 , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : int = params a : str = lr a : Tuple = weight_decay a : Dict = kwargs class UpperCamelCase : """simple docstring""" def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=0 , **UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = optimizer a : Tuple = total_num_steps a : Optional[Any] = warmup_num_steps a : List[str] = kwargs
345
1
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCamelCase : List[str] = logging.get_logger(__name__) @dataclass class UpperCamelCase : """simple docstring""" A : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) A : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) A : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A : bool = field( default=a_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Union[str, Any] = self.task_name.lower() class UpperCamelCase ( a_ ): """simple docstring""" A : int = "train" A : Tuple = "dev" A : List[Any] = "test" class UpperCamelCase ( a_ ): """simple docstring""" A : GlueDataTrainingArguments A : str A : List[InputFeatures] def __init__( self : Tuple , UpperCAmelCase_ : GlueDataTrainingArguments , UpperCAmelCase_ : PreTrainedTokenizerBase , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Union[str, Split] = Split.train , UpperCAmelCase_ : Optional[str] = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , UpperCAmelCase_ , ) a : Dict = args a : int = glue_processors[args.task_name]() a : int = glue_output_modes[args.task_name] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): try: a : str = Split[mode] except KeyError: raise KeyError('mode is not a valid split name') # Load data features from cache or dataset file a : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) a : Tuple = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) a , a : str = label_list[2], label_list[1] a : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a : Union[str, Any] = cached_features_file + '.lock' with FileLock(UpperCAmelCase_): if os.path.exists(UpperCAmelCase_) and not args.overwrite_cache: a : Optional[Any] = time.time() a : Optional[Any] = torch.load(UpperCAmelCase_) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""") if mode == Split.dev: a : List[Any] = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: a : Optional[Any] = self.processor.get_test_examples(args.data_dir) else: a : List[str] = self.processor.get_train_examples(args.data_dir) if limit_length is not None: a : Dict = examples[:limit_length] a : List[Any] = glue_convert_examples_to_features( UpperCAmelCase_ , UpperCAmelCase_ , max_length=args.max_seq_length , label_list=UpperCAmelCase_ , output_mode=self.output_mode , ) a : Dict = time.time() torch.save(self.features , UpperCAmelCase_) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""") def __len__( self : Tuple): """simple docstring""" return len(self.features) def __getitem__( self : Optional[int] , UpperCAmelCase_ : List[str]): """simple docstring""" return self.features[i] def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return self.label_list
345
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCamelCase : List[str] = logging.get_logger(__name__) @dataclass class UpperCamelCase : """simple docstring""" A : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) A : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) A : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A : bool = field( default=a_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Union[str, Any] = self.task_name.lower() class UpperCamelCase ( a_ ): """simple docstring""" A : int = "train" A : Tuple = "dev" A : List[Any] = "test" class UpperCamelCase ( a_ ): """simple docstring""" A : GlueDataTrainingArguments A : str A : List[InputFeatures] def __init__( self : Tuple , UpperCAmelCase_ : GlueDataTrainingArguments , UpperCAmelCase_ : PreTrainedTokenizerBase , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Union[str, Split] = Split.train , UpperCAmelCase_ : Optional[str] = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , UpperCAmelCase_ , ) a : Dict = args a : int = glue_processors[args.task_name]() a : int = glue_output_modes[args.task_name] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): try: a : str = Split[mode] except KeyError: raise KeyError('mode is not a valid split name') # Load data features from cache or dataset file a : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) a : Tuple = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) a , a : str = label_list[2], label_list[1] a : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a : Union[str, Any] = cached_features_file + '.lock' with FileLock(UpperCAmelCase_): if os.path.exists(UpperCAmelCase_) and not args.overwrite_cache: a : Optional[Any] = time.time() a : Optional[Any] = torch.load(UpperCAmelCase_) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""") if mode == Split.dev: a : List[Any] = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: a : Optional[Any] = self.processor.get_test_examples(args.data_dir) else: a : List[str] = self.processor.get_train_examples(args.data_dir) if limit_length is not None: a : Dict = examples[:limit_length] a : List[Any] = glue_convert_examples_to_features( UpperCAmelCase_ , UpperCAmelCase_ , max_length=args.max_seq_length , label_list=UpperCAmelCase_ , output_mode=self.output_mode , ) a : Dict = time.time() torch.save(self.features , UpperCAmelCase_) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""") def __len__( self : Tuple): """simple docstring""" return len(self.features) def __getitem__( self : Optional[int] , UpperCAmelCase_ : List[str]): """simple docstring""" return self.features[i] def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return self.label_list
345
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : list , snake_case : int = 0 ) -> list: """simple docstring""" a : int = length or len(snake_case ) a : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: a , a : List[Any] = list_data[i + 1], list_data[i] a : Union[str, Any] = True return list_data if not swapped else bubble_sort(snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
345
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : Dict = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Any = ["pixel_values"] def __init__( self : str , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : str = size if size is not None else {'shortest_edge': 2_5_6} a : Dict = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a : int = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Any = do_resize a : List[str] = size a : Union[str, Any] = resample a : int = do_center_crop a : Optional[int] = crop_size a : Tuple = do_rescale a : int = rescale_factor a : Optional[Any] = do_normalize a : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : Optional[int] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a : Union[str, Any] = get_resize_output_image_size(UpperCAmelCase_ , size=size['shortest_edge'] , default_to_square=UpperCAmelCase_) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : List[str] = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[str] , ): """simple docstring""" a : int = do_resize if do_resize is not None else self.do_resize a : int = size if size is not None else self.size a : Union[str, Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = resample if resample is not None else self.resample a : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop a : Union[str, Any] = crop_size if crop_size is not None else self.crop_size a : Dict = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : str = do_rescale if do_rescale is not None else self.do_rescale a : int = rescale_factor if rescale_factor is not None else self.rescale_factor a : str = do_normalize if do_normalize is not None else self.do_normalize a : List[str] = image_mean if image_mean is not None else self.image_mean a : Optional[int] = image_std if image_std is not None else self.image_std a : Dict = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a : List[Any] = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: a : Dict = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_) for image in images] if do_center_crop: a : Any = [self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_) for image in images] if do_rescale: a : Optional[int] = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_) for image in images] if do_normalize: a : Dict = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_) for image in images] a : List[Any] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : List[str] = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Tuple] = None): """simple docstring""" a : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_) != len(UpperCAmelCase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(UpperCAmelCase_): a : Optional[Any] = target_sizes.numpy() a : List[str] = [] for idx in range(len(UpperCAmelCase_)): a : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=UpperCAmelCase_) a : Union[str, Any] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(UpperCAmelCase_) else: a : Optional[int] = logits.argmax(dim=1) a : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
345
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : list[int | float] , snake_case : int , snake_case : int ) -> int | float: """simple docstring""" if len(snake_case ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(snake_case ) or left < -len(snake_case ) or right >= len(snake_case ) or right < -len(snake_case ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] a : Union[str, Any] = (left + right) >> 1 # the middle a : List[str] = find_max(snake_case , snake_case , snake_case ) # find max in range[left, mid] a : Dict = find_max(snake_case , mid + 1 , snake_case ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
345
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : int | float | str , snake_case : int | float | str ) -> list[str]: """simple docstring""" if nth_term == "": return [""] a : Dict = int(snake_case ) a : Optional[int] = int(snake_case ) a : list[str] = [] for temp in range(int(snake_case ) ): series.append(F"""1 / {pow(temp + 1 , int(snake_case ) )}""" if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : Optional[int] = int(input("""Enter the last number (nth term) of the P-Series""")) UpperCamelCase : List[Any] = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
345
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class UpperCamelCase ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): """simple docstring""" def __init__( self : int , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Dict): """simple docstring""" super().__init__(features=UpperCAmelCase_) a : Optional[Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : List[Any]): """simple docstring""" import torch if isinstance(UpperCAmelCase_ , UpperCAmelCase_) and column: if all( isinstance(UpperCAmelCase_ , torch.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return torch.stack(UpperCAmelCase_) return column def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Tuple): """simple docstring""" import torch if isinstance(UpperCAmelCase_ , (str, bytes, type(UpperCAmelCase_))): return value elif isinstance(UpperCAmelCase_ , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() a : Optional[Any] = {} if isinstance(UpperCAmelCase_ , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): a : List[Any] = {'dtype': torch.intaa} elif isinstance(UpperCAmelCase_ , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): a : List[str] = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase_ , PIL.Image.Image): a : Dict = np.asarray(UpperCAmelCase_) return torch.tensor(UpperCAmelCase_ , **{**default_dtype, **self.torch_tensor_kwargs}) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Dict): """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(UpperCAmelCase_ , '__array__') and not isinstance(UpperCAmelCase_ , torch.Tensor): a : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase_ , np.ndarray): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase_) for substruct in data_struct]) elif isinstance(UpperCAmelCase_ , (list, tuple)): return self._consolidate([self.recursive_tensorize(UpperCAmelCase_) for substruct in data_struct]) return self._tensorize(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : dict): """simple docstring""" return map_nested(self._recursive_tensorize , UpperCAmelCase_ , map_list=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : pa.Table): """simple docstring""" a : List[Any] = self.numpy_arrow_extractor().extract_row(UpperCAmelCase_) a : Tuple = self.python_features_decoder.decode_row(UpperCAmelCase_) return self.recursive_tensorize(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : pa.Table): """simple docstring""" a : int = self.numpy_arrow_extractor().extract_column(UpperCAmelCase_) a : Union[str, Any] = self.python_features_decoder.decode_column(UpperCAmelCase_ , pa_table.column_names[0]) a : str = self.recursive_tensorize(UpperCAmelCase_) a : str = self._consolidate(UpperCAmelCase_) return column def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : pa.Table): """simple docstring""" a : int = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase_) a : List[str] = self.python_features_decoder.decode_batch(UpperCAmelCase_) a : Tuple = self.recursive_tensorize(UpperCAmelCase_) for column_name in batch: a : Any = self._consolidate(batch[column_name]) return batch
345
'''simple docstring''' import torch def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" if torch.cuda.is_available(): a : int = torch.cuda.device_count() else: a : Any = 0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
345
1
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase : int = """true""" def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : int=82 , snake_case : Tuple=16 ) -> Union[str, Any]: """simple docstring""" set_seed(42 ) a : List[str] = RegressionModel() a : Union[str, Any] = deepcopy(snake_case ) a : Dict = RegressionDataset(length=snake_case ) a : Dict = DataLoader(snake_case , batch_size=snake_case ) model.to(accelerator.device ) a , a : Optional[int] = accelerator.prepare(snake_case , snake_case ) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( snake_case : Accelerator , snake_case : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" a : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) a : Any = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(snake_case : int ): a : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case , max_length=snake_case ) return outputs with accelerator.main_process_first(): a : Dict = dataset.map( snake_case , batched=snake_case , remove_columns=['idx', 'sentence1', 'sentence2'] , ) a : List[str] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case : Optional[Any] ): if use_longest: return tokenizer.pad(snake_case , padding='longest' , return_tensors='pt' ) return tokenizer.pad(snake_case , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(snake_case , shuffle=snake_case , collate_fn=snake_case , batch_size=16 ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" a : int = Accelerator(dispatch_batches=snake_case , split_batches=snake_case ) a : List[str] = get_dataloader(snake_case , not dispatch_batches ) a : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=snake_case ) a , a : Optional[Any] = accelerator.prepare(snake_case , snake_case ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" a : Dict = [] for batch in dataloader: a , a : Any = batch.values() with torch.no_grad(): a : Tuple = model(snake_case ) a , a : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) a , a : List[str] = [], [] for logit, targ in logits_and_targets: logits.append(snake_case ) targs.append(snake_case ) a , a : Any = torch.cat(snake_case ), torch.cat(snake_case ) return logits, targs def SCREAMING_SNAKE_CASE__ ( snake_case : Accelerator , snake_case : Dict=82 , snake_case : str=False , snake_case : List[str]=False , snake_case : List[Any]=16 ) -> Optional[int]: """simple docstring""" a , a , a : int = get_basic_setup(snake_case , snake_case , snake_case ) a , a : int = generate_predictions(snake_case , snake_case , snake_case ) assert ( len(snake_case ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case )}""" def SCREAMING_SNAKE_CASE__ ( snake_case : bool = False , snake_case : bool = False ) -> List[str]: """simple docstring""" a : int = evaluate.load('glue' , 'mrpc' ) a , a : Tuple = get_mrpc_setup(snake_case , snake_case ) # First do baseline a , a , a : Tuple = setup['no'] model.to(snake_case ) model.eval() for batch in dataloader: batch.to(snake_case ) with torch.inference_mode(): a : List[Any] = model(**snake_case ) a : Optional[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=snake_case , references=batch['labels'] ) a : Tuple = metric.compute() # Then do distributed a , a , a : Tuple = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): a : List[str] = model(**snake_case ) a : Optional[Any] = outputs.logits.argmax(dim=-1 ) a : Optional[int] = batch['labels'] a , a : Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=snake_case , references=snake_case ) a : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" a : Dict = Accelerator(split_batches=snake_case , dispatch_batches=snake_case ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(snake_case , snake_case ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: a : List[Any] = Accelerator(split_batches=snake_case , dispatch_batches=snake_case ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(snake_case , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) a : Optional[Any] = Accelerator() test_torch_metrics(snake_case , 512 ) accelerator.state._reset_state() def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] ) -> int: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
345
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ UpperCamelCase : Optional[Any] = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ UpperCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple="auto" , UpperCAmelCase_ : Any=-1 , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : int=5_0_0 , UpperCAmelCase_ : int="gpt2-large" , UpperCAmelCase_ : Tuple=-1 , UpperCAmelCase_ : Dict=1_0_2_4 , UpperCAmelCase_ : List[str]=2_5 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=2_5 , ): """simple docstring""" a : List[str] = compute_mauve( p_text=UpperCAmelCase_ , q_text=UpperCAmelCase_ , p_features=UpperCAmelCase_ , q_features=UpperCAmelCase_ , p_tokens=UpperCAmelCase_ , q_tokens=UpperCAmelCase_ , num_buckets=UpperCAmelCase_ , pca_max_data=UpperCAmelCase_ , kmeans_explained_var=UpperCAmelCase_ , kmeans_num_redo=UpperCAmelCase_ , kmeans_max_iter=UpperCAmelCase_ , featurize_model_name=UpperCAmelCase_ , device_id=UpperCAmelCase_ , max_text_length=UpperCAmelCase_ , divergence_curve_discretization_size=UpperCAmelCase_ , mauve_scaling_factor=UpperCAmelCase_ , verbose=UpperCAmelCase_ , seed=UpperCAmelCase_ , ) return out
345
1
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCamelCase ( a_ ): """simple docstring""" def __lt__( self : str , UpperCAmelCase_ : Dict): """simple docstring""" return self[-1] < other[-1] def __eq__( self : Optional[Any] , UpperCAmelCase_ : List[str]): """simple docstring""" return self[-1] == other[-1] def SCREAMING_SNAKE_CASE__ ( snake_case : list ) -> list: """simple docstring""" a : list[Stack] = [] # sort into stacks for element in collection: a : Optional[int] = Stack([element] ) a : Union[str, Any] = bisect_left(snake_case , snake_case ) if i != len(snake_case ): stacks[i].append(snake_case ) else: stacks.append(snake_case ) # use a heap-based merge to merge stack efficiently a : List[Any] = merge(*(reversed(snake_case ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCamelCase : str = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase : Dict = [int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
345
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : list[int | float] , snake_case : int , snake_case : int ) -> int | float: """simple docstring""" if len(snake_case ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(snake_case ) or left < -len(snake_case ) or right >= len(snake_case ) or right < -len(snake_case ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] a : Union[str, Any] = (left + right) >> 1 # the middle a : List[str] = find_max(snake_case , snake_case , snake_case ) # find max in range[left, mid] a : Dict = find_max(snake_case , mid + 1 , snake_case ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
345
1
'''simple docstring''' import numpy as np def SCREAMING_SNAKE_CASE__ ( snake_case : np.array ) -> np.array: """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
345
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase : int = """true""" def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : int=82 , snake_case : Tuple=16 ) -> Union[str, Any]: """simple docstring""" set_seed(42 ) a : List[str] = RegressionModel() a : Union[str, Any] = deepcopy(snake_case ) a : Dict = RegressionDataset(length=snake_case ) a : Dict = DataLoader(snake_case , batch_size=snake_case ) model.to(accelerator.device ) a , a : Optional[int] = accelerator.prepare(snake_case , snake_case ) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( snake_case : Accelerator , snake_case : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" a : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) a : Any = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(snake_case : int ): a : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case , max_length=snake_case ) return outputs with accelerator.main_process_first(): a : Dict = dataset.map( snake_case , batched=snake_case , remove_columns=['idx', 'sentence1', 'sentence2'] , ) a : List[str] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case : Optional[Any] ): if use_longest: return tokenizer.pad(snake_case , padding='longest' , return_tensors='pt' ) return tokenizer.pad(snake_case , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(snake_case , shuffle=snake_case , collate_fn=snake_case , batch_size=16 ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" a : int = Accelerator(dispatch_batches=snake_case , split_batches=snake_case ) a : List[str] = get_dataloader(snake_case , not dispatch_batches ) a : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=snake_case ) a , a : Optional[Any] = accelerator.prepare(snake_case , snake_case ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" a : Dict = [] for batch in dataloader: a , a : Any = batch.values() with torch.no_grad(): a : Tuple = model(snake_case ) a , a : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) a , a : List[str] = [], [] for logit, targ in logits_and_targets: logits.append(snake_case ) targs.append(snake_case ) a , a : Any = torch.cat(snake_case ), torch.cat(snake_case ) return logits, targs def SCREAMING_SNAKE_CASE__ ( snake_case : Accelerator , snake_case : Dict=82 , snake_case : str=False , snake_case : List[str]=False , snake_case : List[Any]=16 ) -> Optional[int]: """simple docstring""" a , a , a : int = get_basic_setup(snake_case , snake_case , snake_case ) a , a : int = generate_predictions(snake_case , snake_case , snake_case ) assert ( len(snake_case ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case )}""" def SCREAMING_SNAKE_CASE__ ( snake_case : bool = False , snake_case : bool = False ) -> List[str]: """simple docstring""" a : int = evaluate.load('glue' , 'mrpc' ) a , a : Tuple = get_mrpc_setup(snake_case , snake_case ) # First do baseline a , a , a : Tuple = setup['no'] model.to(snake_case ) model.eval() for batch in dataloader: batch.to(snake_case ) with torch.inference_mode(): a : List[Any] = model(**snake_case ) a : Optional[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=snake_case , references=batch['labels'] ) a : Tuple = metric.compute() # Then do distributed a , a , a : Tuple = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): a : List[str] = model(**snake_case ) a : Optional[Any] = outputs.logits.argmax(dim=-1 ) a : Optional[int] = batch['labels'] a , a : Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=snake_case , references=snake_case ) a : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" a : Dict = Accelerator(split_batches=snake_case , dispatch_batches=snake_case ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(snake_case , snake_case ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: a : List[Any] = Accelerator(split_batches=snake_case , dispatch_batches=snake_case ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(snake_case , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) a : Optional[Any] = Accelerator() test_torch_metrics(snake_case , 512 ) accelerator.state._reset_state() def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] ) -> int: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
345
1
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ UpperCamelCase : Optional[Any] = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ UpperCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple="auto" , UpperCAmelCase_ : Any=-1 , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : int=5_0_0 , UpperCAmelCase_ : int="gpt2-large" , UpperCAmelCase_ : Tuple=-1 , UpperCAmelCase_ : Dict=1_0_2_4 , UpperCAmelCase_ : List[str]=2_5 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=2_5 , ): """simple docstring""" a : List[str] = compute_mauve( p_text=UpperCAmelCase_ , q_text=UpperCAmelCase_ , p_features=UpperCAmelCase_ , q_features=UpperCAmelCase_ , p_tokens=UpperCAmelCase_ , q_tokens=UpperCAmelCase_ , num_buckets=UpperCAmelCase_ , pca_max_data=UpperCAmelCase_ , kmeans_explained_var=UpperCAmelCase_ , kmeans_num_redo=UpperCAmelCase_ , kmeans_max_iter=UpperCAmelCase_ , featurize_model_name=UpperCAmelCase_ , device_id=UpperCAmelCase_ , max_text_length=UpperCAmelCase_ , divergence_curve_discretization_size=UpperCAmelCase_ , mauve_scaling_factor=UpperCAmelCase_ , verbose=UpperCAmelCase_ , seed=UpperCAmelCase_ , ) return out
345
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = ["vqvae"] def __init__( self : List[str] , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Mel , UpperCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , mel=UpperCAmelCase_ , vqvae=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return 5_0 if isinstance(self.scheduler , UpperCAmelCase_) else 1_0_0_0 @torch.no_grad() def __call__( self : Dict , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = None , UpperCAmelCase_ : np.ndarray = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = None , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : Optional[Any]=True , ): """simple docstring""" a : Optional[Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase_) a : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: a : Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a : Dict = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCAmelCase_ , device=self.device , ) a : Tuple = noise a : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase_ , UpperCAmelCase_) a : List[Any] = self.mel.audio_slice_to_image(UpperCAmelCase_) a : str = np.frombuffer(input_image.tobytes() , dtype='uint8').reshape( (input_image.height, input_image.width)) a : List[str] = (input_image / 2_5_5) * 2 - 1 a : Any = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: a : List[Any] = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase_ , 0)).latent_dist.sample( generator=UpperCAmelCase_)[0] a : str = self.vqvae.config.scaling_factor * input_images if start_step > 0: a : Union[str, Any] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler.timesteps[start_step - 1]) a : Dict = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a : List[Any] = int(mask_start_secs * pixels_per_second) a : Optional[Any] = int(mask_end_secs * pixels_per_second) a : Optional[int] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , UpperCAmelCase_): a : Dict = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)['sample'] else: a : str = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] if isinstance(self.scheduler , UpperCAmelCase_): a : List[Any] = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] else: a : Any = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] if mask is not None: if mask_start > 0: a : str = mask[:, step, :, :mask_start] if mask_end > 0: a : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a : List[str] = 1 / self.vqvae.config.scaling_factor * images a : str = self.vqvae.decode(UpperCAmelCase_)['sample'] a : Tuple = (images / 2 + 0.5).clamp(0 , 1) a : Any = images.cpu().permute(0 , 2 , 3 , 1).numpy() a : List[str] = (images * 2_5_5).round().astype('uint8') a : Tuple = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase_ , mode='RGB').convert('L') for _ in images)) a : List[str] = [self.mel.image_to_audio(UpperCAmelCase_) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase_)[:, np.newaxis, :]) , **ImagePipelineOutput(UpperCAmelCase_)) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : List[Image.Image] , UpperCAmelCase_ : int = 5_0): """simple docstring""" assert isinstance(self.scheduler , UpperCAmelCase_) self.scheduler.set_timesteps(UpperCAmelCase_) a : Dict = np.array( [np.frombuffer(image.tobytes() , dtype='uint8').reshape((1, image.height, image.width)) for image in images]) a : Tuple = (sample / 2_5_5) * 2 - 1 a : int = torch.Tensor(UpperCAmelCase_).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): a : Optional[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a : Optional[Any] = self.scheduler.alphas_cumprod[t] a : List[Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a : List[str] = 1 - alpha_prod_t a : Optional[Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] a : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output a : Dict = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a : Union[str, Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : float): """simple docstring""" a : List[Any] = acos(torch.dot(torch.flatten(UpperCAmelCase_) , torch.flatten(UpperCAmelCase_)) / torch.norm(UpperCAmelCase_) / torch.norm(UpperCAmelCase_)) return sin((1 - alpha) * theta) * xa / sin(UpperCAmelCase_) + sin(alpha * theta) * xa / sin(UpperCAmelCase_)
345
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCamelCase : List[str] = logging.get_logger(__name__) UpperCamelCase : Tuple = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCamelCase ( a_ ): """simple docstring""" A : str = "umt5" A : Dict = ["past_key_values"] def __init__( self : List[str] , UpperCAmelCase_ : Optional[int]=2_5_0_1_1_2 , UpperCAmelCase_ : str=5_1_2 , UpperCAmelCase_ : Tuple=6_4 , UpperCAmelCase_ : Optional[Any]=1_0_2_4 , UpperCAmelCase_ : Tuple=8 , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[Any]=6 , UpperCAmelCase_ : str=3_2 , UpperCAmelCase_ : Union[str, Any]=1_2_8 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : str=1.0 , UpperCAmelCase_ : List[Any]="gated-gelu" , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : List[str]="T5Tokenizer" , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : str=0 , **UpperCAmelCase_ : str , ): """simple docstring""" super().__init__( is_encoder_decoder=UpperCAmelCase_ , tokenizer_class=UpperCAmelCase_ , tie_word_embeddings=UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) a : Union[str, Any] = vocab_size a : Optional[int] = d_model a : Any = d_kv a : Optional[Any] = d_ff a : str = num_layers a : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a : Optional[int] = num_heads a : int = relative_attention_num_buckets a : Optional[int] = relative_attention_max_distance a : List[str] = dropout_rate a : List[Any] = layer_norm_epsilon a : Optional[int] = initializer_factor a : Union[str, Any] = feed_forward_proj a : Optional[Any] = use_cache a : Dict = self.feed_forward_proj.split('-') a : Tuple = act_info[-1] a : str = act_info[0] == 'gated' if len(UpperCAmelCase_) > 1 and act_info[0] != "gated" or len(UpperCAmelCase_) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": a : List[str] = 'gelu_new' @property def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" return self.d_model @property def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return self.num_heads @property def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return self.num_layers class UpperCamelCase ( a_ ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[str] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: a : List[str] = 'past_encoder_sequence + sequence' a : Tuple = {0: 'batch'} a : str = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: a : Union[str, Any] = {0: 'batch', 1: 'decoder_sequence'} a : List[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase_ , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" return 1_3 @property def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" return 5e-4
345
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=1_3 , UpperCAmelCase_ : List[str]=3_0 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=3_2 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Dict=3_7 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=1_0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=2 , ): """simple docstring""" a : Any = parent a : Optional[int] = batch_size a : str = image_size a : str = patch_size a : List[Any] = num_channels a : Optional[int] = is_training a : Dict = use_labels a : Any = hidden_size a : Optional[int] = num_hidden_layers a : int = num_attention_heads a : int = intermediate_size a : Any = hidden_act a : Optional[int] = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : Dict = type_sequence_label_size a : Tuple = initializer_range a : List[str] = scope a : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[Any] = (image_size // patch_size) ** 2 a : str = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a : List[Any] = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict): """simple docstring""" a : int = ViTModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = ViTForMaskedImageModeling(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[Any] = model(UpperCAmelCase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images a : int = 1 a : Union[str, Any] = ViTForMaskedImageModeling(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : Optional[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any): """simple docstring""" a : str = self.type_sequence_label_size a : Tuple = ViTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a : List[Any] = 1 a : Union[str, Any] = ViTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ) : Tuple = config_and_inputs a : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : str = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) A : Optional[Any] = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) A : List[str] = True A : Optional[int] = False A : Dict = False A : Optional[int] = False def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : str = ViTModelTester(self) a : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(UpperCAmelCase_) a : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Dict = [*signature.parameters.keys()] a : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = ViTModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: """simple docstring""" a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Optional[Any] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(UpperCAmelCase_) a : List[Any] = self.default_image_processor a : List[str] = prepare_img() a : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : List[Any] = model(**UpperCAmelCase_) # verify the logits a : List[str] = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) a : Union[str, Any] = torch.tensor([-0.27_44, 0.82_15, -0.08_36]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[str] = ViTModel.from_pretrained('facebook/dino-vits8').to(UpperCAmelCase_) a : Any = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_8_0) a : int = prepare_img() a : List[str] = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : List[str] = inputs.pixel_values.to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : List[Any] = model(UpperCAmelCase_ , interpolate_pos_encoding=UpperCAmelCase_) # verify the logits a : Dict = torch.Size((1, 3_6_0_1, 3_8_4)) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_) a : str = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : str = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto') a : List[Any] = self.default_image_processor a : List[str] = prepare_img() a : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : Tuple = inputs.pixel_values.to(UpperCAmelCase_) # forward pass to make sure inference works in fp16 with torch.no_grad(): a : Tuple = model(UpperCAmelCase_)
345
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCamelCase : """simple docstring""" def __init__( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : int=1_0 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : int=3_2 * 4 , UpperCAmelCase_ : List[Any]=3_2 * 6 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : List[Any]=3_2 , ): """simple docstring""" a : Optional[int] = parent a : Optional[Any] = batch_size a : Tuple = is_training a : str = use_auxiliary_loss a : Any = num_queries a : Dict = num_channels a : Any = min_size a : str = max_size a : List[str] = num_labels a : int = mask_feature_size def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( UpperCAmelCase_) a : List[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase_) a : Dict = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase_) > 0.5 ).float() a : Optional[int] = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase_) > 0.5).long() a : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a , a , a , a , a : List[Any] = self.prepare_config_and_inputs() a : Optional[int] = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple): """simple docstring""" a : List[str] = output.encoder_hidden_states a : Optional[int] = output.pixel_decoder_hidden_states a : int = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase_) , len(config.backbone_config.depths)) self.parent.assertTrue(len(UpperCAmelCase_) , len(config.backbone_config.depths)) self.parent.assertTrue(len(UpperCAmelCase_) , config.decoder_config.decoder_layers) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=False): """simple docstring""" with torch.no_grad(): a : Tuple = MaskFormerModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Any = model(pixel_values=UpperCAmelCase_ , pixel_mask=UpperCAmelCase_) a : Dict = model(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any): """simple docstring""" a : str = MaskFormerForInstanceSegmentation(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() def comm_check_on_output(UpperCAmelCase_ : List[Any]): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): a : Tuple = model(pixel_values=UpperCAmelCase_ , pixel_mask=UpperCAmelCase_) a : Any = model(UpperCAmelCase_) comm_check_on_output(UpperCAmelCase_) a : Optional[int] = model( pixel_values=UpperCAmelCase_ , pixel_mask=UpperCAmelCase_ , mask_labels=UpperCAmelCase_ , class_labels=UpperCAmelCase_) comm_check_on_output(UpperCAmelCase_) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : str = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () A : Optional[int] = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) A : int = False A : Tuple = False A : List[str] = False A : Optional[int] = False def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = MaskFormerModelTester(self) a : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a , a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase_ , **UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase_) @unittest.skip(reason='MaskFormer does not use inputs_embeds') def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method') def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason='MaskFormer is not a generative model') def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" pass @unittest.skip(reason='MaskFormer does not use token embeddings') def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a , a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : int = model_class(UpperCAmelCase_) a : Any = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Dict = [*signature.parameters.keys()] a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: a : Optional[int] = MaskFormerModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Optional[Any] = (self.model_tester.min_size,) * 2 a : int = { 'pixel_values': torch.randn((2, 3, *size) , device=UpperCAmelCase_), 'mask_labels': torch.randn((2, 1_0, *size) , device=UpperCAmelCase_), 'class_labels': torch.zeros(2 , 1_0 , device=UpperCAmelCase_).long(), } a : Dict = MaskFormerForInstanceSegmentation(MaskFormerConfig()).to(UpperCAmelCase_) a : Optional[int] = model(**UpperCAmelCase_) self.assertTrue(outputs.loss is not None) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase_ , **UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : int = model_class(UpperCAmelCase_).to(UpperCAmelCase_) a : List[str] = model(**UpperCAmelCase_ , output_attentions=UpperCAmelCase_) self.assertTrue(outputs.attentions is not None) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss a : Union[str, Any] = self.all_model_classes[1] a , a , a , a , a : Optional[int] = self.model_tester.prepare_config_and_inputs() a : Union[str, Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.train() a : Optional[int] = model(UpperCAmelCase_ , mask_labels=UpperCAmelCase_ , class_labels=UpperCAmelCase_).loss loss.backward() def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Union[str, Any] = self.all_model_classes[1] a , a , a , a , a : Optional[Any] = self.model_tester.prepare_config_and_inputs() a : int = True a : Any = True a : int = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.train() a : List[str] = model(UpperCAmelCase_ , mask_labels=UpperCAmelCase_ , class_labels=UpperCAmelCase_) a : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() a : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't a : List[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() a : int = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase_) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) UpperCamelCase : str = 1E-4 def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" a : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco') if is_vision_available() else None ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : str = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco').to(UpperCAmelCase_) a : Tuple = self.default_image_processor a : Optional[int] = prepare_img() a : int = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) a : Dict = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(UpperCAmelCase_ , (1, 3, 8_0_0, 1_0_8_8)) with torch.no_grad(): a : Optional[Any] = model(**UpperCAmelCase_) a : Optional[int] = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]]).to(UpperCAmelCase_) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_)) a : Dict = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]]).to(UpperCAmelCase_) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_)) a : Optional[int] = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]]).to(UpperCAmelCase_) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco') .to(UpperCAmelCase_) .eval() ) a : Dict = self.default_image_processor a : Optional[Any] = prepare_img() a : List[Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) a : List[str] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(UpperCAmelCase_ , (1, 3, 8_0_0, 1_0_8_8)) with torch.no_grad(): a : str = model(**UpperCAmelCase_) # masks_queries_logits a : List[str] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) a : Dict = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] a : Any = torch.tensor(UpperCAmelCase_).to(UpperCAmelCase_) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_)) # class_queries_logits a : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) a : Dict = torch.tensor( [ [1.6_512e00, -5.2_572e00, -3.3_519e00], [3.6_169e-02, -5.9_025e00, -2.9_313e00], [1.0_766e-04, -7.7_630e00, -5.1_263e00], ]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff') .to(UpperCAmelCase_) .eval() ) a : List[Any] = self.default_image_processor a : str = prepare_img() a : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) a : Union[str, Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(UpperCAmelCase_ , (1, 3, 8_0_0, 1_0_8_8)) with torch.no_grad(): a : Optional[int] = model(**UpperCAmelCase_) # masks_queries_logits a : Any = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) a : str = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] a : Dict = torch.tensor(UpperCAmelCase_).to(UpperCAmelCase_) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_)) # class_queries_logits a : Optional[int] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) a : List[str] = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Tuple = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco') .to(UpperCAmelCase_) .eval() ) a : Optional[Any] = self.default_image_processor a : Dict = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3)), np.zeros((3, 8_0_0, 1_3_3_3))] , segmentation_maps=[np.zeros((3_8_4, 3_8_4)).astype(np.floataa), np.zeros((3_8_4, 3_8_4)).astype(np.floataa)] , return_tensors='pt' , ) a : List[str] = inputs['pixel_values'].to(UpperCAmelCase_) a : int = [el.to(UpperCAmelCase_) for el in inputs['mask_labels']] a : Tuple = [el.to(UpperCAmelCase_) for el in inputs['class_labels']] with torch.no_grad(): a : Any = model(**UpperCAmelCase_) self.assertTrue(outputs.loss is not None)
345
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase ( a_ ): """simple docstring""" A : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) A : List[Any] = "CIDAS/clipseg-rd64-refined" A : Optional[Any] = "image_segmenter" A : List[Any] = CLIPSegForImageSegmentation A : Tuple = ["image", "text"] A : Optional[int] = ["image"] def __init__( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(self , ['vision']) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : "Image" , UpperCAmelCase_ : str): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=UpperCAmelCase_ , return_tensors='pt') def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str): """simple docstring""" with torch.no_grad(): a : Union[str, Any] = self.model(**UpperCAmelCase_).logits return logits def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : int): """simple docstring""" a : int = outputs.cpu().detach().numpy() a : str = 0 a : str = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta))
345
1
'''simple docstring''' from sklearn.metrics import fa_score import datasets UpperCamelCase : str = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ UpperCamelCase : Any = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ UpperCamelCase : str = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32')), 'references': datasets.Sequence(datasets.Value('int32')), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32'), 'references': datasets.Value('int32'), }) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Any="binary" , UpperCAmelCase_ : str=None): """simple docstring""" a : str = fa_score( UpperCAmelCase_ , UpperCAmelCase_ , labels=UpperCAmelCase_ , pos_label=UpperCAmelCase_ , average=UpperCAmelCase_ , sample_weight=UpperCAmelCase_) return {"f1": float(UpperCAmelCase_) if score.size == 1 else score}
345
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( a_ , unittest.TestCase ): """simple docstring""" A : Union[str, Any] = CTRLTokenizer A : List[Any] = False A : Optional[Any] = False def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a : Dict = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] a : Tuple = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) a : Any = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] a : List[Any] = {'unk_token': '<unk>'} a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , **UpperCAmelCase_ : Dict): """simple docstring""" kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Any): """simple docstring""" a : List[str] = 'adapt react readapt apt' a : int = 'adapt react readapt apt' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : int = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) a : str = 'adapt react readapt apt' a : Optional[Any] = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() a : List[Any] = tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) a : Union[str, Any] = tokens + [tokenizer.unk_token] a : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
345
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> int: """simple docstring""" a : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): a : Any = n - k # Calculate C(n,k) for i in range(snake_case ): result *= n - i result //= i + 1 return result def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , snake_case ) // (node_count + 1) def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> int: """simple docstring""" if n < 0: raise ValueError('factorial() not defined for negative values' ) a : Dict = 1 for i in range(1 , n + 1 ): result *= i return result def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> int: """simple docstring""" return catalan_number(snake_case ) * factorial(snake_case ) if __name__ == "__main__": UpperCamelCase : Tuple = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
345
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
345
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
345
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase : int = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = ["pixel_values"] def __init__( self : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : List[str] = size if size is not None else {'shortest_edge': 2_2_4} a : str = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a : int = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Any = do_resize a : Dict = size a : Optional[Any] = resample a : List[Any] = do_center_crop a : List[Any] = crop_size a : Optional[Any] = do_rescale a : Dict = rescale_factor a : Tuple = do_normalize a : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ): """simple docstring""" a : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: a : int = int((2_5_6 / 2_2_4) * size['shortest_edge']) a : Optional[int] = get_resize_output_image_size(UpperCAmelCase_ , size=UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : Optional[Any] = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""") return resize( UpperCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ): """simple docstring""" a : str = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , UpperCAmelCase_ : Optional[TensorType] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : int = do_resize if do_resize is not None else self.do_resize a : Optional[int] = resample if resample is not None else self.resample a : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop a : Tuple = do_rescale if do_rescale is not None else self.do_rescale a : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor a : Dict = do_normalize if do_normalize is not None else self.do_normalize a : Tuple = image_mean if image_mean is not None else self.image_mean a : int = image_std if image_std is not None else self.image_std a : Optional[int] = size if size is not None else self.size a : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : List[Any] = crop_size if crop_size is not None else self.crop_size a : str = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Dict = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a : Any = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: a : Optional[int] = [self.resize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_center_crop: a : int = [self.center_crop(UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_rescale: a : Any = [self.rescale(UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_normalize: a : str = [self.normalize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : Optional[int] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : Optional[int] = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
345
1
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Union[str, Any] = mock.Mock() a : Tuple = 5_0_0 a : Union[str, Any] = {} a : List[str] = HTTPError a : int = {} # Download this model to make sure it's in the cache. a : List[str] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase_) as mock_head: a : Any = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Tuple = mock.Mock() a : Any = 5_0_0 a : Tuple = {} a : str = HTTPError a : Optional[Any] = {} # Download this model to make sure it's in the cache. a : Any = GPTaTokenizerFast.from_pretrained('gpt2') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase_) as mock_head: a : Tuple = GPTaTokenizerFast.from_pretrained('gpt2') # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" try: a : Optional[int] = tempfile.mktemp() with open(UpperCAmelCase_ , 'wb') as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , UpperCAmelCase_) a : List[str] = AlbertTokenizer.from_pretrained(UpperCAmelCase_) finally: os.remove(UpperCAmelCase_) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json'): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb') as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , UpperCAmelCase_) a : Dict = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_0_0_0) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json') def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Optional[Any] = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model') @is_staging_test class UpperCamelCase ( unittest.TestCase ): """simple docstring""" A : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any): """simple docstring""" a : str = TOKEN HfFolder.save_token(UpperCAmelCase_) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-tokenizer') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer') except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a : Optional[Any] = os.path.join(UpperCAmelCase_ , 'vocab.txt') with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) a : int = BertTokenizer(UpperCAmelCase_) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token) a : Optional[int] = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""") self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ , repo_id='test-tokenizer' , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token) a : Union[str, Any] = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""") self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a : Any = os.path.join(UpperCAmelCase_ , 'vocab.txt') with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) a : str = BertTokenizer(UpperCAmelCase_) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token) a : int = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCAmelCase_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token) a : List[Any] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) @require_tokenizers def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: a : Any = os.path.join(UpperCAmelCase_ , 'vocab.txt') with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) a : int = CustomTokenizer(UpperCAmelCase_) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token) a : Union[str, Any] = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=UpperCAmelCase_) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer') # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: a : Union[str, Any] = os.path.join(UpperCAmelCase_ , 'vocab.txt') with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) a : Tuple = BertTokenizerFast.from_pretrained(UpperCAmelCase_) bert_tokenizer.save_pretrained(UpperCAmelCase_) a : List[str] = CustomTokenizerFast.from_pretrained(UpperCAmelCase_) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token) a : Any = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=UpperCAmelCase_) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast') a : Union[str, Any] = AutoTokenizer.from_pretrained( f"""{USER}/test-dynamic-tokenizer""" , use_fast=UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer') class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Dict = Trie() trie.add('Hello 友達') self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}}) trie.add('Hello') trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}}) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : str = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100') , ['[CLS] This is a extra_id_100']) trie.add('[CLS]') trie.add('extra_id_1') trie.add('extra_id_100') self.assertEqual(trie.split('[CLS] This is a extra_id_100') , ['[CLS]', ' This is a ', 'extra_id_100']) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : List[Any] = Trie() trie.add('A') self.assertEqual(trie.split('ABC') , ['A', 'BC']) self.assertEqual(trie.split('BCA') , ['BC', 'A']) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Optional[Any] = Trie() trie.add('TOKEN]') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') , ['This is something ', '[SPECIAL_TOKEN]']) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : List[str] = Trie() trie.add('A') trie.add('P') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') , ['This is something ', '[SPECIAL_TOKEN]']) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : int = Trie() trie.add('AB') trie.add('B') trie.add('C') self.assertEqual(trie.split('ABC') , ['AB', 'C']) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Tuple = Trie() trie.add('ABC') trie.add('B') trie.add('CD') self.assertEqual(trie.split('ABCD') , ['ABC', 'D']) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Dict = Trie() a : Dict = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3]) self.assertEqual(UpperCAmelCase_ , ['AB', 'C'])
345
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : float | Decimal , snake_case : float = 10**-10 ) -> float: """simple docstring""" a : Dict = a while True: a : Any = Decimal(snake_case ) - ( Decimal(eval(snake_case ) ) / Decimal(eval(str(diff(snake_case ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case ) ) < precision: # noqa: S307 return float(snake_case ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
345
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class UpperCamelCase ( a_ ): """simple docstring""" A : int = "deit" def __init__( self : Any , UpperCAmelCase_ : Optional[int]=7_6_8 , UpperCAmelCase_ : Tuple=1_2 , UpperCAmelCase_ : List[str]=1_2 , UpperCAmelCase_ : Union[str, Any]=3_0_7_2 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Dict=1e-12 , UpperCAmelCase_ : str=2_2_4 , UpperCAmelCase_ : List[str]=1_6 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[Any]=1_6 , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : List[Any] = hidden_size a : Union[str, Any] = num_hidden_layers a : Optional[Any] = num_attention_heads a : Union[str, Any] = intermediate_size a : Optional[Any] = hidden_act a : str = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : Dict = initializer_range a : Optional[Any] = layer_norm_eps a : Dict = image_size a : int = patch_size a : List[Any] = num_channels a : Optional[int] = qkv_bias a : str = encoder_stride class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return 1e-4
345
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=1_3 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=9_9 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : int=3_2 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int="last" , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=0 , ): """simple docstring""" a : Tuple = parent a : Optional[Any] = batch_size a : Tuple = seq_length a : Union[str, Any] = is_training a : List[str] = use_input_lengths a : Union[str, Any] = use_token_type_ids a : Optional[int] = use_labels a : int = gelu_activation a : Dict = sinusoidal_embeddings a : Any = causal a : Optional[int] = asm a : int = n_langs a : List[str] = vocab_size a : List[str] = n_special a : List[str] = hidden_size a : Any = num_hidden_layers a : Union[str, Any] = num_attention_heads a : Optional[Any] = hidden_dropout_prob a : str = attention_probs_dropout_prob a : Dict = max_position_embeddings a : Union[str, Any] = type_sequence_label_size a : str = initializer_range a : List[Any] = num_labels a : Union[str, Any] = num_choices a : Optional[Any] = summary_type a : Optional[Any] = use_proj a : Optional[Any] = scope a : Dict = bos_token_id def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) a : Optional[int] = None if self.use_input_lengths: a : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a : int = None if self.use_token_type_ids: a : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a : Optional[Any] = None a : Tuple = None a : Optional[Any] = None if self.use_labels: a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : Optional[Any] = ids_tensor([self.batch_size] , 2).float() a : Dict = ids_tensor([self.batch_size] , self.num_choices) a : Any = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Any = XLMModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_ , lengths=UpperCAmelCase_ , langs=UpperCAmelCase_) a : str = model(UpperCAmelCase_ , langs=UpperCAmelCase_) a : int = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , ): """simple docstring""" a : Optional[Any] = XLMWithLMHeadModel(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Union[str, Any] = XLMForQuestionAnsweringSimple(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_) a : Tuple = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) a : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , ): """simple docstring""" a : Any = XLMForQuestionAnswering(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_) a : Dict = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , p_mask=UpperCAmelCase_ , ) a : int = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , ) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() a : int = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , ): """simple docstring""" a : Dict = XLMForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_) a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , ): """simple docstring""" a : Dict = self.num_labels a : int = XLMForTokenClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , ): """simple docstring""" a : str = self.num_choices a : Dict = XLMForMultipleChoice(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : str = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Any = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : int = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Union[str, Any] = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" A : int = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A : Optional[Any] = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=False): """simple docstring""" a : List[Any] = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": a : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) a : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[Any] = XLMModelTester(self) a : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , emb_dim=3_7) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_attentions in attentions] , [True] * len(UpperCAmelCase_)) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(UpperCAmelCase_): # adds PAD dummy token a : List[str] = min_length + idx + 1 a : Optional[Any] = min_length + idx + 1 a : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Union[str, Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase_) , ) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(UpperCAmelCase_): # adds PAD dummy token a : int = min_length + idx + 1 a : Any = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase_) , ) pass @slow def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Union[str, Any] = XLMModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(UpperCAmelCase_) a : List[Any] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase_) # the president a : Dict = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference a : Optional[Any] = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase_)
345
1
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def SCREAMING_SNAKE_CASE__ ( snake_case : NDArray[floataa] , snake_case : NDArray[floataa] , snake_case : list[int] , snake_case : int , ) -> list[float]: """simple docstring""" a , a : Union[str, Any] = coefficient_matrix.shape a , a : int = constant_matrix.shape if rowsa != colsa: a : Union[str, Any] = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(snake_case ) if colsa != 1: a : Union[str, Any] = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(snake_case ) if rowsa != rowsa: a : Dict = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(snake_case ) if len(snake_case ) != rowsa: a : Union[str, Any] = ( 'Number of initial values must be equal to number of rows in coefficient ' F"""matrix but received {len(snake_case )} and {rowsa}""" ) raise ValueError(snake_case ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) a : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) a , a : str = table.shape strictly_diagonally_dominant(snake_case ) # Iterates the whole matrix for given number of times for _ in range(snake_case ): a : Optional[int] = [] for row in range(snake_case ): a : str = 0 for col in range(snake_case ): if col == row: a : int = table[row][col] elif col == cols - 1: a : Optional[int] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] a : List[str] = (temp + val) / denom new_val.append(snake_case ) a : Union[str, Any] = new_val return [float(snake_case ) for i in new_val] def SCREAMING_SNAKE_CASE__ ( snake_case : NDArray[floataa] ) -> bool: """simple docstring""" a , a : int = table.shape a : Optional[int] = True for i in range(0 , snake_case ): a : Any = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
345
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase : List[str] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Optional[int] = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Tuple = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { """bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""", } class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[Any] = "gpt_bigcode" A : str = ["past_key_values"] A : Dict = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Any , UpperCAmelCase_ : Any=5_0_2_5_7 , UpperCAmelCase_ : Union[str, Any]=1_0_2_4 , UpperCAmelCase_ : Dict=7_6_8 , UpperCAmelCase_ : Optional[Any]=1_2 , UpperCAmelCase_ : Dict=1_2 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Any="gelu_pytorch_tanh" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=1e-5 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=5_0_2_5_6 , UpperCAmelCase_ : Optional[int]=5_0_2_5_6 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[Any]=True , **UpperCAmelCase_ : str , ): """simple docstring""" a : Dict = vocab_size a : str = n_positions a : Any = n_embd a : List[str] = n_layer a : List[Any] = n_head a : str = n_inner a : Union[str, Any] = activation_function a : List[Any] = resid_pdrop a : Optional[Any] = embd_pdrop a : int = attn_pdrop a : List[str] = layer_norm_epsilon a : Union[str, Any] = initializer_range a : List[str] = scale_attn_weights a : Any = use_cache a : int = attention_softmax_in_fpaa a : Tuple = scale_attention_softmax_in_fpaa a : Union[str, Any] = multi_query a : Dict = bos_token_id a : Dict = eos_token_id super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
345
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = "data2vec-audio" def __init__( self : Dict , UpperCAmelCase_ : Optional[int]=3_2 , UpperCAmelCase_ : Union[str, Any]=7_6_8 , UpperCAmelCase_ : Dict=1_2 , UpperCAmelCase_ : str=1_2 , UpperCAmelCase_ : Optional[Any]=3_0_7_2 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : str=1e-5 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase_ : Dict=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : int=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=1_6 , UpperCAmelCase_ : Optional[Any]=1_9 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=0.05 , UpperCAmelCase_ : Dict=1_0 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Tuple=1_0 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Any="sum" , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=2_5_6 , UpperCAmelCase_ : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase_ : Optional[Any]=(5, 3, 3, 1, 1) , UpperCAmelCase_ : Optional[int]=(1, 2, 3, 1, 1) , UpperCAmelCase_ : int=5_1_2 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : int , ): """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) a : List[Any] = hidden_size a : Any = feat_extract_activation a : Any = list(UpperCAmelCase_) a : Optional[int] = list(UpperCAmelCase_) a : Dict = list(UpperCAmelCase_) a : Tuple = conv_bias a : str = num_conv_pos_embeddings a : Dict = num_conv_pos_embedding_groups a : Optional[Any] = conv_pos_kernel_size a : Any = len(self.conv_dim) a : Tuple = num_hidden_layers a : Any = intermediate_size a : Any = hidden_act a : Dict = num_attention_heads a : Dict = hidden_dropout a : Union[str, Any] = attention_dropout a : Dict = activation_dropout a : Optional[int] = feat_proj_dropout a : Tuple = final_dropout a : Union[str, Any] = layerdrop a : Tuple = layer_norm_eps a : Dict = initializer_range a : Tuple = vocab_size a : int = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a : List[str] = mask_time_prob a : int = mask_time_length a : Optional[int] = mask_time_min_masks a : Dict = mask_feature_prob a : List[str] = mask_feature_length a : str = mask_feature_min_masks # ctc loss a : str = ctc_loss_reduction a : Optional[Any] = ctc_zero_infinity # adapter a : List[str] = add_adapter a : Optional[Any] = adapter_kernel_size a : int = adapter_stride a : str = num_adapter_layers a : Optional[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a : List[Any] = list(UpperCAmelCase_) a : List[str] = list(UpperCAmelCase_) a : str = list(UpperCAmelCase_) a : Optional[Any] = xvector_output_dim @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return math.prod(self.conv_stride)
345
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[Any] = ["sentencepiece"] def __init__( self : int , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Any = ["sentencepiece"] def __init__( self : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Dict = ["sentencepiece"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[int] = ["sentencepiece"] def __init__( self : str , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[int] = ["sentencepiece"] def __init__( self : Optional[int] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Union[str, Any] = ["sentencepiece"] def __init__( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[str] = ["sentencepiece"] def __init__( self : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : int = ["sentencepiece"] def __init__( self : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : str = ["sentencepiece"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[Any] = ["sentencepiece"] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Any = ["sentencepiece"] def __init__( self : Tuple , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Any = ["sentencepiece"] def __init__( self : Optional[int] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : str = ["sentencepiece"] def __init__( self : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[Any] = ["sentencepiece"] def __init__( self : List[str] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[Any] = ["sentencepiece"] def __init__( self : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Union[str, Any] = ["sentencepiece"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : int = ["sentencepiece"] def __init__( self : str , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[Any] = ["sentencepiece"] def __init__( self : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[Any] = ["sentencepiece"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Union[str, Any] = ["sentencepiece"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[Any] = ["sentencepiece"] def __init__( self : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Dict = ["sentencepiece"] def __init__( self : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[Any] = ["sentencepiece"] def __init__( self : List[str] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[str] = ["sentencepiece"] def __init__( self : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : int = ["sentencepiece"] def __init__( self : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[Any] = ["sentencepiece"] def __init__( self : List[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : int = ["sentencepiece"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : int = ["sentencepiece"] def __init__( self : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[Any] = ["sentencepiece"] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Union[str, Any] = ["sentencepiece"] def __init__( self : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(self , ['sentencepiece']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[str] = ["sentencepiece"] def __init__( self : List[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(self , ['sentencepiece'])
345
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase : Optional[Any] = logging.getLogger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = "masked_bert" def __init__( self : Tuple , UpperCAmelCase_ : List[Any]=3_0_5_2_2 , UpperCAmelCase_ : str=7_6_8 , UpperCAmelCase_ : Optional[Any]=1_2 , UpperCAmelCase_ : Optional[int]=1_2 , UpperCAmelCase_ : Union[str, Any]=3_0_7_2 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[Any]=1e-12 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Dict="topK" , UpperCAmelCase_ : str="constant" , UpperCAmelCase_ : Optional[Any]=0.0 , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) a : Union[str, Any] = vocab_size a : List[Any] = hidden_size a : List[str] = num_hidden_layers a : Any = num_attention_heads a : Optional[Any] = hidden_act a : str = intermediate_size a : Dict = hidden_dropout_prob a : Any = attention_probs_dropout_prob a : Any = max_position_embeddings a : Dict = type_vocab_size a : List[str] = initializer_range a : int = layer_norm_eps a : Dict = pruning_method a : List[str] = mask_init a : Union[str, Any] = mask_scale
345
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class UpperCamelCase : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase_ : int , ): """simple docstring""" a : Optional[int] = parent a : Dict = 1_3 a : int = 7 a : Optional[int] = True a : Tuple = True a : Optional[Any] = True a : Optional[int] = 9_9 a : Tuple = 3_2 a : Any = 2 a : Optional[int] = 4 a : str = 3_7 a : str = 'gelu' a : Any = 0.1 a : List[str] = 0.1 a : Optional[int] = 5_1_2 a : Union[str, Any] = 1_6 a : Optional[Any] = 2 a : Optional[Any] = 0.02 a : Dict = 3 a : Optional[int] = 4 a : Tuple = None def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : Union[str, Any] = None if self.use_input_mask: a : Tuple = random_attention_mask([self.batch_size, self.seq_length]) a : int = None a : List[str] = None a : int = None if self.use_labels: a : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : int = ids_tensor([self.batch_size] , self.num_choices) a : Dict = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : List[Any] = self.prepare_config_and_inputs() a : str = True a : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str): """simple docstring""" a : Optional[Any] = TFEsmModel(config=UpperCAmelCase_) a : int = {'input_ids': input_ids, 'attention_mask': input_mask} a : Dict = model(UpperCAmelCase_) a : Union[str, Any] = [input_ids, input_mask] a : Any = model(UpperCAmelCase_) a : List[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , ): """simple docstring""" a : Tuple = True a : Optional[Any] = TFEsmModel(config=UpperCAmelCase_) a : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } a : Tuple = model(UpperCAmelCase_) a : Union[str, Any] = [input_ids, input_mask] a : str = model(UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_) # Also check the case where encoder outputs are not passed a : List[str] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict): """simple docstring""" a : Optional[int] = TFEsmForMaskedLM(config=UpperCAmelCase_) a : List[Any] = model([input_ids, input_mask]) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple): """simple docstring""" a : Dict = self.num_labels a : Dict = TFEsmForTokenClassification(config=UpperCAmelCase_) a : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} a : List[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Any = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : str = config_and_inputs a : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : Any = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) A : Tuple = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) A : Dict = False A : Dict = False def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : List[Any] = TFEsmModelTester(self) a : int = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : str = TFEsmModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skip('Protein models do not support embedding resizing.') def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.') def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a , a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Any = model_class(UpperCAmelCase_) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer a : Union[str, Any] = model.get_bias() assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) for k, v in name.items(): assert isinstance(UpperCAmelCase_ , tf.Variable) else: a : int = model.get_output_embeddings() assert x is None a : Tuple = model.get_bias() assert name is None @require_tf class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Dict = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D') a : Dict = tf.constant([[0, 1, 2, 3, 4, 5]]) a : List[str] = model(UpperCAmelCase_)[0] a : Union[str, Any] = [1, 6, 3_3] self.assertEqual(list(output.numpy().shape) , UpperCAmelCase_) # compare the actual values for a slice. a : Any = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2)) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Union[str, Any] = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D') a : Tuple = tf.constant([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]]) a : Any = model(UpperCAmelCase_)[0] # compare the actual values for a slice. a : Dict = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4))
345
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any): """simple docstring""" super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) a : str = {} def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int): """simple docstring""" a : Dict = super().add_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.') def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=1 , **UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Any = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) else: a : int = [] for i in range(UpperCAmelCase_): a : Union[str, Any] = placeholder_token + f"""_{i}""" self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""") a : Any = output def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=1.0): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): a : Any = [] for i in range(len(UpperCAmelCase_)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCAmelCase_)) return output for placeholder_token in self.token_map: if placeholder_token in text: a : List[Any] = self.token_map[placeholder_token] a : int = tokens[: 1 + int(len(UpperCAmelCase_) * prop_tokens_to_load)] if vector_shuffle: a : List[Any] = copy.copy(UpperCAmelCase_) random.shuffle(UpperCAmelCase_) a : List[str] = text.replace(UpperCAmelCase_ , ' '.join(UpperCAmelCase_)) return text def __call__( self : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[int]=1.0 , **UpperCAmelCase_ : str): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1.0 , **UpperCAmelCase_ : Dict): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , )
345
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets UpperCamelCase : List[Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ UpperCamelCase : Any = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ UpperCamelCase : List[str] = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types()) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float')), "references": datasets.Sequence(datasets.Value('float')), } else: return { "predictions": datasets.Value('float'), "references": datasets.Value('float'), } def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Dict="uniform_average" , UpperCAmelCase_ : Optional[Any]=True): """simple docstring""" a : Optional[Any] = mean_squared_error( UpperCAmelCase_ , UpperCAmelCase_ , sample_weight=UpperCAmelCase_ , multioutput=UpperCAmelCase_ , squared=UpperCAmelCase_) return {"mse": mse}
345
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[Any]: """simple docstring""" a : Union[str, Any] = SwinConfig() a : Optional[int] = swin_name.split('_' ) a : Union[str, Any] = name_split[1] a : Dict = int(name_split[4] ) a : Union[str, Any] = int(name_split[3][-1] ) if model_size == "tiny": a : Optional[Any] = 96 a : Any = (2, 2, 6, 2) a : List[str] = (3, 6, 12, 24) elif model_size == "small": a : int = 96 a : List[str] = (2, 2, 18, 2) a : int = (3, 6, 12, 24) elif model_size == "base": a : Tuple = 128 a : Optional[int] = (2, 2, 18, 2) a : List[Any] = (4, 8, 16, 32) else: a : Dict = 192 a : str = (2, 2, 18, 2) a : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: a : Any = 21_841 else: a : str = 1_000 a : str = 'huggingface/label-files' a : Optional[Any] = 'imagenet-1k-id2label.json' a : Dict = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) a : Tuple = {int(snake_case ): v for k, v in idalabel.items()} a : int = idalabel a : str = {v: k for k, v in idalabel.items()} a : Dict = img_size a : List[Any] = num_classes a : str = embed_dim a : Dict = depths a : Union[str, Any] = num_heads a : int = window_size return config def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[int]: """simple docstring""" if "patch_embed.proj" in name: a : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a : Tuple = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a : Optional[int] = 'encoder.' + name if "attn.proj" in name: a : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: a : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a : Any = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": a : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": a : List[str] = 'layernorm.bias' if "head" in name: a : Union[str, Any] = name.replace('head' , 'classifier' ) else: a : List[Any] = 'swin.' + name return name def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): a : Any = orig_state_dict.pop(snake_case ) if "mask" in key: continue elif "qkv" in key: a : Optional[Any] = key.split('.' ) a : Dict = int(key_split[1] ) a : Optional[int] = int(key_split[3] ) a : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a : Optional[Any] = val[:dim, :] a : List[Any] = val[ dim : dim * 2, : ] a : List[Any] = val[-dim:, :] else: a : Dict = val[ :dim ] a : Union[str, Any] = val[ dim : dim * 2 ] a : Union[str, Any] = val[ -dim: ] else: a : Dict = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Dict ) -> List[str]: """simple docstring""" a : Any = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() a : str = get_swin_config(snake_case ) a : Optional[int] = SwinForImageClassification(snake_case ) model.eval() a : Union[str, Any] = convert_state_dict(timm_model.state_dict() , snake_case ) model.load_state_dict(snake_case ) a : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) a : str = Image.open(requests.get(snake_case , stream=snake_case ).raw ) a : Union[str, Any] = image_processor(images=snake_case , return_tensors='pt' ) a : int = timm_model(inputs['pixel_values'] ) a : Optional[int] = model(**snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCamelCase : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
345
1
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: UpperCamelCase : Tuple = None try: import msvcrt except ImportError: UpperCamelCase : List[Any] = None try: import fcntl except ImportError: UpperCamelCase : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: UpperCamelCase : str = OSError # Data # ------------------------------------------------ UpperCamelCase : int = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] UpperCamelCase : Union[str, Any] = """3.0.12""" UpperCamelCase : Optional[Any] = None def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: """simple docstring""" global _logger a : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Any , UpperCAmelCase_ : Tuple): """simple docstring""" a : Optional[Any] = lock_file return None def __str__( self : str): """simple docstring""" a : Union[str, Any] = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Any): """simple docstring""" a : Union[str, Any] = lock return None def __enter__( self : Optional[Any]): """simple docstring""" return self.lock def __exit__( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict): """simple docstring""" self.lock.release() return None class UpperCamelCase : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str]=-1 , UpperCAmelCase_ : int=None): """simple docstring""" a : Optional[int] = max_filename_length if max_filename_length is not None else 2_5_5 # Hash the filename if it's too long a : Optional[int] = self.hash_filename_if_too_long(UpperCAmelCase_ , UpperCAmelCase_) # The path to the lock file. a : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. a : List[Any] = None # The default timeout value. a : List[Any] = timeout # We use this lock primarily for the lock counter. a : Dict = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. a : str = 0 return None @property def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" return self._lock_file @property def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Tuple): """simple docstring""" a : Optional[Any] = float(UpperCAmelCase_) return None def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" raise NotImplementedError() def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" raise NotImplementedError() @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=0.05): """simple docstring""" if timeout is None: a : List[Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 a : List[str] = id(self) a : Any = self._lock_file a : List[Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""") self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""") break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""") raise Timeout(self._lock_file) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""") time.sleep(UpperCAmelCase_) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: a : int = max(0 , self._lock_counter - 1) raise return _Acquire_ReturnProxy(lock=self) def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : List[str]=False): """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: a : int = id(self) a : Optional[Any] = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""") self._release() a : str = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""") return None def __enter__( self : Dict): """simple docstring""" self.acquire() return self def __exit__( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict): """simple docstring""" self.release() return None def __del__( self : Any): """simple docstring""" self.release(force=UpperCAmelCase_) return None def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int): """simple docstring""" a : List[str] = os.path.basename(UpperCAmelCase_) if len(UpperCAmelCase_) > max_length and max_length > 0: a : int = os.path.dirname(UpperCAmelCase_) a : str = str(hash(UpperCAmelCase_)) a : Dict = filename[: max_length - len(UpperCAmelCase_) - 8] + '...' + hashed_filename + '.lock' return os.path.join(UpperCAmelCase_ , UpperCAmelCase_) else: return path class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str=-1 , UpperCAmelCase_ : int=None): """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(UpperCAmelCase_ , timeout=UpperCAmelCase_ , max_filename_length=UpperCAmelCase_) a : Tuple = '\\\\?\\' + relative_to_absolute_path(self.lock_file) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: a : str = os.open(self._lock_file , UpperCAmelCase_) except OSError: pass else: try: msvcrt.locking(UpperCAmelCase_ , msvcrt.LK_NBLCK , 1) except OSError: os.close(UpperCAmelCase_) else: a : Tuple = fd return None def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : str = self._lock_file_fd a : Any = None msvcrt.locking(UpperCAmelCase_ , msvcrt.LK_UNLCK , 1) os.close(UpperCAmelCase_) try: os.remove(self._lock_file) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : str=None): """simple docstring""" a : Any = os.statvfs(os.path.dirname(UpperCAmelCase_)).f_namemax super().__init__(UpperCAmelCase_ , timeout=UpperCAmelCase_ , max_filename_length=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC a : Tuple = os.open(self._lock_file , UpperCAmelCase_) try: fcntl.flock(UpperCAmelCase_ , fcntl.LOCK_EX | fcntl.LOCK_NB) except OSError: os.close(UpperCAmelCase_) else: a : Tuple = fd return None def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Optional[Any] = self._lock_file_fd a : Any = None fcntl.flock(UpperCAmelCase_ , fcntl.LOCK_UN) os.close(UpperCAmelCase_) return None class UpperCamelCase ( a_ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : int = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: a : List[Any] = os.open(self._lock_file , UpperCAmelCase_) except OSError: pass else: a : Tuple = fd return None def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" os.close(self._lock_file_fd) a : List[Any] = None try: os.remove(self._lock_file) # The file is already deleted and that's what we want. except OSError: pass return None UpperCamelCase : List[str] = None if msvcrt: UpperCamelCase : Optional[Any] = WindowsFileLock elif fcntl: UpperCamelCase : Optional[Any] = UnixFileLock else: UpperCamelCase : Dict = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
345
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class UpperCamelCase : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase_ : Tuple): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden a : Dict = deepcopy(UpperCAmelCase_) elif os.path.exists(UpperCAmelCase_): with io.open(UpperCAmelCase_ , 'r' , encoding='utf-8') as f: a : Union[str, Any] = json.load(UpperCAmelCase_) else: try: a : Union[str, Any] = baseaa.urlsafe_baadecode(UpperCAmelCase_).decode('utf-8') a : List[str] = json.loads(UpperCAmelCase_) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""") a : Optional[int] = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : str = self.get_value('zero_optimization.stage' , -1) # offload a : Any = False if self.is_zeroa() or self.is_zeroa(): a : Tuple = set(['cpu', 'nvme']) a : int = set( [ self.get_value('zero_optimization.offload_optimizer.device'), self.get_value('zero_optimization.offload_param.device'), ]) if len(offload_devices & offload_devices_valid) > 0: a : List[str] = True def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Dict): """simple docstring""" a : List[str] = self.config # find the config node of interest if it exists a : int = ds_key_long.split('.') a : Union[str, Any] = nodes.pop() for node in nodes: a : Union[str, Any] = config.get(UpperCAmelCase_) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=None): """simple docstring""" a , a : int = self.find_config_node(UpperCAmelCase_) if config is None: return default return config.get(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=False): """simple docstring""" a : Any = self.config # find the config node of interest if it exists a : Optional[Any] = ds_key_long.split('.') for node in nodes: a : List[str] = config a : int = config.get(UpperCAmelCase_) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""") else: return # if found remove it if parent_config is not None: parent_config.pop(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : str): """simple docstring""" a : List[str] = self.get_value(UpperCAmelCase_) return False if value is None else bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : List[Any] = self.get_value(UpperCAmelCase_) return False if value is None else not bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 3 def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return self._offload class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : int): """simple docstring""" a : Union[str, Any] = engine def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): """simple docstring""" self.engine.backward(UpperCAmelCase_ , **UpperCAmelCase_) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any): """simple docstring""" super().__init__(UpperCAmelCase_ , device_placement=UpperCAmelCase_ , scaler=UpperCAmelCase_) a : List[str] = hasattr(self.optimizer , 'overflow') def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Dict=None): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]=0.0_01 , UpperCAmelCase_ : List[Any]=0 , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : int = params a : str = lr a : Tuple = weight_decay a : Dict = kwargs class UpperCamelCase : """simple docstring""" def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=0 , **UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = optimizer a : Tuple = total_num_steps a : Optional[Any] = warmup_num_steps a : List[str] = kwargs
345
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Any = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class UpperCamelCase ( a_ ): """simple docstring""" A : str = "trocr" A : Optional[int] = ["past_key_values"] A : Optional[Any] = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : Dict , UpperCAmelCase_ : List[Any]=5_0_2_6_5 , UpperCAmelCase_ : List[str]=1_0_2_4 , UpperCAmelCase_ : Optional[int]=1_2 , UpperCAmelCase_ : int=1_6 , UpperCAmelCase_ : List[Any]=4_0_9_6 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Dict=5_1_2 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Optional[int]=2 , **UpperCAmelCase_ : List[str] , ): """simple docstring""" a : List[str] = vocab_size a : Optional[int] = d_model a : Any = decoder_layers a : str = decoder_attention_heads a : int = decoder_ffn_dim a : str = activation_function a : str = max_position_embeddings a : Dict = dropout a : Any = attention_dropout a : Tuple = activation_dropout a : List[str] = init_std a : Optional[Any] = decoder_layerdrop a : Dict = use_cache a : List[Any] = scale_embedding a : Dict = use_learned_position_embeddings a : Dict = layernorm_embedding super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , )
345
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCamelCase : List[str] = logging.get_logger(__name__) @dataclass class UpperCamelCase : """simple docstring""" A : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) A : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) A : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A : bool = field( default=a_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Union[str, Any] = self.task_name.lower() class UpperCamelCase ( a_ ): """simple docstring""" A : int = "train" A : Tuple = "dev" A : List[Any] = "test" class UpperCamelCase ( a_ ): """simple docstring""" A : GlueDataTrainingArguments A : str A : List[InputFeatures] def __init__( self : Tuple , UpperCAmelCase_ : GlueDataTrainingArguments , UpperCAmelCase_ : PreTrainedTokenizerBase , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Union[str, Split] = Split.train , UpperCAmelCase_ : Optional[str] = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , UpperCAmelCase_ , ) a : Dict = args a : int = glue_processors[args.task_name]() a : int = glue_output_modes[args.task_name] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): try: a : str = Split[mode] except KeyError: raise KeyError('mode is not a valid split name') # Load data features from cache or dataset file a : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) a : Tuple = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) a , a : str = label_list[2], label_list[1] a : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a : Union[str, Any] = cached_features_file + '.lock' with FileLock(UpperCAmelCase_): if os.path.exists(UpperCAmelCase_) and not args.overwrite_cache: a : Optional[Any] = time.time() a : Optional[Any] = torch.load(UpperCAmelCase_) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""") if mode == Split.dev: a : List[Any] = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: a : Optional[Any] = self.processor.get_test_examples(args.data_dir) else: a : List[str] = self.processor.get_train_examples(args.data_dir) if limit_length is not None: a : Dict = examples[:limit_length] a : List[Any] = glue_convert_examples_to_features( UpperCAmelCase_ , UpperCAmelCase_ , max_length=args.max_seq_length , label_list=UpperCAmelCase_ , output_mode=self.output_mode , ) a : Dict = time.time() torch.save(self.features , UpperCAmelCase_) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""") def __len__( self : Tuple): """simple docstring""" return len(self.features) def __getitem__( self : Optional[int] , UpperCAmelCase_ : List[str]): """simple docstring""" return self.features[i] def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return self.label_list
345
1
'''simple docstring''' class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : int): """simple docstring""" a : Dict = n a : Dict = [None] * self.n a : int = 0 # index of the first element a : Optional[int] = 0 a : Optional[Any] = 0 def __len__( self : int): """simple docstring""" return self.size def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return self.size == 0 def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[str]): """simple docstring""" if self.size >= self.n: raise Exception('QUEUE IS FULL') a : int = data a : str = (self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" if self.size == 0: raise Exception('UNDERFLOW') a : Union[str, Any] = self.array[self.front] a : Optional[Any] = None a : List[str] = (self.front + 1) % self.n self.size -= 1 return temp
345
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : Dict = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Any = ["pixel_values"] def __init__( self : str , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : str = size if size is not None else {'shortest_edge': 2_5_6} a : Dict = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a : int = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Any = do_resize a : List[str] = size a : Union[str, Any] = resample a : int = do_center_crop a : Optional[int] = crop_size a : Tuple = do_rescale a : int = rescale_factor a : Optional[Any] = do_normalize a : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : Optional[int] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a : Union[str, Any] = get_resize_output_image_size(UpperCAmelCase_ , size=size['shortest_edge'] , default_to_square=UpperCAmelCase_) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : List[str] = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[str] , ): """simple docstring""" a : int = do_resize if do_resize is not None else self.do_resize a : int = size if size is not None else self.size a : Union[str, Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = resample if resample is not None else self.resample a : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop a : Union[str, Any] = crop_size if crop_size is not None else self.crop_size a : Dict = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : str = do_rescale if do_rescale is not None else self.do_rescale a : int = rescale_factor if rescale_factor is not None else self.rescale_factor a : str = do_normalize if do_normalize is not None else self.do_normalize a : List[str] = image_mean if image_mean is not None else self.image_mean a : Optional[int] = image_std if image_std is not None else self.image_std a : Dict = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a : List[Any] = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: a : Dict = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_) for image in images] if do_center_crop: a : Any = [self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_) for image in images] if do_rescale: a : Optional[int] = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_) for image in images] if do_normalize: a : Dict = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_) for image in images] a : List[Any] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : List[str] = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Tuple] = None): """simple docstring""" a : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_) != len(UpperCAmelCase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(UpperCAmelCase_): a : Optional[Any] = target_sizes.numpy() a : List[str] = [] for idx in range(len(UpperCAmelCase_)): a : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=UpperCAmelCase_) a : Union[str, Any] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(UpperCAmelCase_) else: a : Optional[int] = logits.argmax(dim=1) a : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
345
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase : Tuple = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = ["""ViTFeatureExtractor"""] UpperCamelCase : Any = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[Any] = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : int | float | str , snake_case : int | float | str ) -> list[str]: """simple docstring""" if nth_term == "": return [""] a : Dict = int(snake_case ) a : Optional[int] = int(snake_case ) a : list[str] = [] for temp in range(int(snake_case ) ): series.append(F"""1 / {pow(temp + 1 , int(snake_case ) )}""" if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : Optional[int] = int(input("""Enter the last number (nth term) of the P-Series""")) UpperCamelCase : List[Any] = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
345
1
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int , snake_case : Tuple , snake_case : int ) -> Any: """simple docstring""" a : Union[str, Any] = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] a : Optional[Any] = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } a : Union[str, Any] = F"""{src_lang}-{tgt_lang}""" a : str = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=snake_case , exist_ok=snake_case ) a : List[str] = os.path.join(snake_case , 'README.md' ) print(F"""Generating {path}""" ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(snake_case ) # make sure we are under the root of the project UpperCamelCase : Tuple = Path(__file__).resolve().parent.parent.parent UpperCamelCase : Optional[int] = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase : Any = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
345
'''simple docstring''' import torch def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" if torch.cuda.is_available(): a : int = torch.cuda.device_count() else: a : Any = 0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
345
1
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : """simple docstring""" def __init__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str=0.2 , UpperCAmelCase_ : Optional[int]=0.2): """simple docstring""" a : int = bp_numa a : int = bp_numa a : List[Any] = bp_numa a : int = conva_get[:2] a : List[Any] = conva_get[2] a : List[Any] = size_pa a : Optional[Any] = rate_w a : Tuple = rate_t a : List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5) for i in range(self.conva[1]) ] a : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) a : str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) a : Dict = -2 * np.random.rand(self.conva[1]) + 1 a : List[str] = -2 * np.random.rand(self.num_bpa) + 1 a : Optional[Any] = -2 * np.random.rand(self.num_bpa) + 1 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Dict): """simple docstring""" a : Tuple = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(UpperCAmelCase_ , 'wb') as f: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_) print(f"""Model saved: {save_path}""") @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , UpperCAmelCase_ : Optional[int]): """simple docstring""" with open(UpperCAmelCase_ , 'rb') as f: a : str = pickle.load(UpperCAmelCase_) # noqa: S301 a : Any = model_dic.get('conv1') conv_get.append(model_dic.get('step_conv1')) a : Dict = model_dic.get('size_pooling1') a : str = model_dic.get('num_bp1') a : Union[str, Any] = model_dic.get('num_bp2') a : str = model_dic.get('num_bp3') a : List[str] = model_dic.get('rate_weight') a : str = model_dic.get('rate_thre') # create model instance a : Optional[Any] = CNN(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # modify model parameter a : Union[str, Any] = model_dic.get('w_conv1') a : int = model_dic.get('wkj') a : List[Any] = model_dic.get('vji') a : List[Any] = model_dic.get('thre_conv1') a : Optional[Any] = model_dic.get('thre_bp2') a : int = model_dic.get('thre_bp3') return conv_ins def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : int): """simple docstring""" return 1 / (1 + np.exp(-1 * x)) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : List[str]): """simple docstring""" return round(UpperCAmelCase_ , 3) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]): """simple docstring""" a : Dict = convs[0] a : Tuple = convs[1] a : Any = np.shape(UpperCAmelCase_)[0] # get the data slice of original image data, data_focus a : str = [] for i_focus in range(0 , size_data - size_conv + 1 , UpperCAmelCase_): for j_focus in range(0 , size_data - size_conv + 1 , UpperCAmelCase_): a : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(UpperCAmelCase_) # calculate the feature map of every single kernel, and saved as list of matrix a : Union[str, Any] = [] a : Optional[Any] = int((size_data - size_conv) / conv_step + 1) for i_map in range(UpperCAmelCase_): a : Union[str, Any] = [] for i_focus in range(len(UpperCAmelCase_)): a : List[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map])) - thre_convs[i_map] ) featuremap.append(self.sig(UpperCAmelCase_)) a : str = np.asmatrix(UpperCAmelCase_).reshape( UpperCAmelCase_ , UpperCAmelCase_) data_featuremap.append(UpperCAmelCase_) # expanding the data slice to One dimenssion a : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(UpperCAmelCase_)) a : Union[str, Any] = np.asarray(UpperCAmelCase_) return focus_list, data_featuremap def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple="average_pool"): """simple docstring""" a : Dict = len(featuremaps[0]) a : Union[str, Any] = int(size_map / size_pooling) a : Tuple = [] for i_map in range(len(UpperCAmelCase_)): a : Dict = featuremaps[i_map] a : str = [] for i_focus in range(0 , UpperCAmelCase_ , UpperCAmelCase_): for j_focus in range(0 , UpperCAmelCase_ , UpperCAmelCase_): a : Dict = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(UpperCAmelCase_)) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(UpperCAmelCase_)) a : Any = np.asmatrix(UpperCAmelCase_).reshape(UpperCAmelCase_ , UpperCAmelCase_) featuremap_pooled.append(UpperCAmelCase_) return featuremap_pooled def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Dict): """simple docstring""" a : int = [] for i in range(len(UpperCAmelCase_)): a : int = np.shape(data[i]) a : int = data[i].reshape(1 , shapes[0] * shapes[1]) a : Optional[Any] = data_listed.getA().tolist()[0] data_expanded.extend(UpperCAmelCase_) a : Optional[int] = np.asarray(UpperCAmelCase_) return data_expanded def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : int): """simple docstring""" a : Any = np.asarray(UpperCAmelCase_) a : List[Any] = np.shape(UpperCAmelCase_) a : Optional[int] = data_mat.reshape(1 , shapes[0] * shapes[1]) return data_expanded def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str): """simple docstring""" a : Any = [] a : Optional[int] = 0 for i_map in range(UpperCAmelCase_): a : Any = np.ones((size_map, size_map)) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_): for j in range(0 , UpperCAmelCase_ , UpperCAmelCase_): a : Dict = pd_pool[ i_pool ] a : List[str] = i_pool + 1 a : Dict = np.multiply( UpperCAmelCase_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]))) pd_all.append(UpperCAmelCase_) return pd_all def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any]=bool): """simple docstring""" print('----------------------Start Training-------------------------') print((' - - Shape: Train_Data ', np.shape(UpperCAmelCase_))) print((' - - Shape: Teach_Data ', np.shape(UpperCAmelCase_))) a : Optional[Any] = 0 a : Dict = [] a : str = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: a : str = 0 print(f"""-------------Learning Time {rp}--------------""") for p in range(len(UpperCAmelCase_)): # print('------------Learning Image: %d--------------'%p) a : str = np.asmatrix(datas_train[p]) a : int = np.asarray(datas_teach[p]) a , a : Dict = self.convolute( UpperCAmelCase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a : Any = self.pooling(UpperCAmelCase_ , self.size_poolinga) a : Dict = np.shape(UpperCAmelCase_) a : List[Any] = self._expand(UpperCAmelCase_) a : Union[str, Any] = data_bp_input a : List[Any] = np.dot(UpperCAmelCase_ , self.vji.T) - self.thre_bpa a : List[Any] = self.sig(UpperCAmelCase_) a : str = np.dot(UpperCAmelCase_ , self.wkj.T) - self.thre_bpa a : List[str] = self.sig(UpperCAmelCase_) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- a : int = np.multiply( (data_teach - bp_outa) , np.multiply(UpperCAmelCase_ , (1 - bp_outa))) a : Dict = np.multiply( np.dot(UpperCAmelCase_ , self.wkj) , np.multiply(UpperCAmelCase_ , (1 - bp_outa))) a : List[str] = np.dot(UpperCAmelCase_ , self.vji) a : Any = pd_i_all / (self.size_poolinga * self.size_poolinga) a : Any = pd_conva_pooled.T.getA().tolist() a : Dict = self._calculate_gradient_from_pool( UpperCAmelCase_ , UpperCAmelCase_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1]): a : Tuple = self._expand_mat(pd_conva_all[k_conv]) a : Any = self.rate_weight * np.dot(UpperCAmelCase_ , UpperCAmelCase_) a : List[str] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0])) a : Tuple = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv]) * self.rate_thre ) # all connected layer a : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight a : List[str] = self.vji + pd_j_all.T * bp_outa * self.rate_weight a : str = self.thre_bpa - pd_k_all * self.rate_thre a : Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image a : Union[str, Any] = np.sum(abs(data_teach - bp_outa)) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) a : Union[str, Any] = rp + 1 a : Tuple = error_count / patterns all_mse.append(UpperCAmelCase_) def draw_error(): a : Tuple = [error_accuracy for i in range(int(n_repeat * 1.2))] plt.plot(UpperCAmelCase_ , '+-') plt.plot(UpperCAmelCase_ , 'r--') plt.xlabel('Learning Times') plt.ylabel('All_mse') plt.grid(UpperCAmelCase_ , alpha=0.5) plt.show() print('------------------Training Complished---------------------') print((' - - Training epoch: ', rp, f""" - - Mse: {mse:.6f}""")) if draw_e: draw_error() return mse def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : List[Any]): """simple docstring""" a : Dict = [] print('-------------------Start Testing-------------------------') print((' - - Shape: Test_Data ', np.shape(UpperCAmelCase_))) for p in range(len(UpperCAmelCase_)): a : int = np.asmatrix(datas_test[p]) a , a : int = self.convolute( UpperCAmelCase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a : Tuple = self.pooling(UpperCAmelCase_ , self.size_poolinga) a : str = self._expand(UpperCAmelCase_) a : str = data_bp_input a : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa a : Union[str, Any] = self.sig(UpperCAmelCase_) a : List[Any] = bp_outa * self.wkj.T - self.thre_bpa a : Tuple = self.sig(UpperCAmelCase_) produce_out.extend(bp_outa.getA().tolist()) a : Optional[int] = [list(map(self.do_round , UpperCAmelCase_)) for each in produce_out] return np.asarray(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : int = np.asmatrix(UpperCAmelCase_) a , a : int = self.convolute( UpperCAmelCase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a : Union[str, Any] = self.pooling(UpperCAmelCase_ , self.size_poolinga) return data_conveda, data_pooleda if __name__ == "__main__": pass
345
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ UpperCamelCase : Optional[Any] = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ UpperCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple="auto" , UpperCAmelCase_ : Any=-1 , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : int=5_0_0 , UpperCAmelCase_ : int="gpt2-large" , UpperCAmelCase_ : Tuple=-1 , UpperCAmelCase_ : Dict=1_0_2_4 , UpperCAmelCase_ : List[str]=2_5 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=2_5 , ): """simple docstring""" a : List[str] = compute_mauve( p_text=UpperCAmelCase_ , q_text=UpperCAmelCase_ , p_features=UpperCAmelCase_ , q_features=UpperCAmelCase_ , p_tokens=UpperCAmelCase_ , q_tokens=UpperCAmelCase_ , num_buckets=UpperCAmelCase_ , pca_max_data=UpperCAmelCase_ , kmeans_explained_var=UpperCAmelCase_ , kmeans_num_redo=UpperCAmelCase_ , kmeans_max_iter=UpperCAmelCase_ , featurize_model_name=UpperCAmelCase_ , device_id=UpperCAmelCase_ , max_text_length=UpperCAmelCase_ , divergence_curve_discretization_size=UpperCAmelCase_ , mauve_scaling_factor=UpperCAmelCase_ , verbose=UpperCAmelCase_ , seed=UpperCAmelCase_ , ) return out
345
1
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCamelCase ( a_ ): """simple docstring""" A : Any = (DPMSolverSDEScheduler,) A : List[Any] = 10 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **UpperCAmelCase_ : Any): """simple docstring""" a : Tuple = { 'num_train_timesteps': 1_1_0_0, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : str = self.scheduler_classes[0] a : Optional[Any] = self.get_scheduler_config() a : str = scheduler_class(**UpperCAmelCase_) scheduler.set_timesteps(self.num_inference_steps) a : Union[str, Any] = self.dummy_model() a : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma a : Optional[int] = sample.to(UpperCAmelCase_) for i, t in enumerate(scheduler.timesteps): a : str = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_) a : int = model(UpperCAmelCase_ , UpperCAmelCase_) a : Optional[Any] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) a : Optional[int] = output.prev_sample a : List[Any] = torch.sum(torch.abs(UpperCAmelCase_)) a : Any = torch.mean(torch.abs(UpperCAmelCase_)) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.47_82_10_44_92_18_75) < 1e-2 assert abs(result_mean.item() - 0.21_78_70_59_64_56_52_77) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_21_11_81_64_06) < 1e-2 assert abs(result_mean.item() - 0.2_23_42_90_68_92_29_96_52) < 1e-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62) < 1e-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : str = self.scheduler_classes[0] a : int = self.get_scheduler_config(prediction_type='v_prediction') a : Union[str, Any] = scheduler_class(**UpperCAmelCase_) scheduler.set_timesteps(self.num_inference_steps) a : Tuple = self.dummy_model() a : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma a : List[str] = sample.to(UpperCAmelCase_) for i, t in enumerate(scheduler.timesteps): a : Optional[int] = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_) a : Optional[Any] = model(UpperCAmelCase_ , UpperCAmelCase_) a : Union[str, Any] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) a : List[str] = output.prev_sample a : int = torch.sum(torch.abs(UpperCAmelCase_)) a : Any = torch.mean(torch.abs(UpperCAmelCase_)) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_24.77_14_92_00_43_94_53) < 1e-2 assert abs(result_mean.item() - 0.1_62_26_28_90_14_81_62_84) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_28.1_66_33_60_59_57_03) < 1e-2 assert abs(result_mean.item() - 0.1_66_88_32_60_01_16_72_97) < 1e-3 else: assert abs(result_sum.item() - 1_19.8_48_75_48_82_81_25) < 1e-2 assert abs(result_mean.item() - 0.15_60_53_06_62_53_66_21) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : List[str] = self.scheduler_classes[0] a : List[Any] = self.get_scheduler_config() a : Optional[int] = scheduler_class(**UpperCAmelCase_) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase_) a : str = self.dummy_model() a : List[str] = self.dummy_sample_deter.to(UpperCAmelCase_) * scheduler.init_noise_sigma for t in scheduler.timesteps: a : Union[str, Any] = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_) a : List[Any] = model(UpperCAmelCase_ , UpperCAmelCase_) a : Tuple = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) a : List[str] = output.prev_sample a : Any = torch.sum(torch.abs(UpperCAmelCase_)) a : List[Any] = torch.mean(torch.abs(UpperCAmelCase_)) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.46_95_73_97_46_09_38) < 1e-2 assert abs(result_mean.item() - 0.2_18_05_93_46_07_98_26_35) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_36_37_69_53_12) < 1e-2 assert abs(result_mean.item() - 0.2_23_42_90_83_82_41_57_71) < 1e-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62) < 1e-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : int = self.scheduler_classes[0] a : Any = self.get_scheduler_config() a : Union[str, Any] = scheduler_class(**UpperCAmelCase_ , use_karras_sigmas=UpperCAmelCase_) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase_) a : List[str] = self.dummy_model() a : Union[str, Any] = self.dummy_sample_deter.to(UpperCAmelCase_) * scheduler.init_noise_sigma a : int = sample.to(UpperCAmelCase_) for t in scheduler.timesteps: a : Optional[Any] = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_) a : Any = model(UpperCAmelCase_ , UpperCAmelCase_) a : Optional[Any] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) a : List[Any] = output.prev_sample a : Union[str, Any] = torch.sum(torch.abs(UpperCAmelCase_)) a : int = torch.mean(torch.abs(UpperCAmelCase_)) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_76.66_97_41_35_74_21_88) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_77.63_65_35_64_45_31_25) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11) < 1e-2 else: assert abs(result_sum.item() - 1_70.3_13_52_23_38_86_72) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11) < 1e-2
345
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : list[int | float] , snake_case : int , snake_case : int ) -> int | float: """simple docstring""" if len(snake_case ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(snake_case ) or left < -len(snake_case ) or right >= len(snake_case ) or right < -len(snake_case ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] a : Union[str, Any] = (left + right) >> 1 # the middle a : List[str] = find_max(snake_case , snake_case , snake_case ) # find max in range[left, mid] a : Dict = find_max(snake_case , mid + 1 , snake_case ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
345
1
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCamelCase ( a_ , unittest.TestCase ): """simple docstring""" A : Any = BertJapaneseTokenizer A : List[Any] = False A : Any = True def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" super().setUp() a : Any = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Dict = 'こんにちは、世界。 \nこんばんは、世界。' a : Any = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Optional[int]): """simple docstring""" a , a : Dict = self.get_input_output_texts(UpperCAmelCase_) a : str = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) a : str = tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_) return text, ids def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Tuple = self.tokenizer_class(self.vocab_file) a : str = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。') self.assertListEqual(UpperCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。']) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : str = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab') self.assertIsNotNone(UpperCAmelCase_) a : Optional[Any] = 'こんにちは、世界。\nこんばんは、世界。' a : Any = tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。']) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) a : Union[str, Any] = os.path.join(self.tmpdirname , 'tokenizer.bin') with open(UpperCAmelCase_ , 'wb') as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_) with open(UpperCAmelCase_ , 'rb') as handle: a : Optional[int] = pickle.load(UpperCAmelCase_) a : List[str] = tokenizer_new.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : int = MecabTokenizer(mecab_dic='ipadic') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" try: a : List[Any] = MecabTokenizer(mecab_dic='unidic_lite') except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" try: a : List[Any] = MecabTokenizer(mecab_dic='unidic') except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Optional[Any] = MecabTokenizer(do_lower_case=UpperCAmelCase_ , mecab_dic='ipadic') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" try: a : Any = MecabTokenizer( do_lower_case=UpperCAmelCase_ , normalize_text=UpperCAmelCase_ , mecab_option='-d /usr/local/lib/mecab/dic/jumandic') except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Optional[int] = MecabTokenizer(normalize_text=UpperCAmelCase_ , mecab_dic='ipadic') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi') self.assertIsNotNone(UpperCAmelCase_) a : List[str] = 'こんにちは、世界。\nこんばんは、世界。' a : Any = tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。']) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) a : int = os.path.join(self.tmpdirname , 'tokenizer.bin') with open(UpperCAmelCase_ , 'wb') as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_) with open(UpperCAmelCase_ , 'rb') as handle: a : Optional[int] = pickle.load(UpperCAmelCase_) a : Tuple = tokenizer_new.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Tuple = SudachiTokenizer(sudachi_dict_type='core') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : int = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A') self.assertListEqual(tokenizer.tokenize('外国人参政権') , ['外国', '人', '参政', '権']) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : str = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B') self.assertListEqual(tokenizer.tokenize('外国人参政権') , ['外国人', '参政権']) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Dict = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C') self.assertListEqual(tokenizer.tokenize('外国人参政権') , ['外国人参政権']) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : str = SudachiTokenizer(do_lower_case=UpperCAmelCase_ , sudachi_dict_type='core') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Dict = SudachiTokenizer(normalize_text=UpperCAmelCase_ , sudachi_dict_type='core') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[Any] = SudachiTokenizer(trim_whitespace=UpperCAmelCase_ , sudachi_dict_type='core') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : str = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp') self.assertIsNotNone(UpperCAmelCase_) a : List[Any] = 'こんにちは、世界。\nこんばんは、世界。' a : int = tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。']) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) a : str = os.path.join(self.tmpdirname , 'tokenizer.bin') with open(UpperCAmelCase_ , 'wb') as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_) with open(UpperCAmelCase_ , 'rb') as handle: a : Optional[Any] = pickle.load(UpperCAmelCase_) a : Union[str, Any] = tokenizer_new.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) @require_jumanpp def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Dict = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : List[str] = JumanppTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Any = JumanppTokenizer(normalize_text=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : List[Any] = JumanppTokenizer(trim_whitespace=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : str = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。') , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Dict = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] a : Tuple = {} for i, token in enumerate(UpperCAmelCase_): a : List[str] = i a : int = WordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize('') , []) self.assertListEqual(tokenizer.tokenize('こんにちは') , ['こんにちは']) self.assertListEqual(tokenizer.tokenize('こんばんは') , ['こん', '##ばんは']) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは') , ['こん', '##ばんは', '[UNK]', 'こんにちは']) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Tuple = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp') a : Union[str, Any] = tokenizer.subword_tokenizer a : Any = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。') self.assertListEqual(UpperCAmelCase_ , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。']) a : Any = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは') self.assertListEqual(UpperCAmelCase_ , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは']) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : int = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese') a : int = tokenizer.encode('ありがとう。' , add_special_tokens=UpperCAmelCase_) a : Union[str, Any] = tokenizer.encode('どういたしまして。' , add_special_tokens=UpperCAmelCase_) a : Optional[Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_) a : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCamelCase ( a_ , unittest.TestCase ): """simple docstring""" A : Union[str, Any] = BertJapaneseTokenizer A : Optional[Any] = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" super().setUp() a : int = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] a : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , **UpperCAmelCase_ : str): """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : Any): """simple docstring""" a : Optional[Any] = 'こんにちは、世界。 \nこんばんは、世界。' a : Optional[Any] = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : str = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character') a : Optional[int] = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。') self.assertListEqual( UpperCAmelCase_ , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。']) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2]) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Tuple = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] a : Dict = {} for i, token in enumerate(UpperCAmelCase_): a : Optional[int] = i a : List[Any] = CharacterTokenizer(vocab=UpperCAmelCase_ , unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize('') , []) self.assertListEqual(tokenizer.tokenize('こんにちは') , ['こ', 'ん', 'に', 'ち', 'は']) self.assertListEqual(tokenizer.tokenize('こんにちほ') , ['こ', 'ん', 'に', 'ち', '[UNK]']) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Tuple = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char') a : int = tokenizer.encode('ありがとう。' , add_special_tokens=UpperCAmelCase_) a : Optional[Any] = tokenizer.encode('どういたしまして。' , add_special_tokens=UpperCAmelCase_) a : str = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_) a : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Union[str, Any] = 'cl-tohoku/bert-base-japanese' a : Tuple = AutoTokenizer.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING') as cm: BertTokenizer.from_pretrained(UpperCAmelCase_) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.')) a : Dict = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING') as cm: BertJapaneseTokenizer.from_pretrained(UpperCAmelCase_) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.'))
345
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase : int = """true""" def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : int=82 , snake_case : Tuple=16 ) -> Union[str, Any]: """simple docstring""" set_seed(42 ) a : List[str] = RegressionModel() a : Union[str, Any] = deepcopy(snake_case ) a : Dict = RegressionDataset(length=snake_case ) a : Dict = DataLoader(snake_case , batch_size=snake_case ) model.to(accelerator.device ) a , a : Optional[int] = accelerator.prepare(snake_case , snake_case ) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( snake_case : Accelerator , snake_case : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" a : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) a : Any = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(snake_case : int ): a : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case , max_length=snake_case ) return outputs with accelerator.main_process_first(): a : Dict = dataset.map( snake_case , batched=snake_case , remove_columns=['idx', 'sentence1', 'sentence2'] , ) a : List[str] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case : Optional[Any] ): if use_longest: return tokenizer.pad(snake_case , padding='longest' , return_tensors='pt' ) return tokenizer.pad(snake_case , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(snake_case , shuffle=snake_case , collate_fn=snake_case , batch_size=16 ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" a : int = Accelerator(dispatch_batches=snake_case , split_batches=snake_case ) a : List[str] = get_dataloader(snake_case , not dispatch_batches ) a : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=snake_case ) a , a : Optional[Any] = accelerator.prepare(snake_case , snake_case ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" a : Dict = [] for batch in dataloader: a , a : Any = batch.values() with torch.no_grad(): a : Tuple = model(snake_case ) a , a : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) a , a : List[str] = [], [] for logit, targ in logits_and_targets: logits.append(snake_case ) targs.append(snake_case ) a , a : Any = torch.cat(snake_case ), torch.cat(snake_case ) return logits, targs def SCREAMING_SNAKE_CASE__ ( snake_case : Accelerator , snake_case : Dict=82 , snake_case : str=False , snake_case : List[str]=False , snake_case : List[Any]=16 ) -> Optional[int]: """simple docstring""" a , a , a : int = get_basic_setup(snake_case , snake_case , snake_case ) a , a : int = generate_predictions(snake_case , snake_case , snake_case ) assert ( len(snake_case ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case )}""" def SCREAMING_SNAKE_CASE__ ( snake_case : bool = False , snake_case : bool = False ) -> List[str]: """simple docstring""" a : int = evaluate.load('glue' , 'mrpc' ) a , a : Tuple = get_mrpc_setup(snake_case , snake_case ) # First do baseline a , a , a : Tuple = setup['no'] model.to(snake_case ) model.eval() for batch in dataloader: batch.to(snake_case ) with torch.inference_mode(): a : List[Any] = model(**snake_case ) a : Optional[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=snake_case , references=batch['labels'] ) a : Tuple = metric.compute() # Then do distributed a , a , a : Tuple = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): a : List[str] = model(**snake_case ) a : Optional[Any] = outputs.logits.argmax(dim=-1 ) a : Optional[int] = batch['labels'] a , a : Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=snake_case , references=snake_case ) a : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" a : Dict = Accelerator(split_batches=snake_case , dispatch_batches=snake_case ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(snake_case , snake_case ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: a : List[Any] = Accelerator(split_batches=snake_case , dispatch_batches=snake_case ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(snake_case , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) a : Optional[Any] = Accelerator() test_torch_metrics(snake_case , 512 ) accelerator.state._reset_state() def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] ) -> int: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
345
1
'''simple docstring''' from collections import defaultdict def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str ) -> bool: """simple docstring""" a : Optional[int] = first_str.lower().strip() a : Tuple = second_str.lower().strip() # Remove whitespace a : List[str] = first_str.replace(' ' , '' ) a : str = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(snake_case ) != len(snake_case ): return False # Default values for count should be 0 a : defaultdict[str, int] = defaultdict(snake_case ) # For each character in input strings, # increment count in the corresponding for i in range(len(snake_case ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase : List[Any] = input("""Enter the first string """).strip() UpperCamelCase : Tuple = input("""Enter the second string """).strip() UpperCamelCase : Any = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
345
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = ["vqvae"] def __init__( self : List[str] , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Mel , UpperCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , mel=UpperCAmelCase_ , vqvae=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return 5_0 if isinstance(self.scheduler , UpperCAmelCase_) else 1_0_0_0 @torch.no_grad() def __call__( self : Dict , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = None , UpperCAmelCase_ : np.ndarray = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = None , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : Optional[Any]=True , ): """simple docstring""" a : Optional[Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase_) a : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: a : Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a : Dict = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCAmelCase_ , device=self.device , ) a : Tuple = noise a : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase_ , UpperCAmelCase_) a : List[Any] = self.mel.audio_slice_to_image(UpperCAmelCase_) a : str = np.frombuffer(input_image.tobytes() , dtype='uint8').reshape( (input_image.height, input_image.width)) a : List[str] = (input_image / 2_5_5) * 2 - 1 a : Any = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: a : List[Any] = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase_ , 0)).latent_dist.sample( generator=UpperCAmelCase_)[0] a : str = self.vqvae.config.scaling_factor * input_images if start_step > 0: a : Union[str, Any] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler.timesteps[start_step - 1]) a : Dict = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a : List[Any] = int(mask_start_secs * pixels_per_second) a : Optional[Any] = int(mask_end_secs * pixels_per_second) a : Optional[int] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , UpperCAmelCase_): a : Dict = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)['sample'] else: a : str = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] if isinstance(self.scheduler , UpperCAmelCase_): a : List[Any] = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] else: a : Any = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] if mask is not None: if mask_start > 0: a : str = mask[:, step, :, :mask_start] if mask_end > 0: a : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a : List[str] = 1 / self.vqvae.config.scaling_factor * images a : str = self.vqvae.decode(UpperCAmelCase_)['sample'] a : Tuple = (images / 2 + 0.5).clamp(0 , 1) a : Any = images.cpu().permute(0 , 2 , 3 , 1).numpy() a : List[str] = (images * 2_5_5).round().astype('uint8') a : Tuple = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase_ , mode='RGB').convert('L') for _ in images)) a : List[str] = [self.mel.image_to_audio(UpperCAmelCase_) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase_)[:, np.newaxis, :]) , **ImagePipelineOutput(UpperCAmelCase_)) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : List[Image.Image] , UpperCAmelCase_ : int = 5_0): """simple docstring""" assert isinstance(self.scheduler , UpperCAmelCase_) self.scheduler.set_timesteps(UpperCAmelCase_) a : Dict = np.array( [np.frombuffer(image.tobytes() , dtype='uint8').reshape((1, image.height, image.width)) for image in images]) a : Tuple = (sample / 2_5_5) * 2 - 1 a : int = torch.Tensor(UpperCAmelCase_).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): a : Optional[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a : Optional[Any] = self.scheduler.alphas_cumprod[t] a : List[Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a : List[str] = 1 - alpha_prod_t a : Optional[Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] a : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output a : Dict = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a : Union[str, Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : float): """simple docstring""" a : List[Any] = acos(torch.dot(torch.flatten(UpperCAmelCase_) , torch.flatten(UpperCAmelCase_)) / torch.norm(UpperCAmelCase_) / torch.norm(UpperCAmelCase_)) return sin((1 - alpha) * theta) * xa / sin(UpperCAmelCase_) + sin(alpha * theta) * xa / sin(UpperCAmelCase_)
345
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError('Input must be a positive integer' ) a : Optional[Any] = [True] * (num + 1) a : Union[str, Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case ): a : List[Any] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : Union[str, Any] = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
345
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=1_3 , UpperCAmelCase_ : List[str]=3_0 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=3_2 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Dict=3_7 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=1_0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=2 , ): """simple docstring""" a : Any = parent a : Optional[int] = batch_size a : str = image_size a : str = patch_size a : List[Any] = num_channels a : Optional[int] = is_training a : Dict = use_labels a : Any = hidden_size a : Optional[int] = num_hidden_layers a : int = num_attention_heads a : int = intermediate_size a : Any = hidden_act a : Optional[int] = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : Dict = type_sequence_label_size a : Tuple = initializer_range a : List[str] = scope a : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[Any] = (image_size // patch_size) ** 2 a : str = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a : List[Any] = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict): """simple docstring""" a : int = ViTModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = ViTForMaskedImageModeling(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[Any] = model(UpperCAmelCase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images a : int = 1 a : Union[str, Any] = ViTForMaskedImageModeling(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : Optional[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any): """simple docstring""" a : str = self.type_sequence_label_size a : Tuple = ViTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a : List[Any] = 1 a : Union[str, Any] = ViTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ) : Tuple = config_and_inputs a : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : str = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) A : Optional[Any] = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) A : List[str] = True A : Optional[int] = False A : Dict = False A : Optional[int] = False def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : str = ViTModelTester(self) a : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(UpperCAmelCase_) a : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Dict = [*signature.parameters.keys()] a : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = ViTModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: """simple docstring""" a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Optional[Any] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(UpperCAmelCase_) a : List[Any] = self.default_image_processor a : List[str] = prepare_img() a : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : List[Any] = model(**UpperCAmelCase_) # verify the logits a : List[str] = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) a : Union[str, Any] = torch.tensor([-0.27_44, 0.82_15, -0.08_36]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[str] = ViTModel.from_pretrained('facebook/dino-vits8').to(UpperCAmelCase_) a : Any = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_8_0) a : int = prepare_img() a : List[str] = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : List[str] = inputs.pixel_values.to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : List[Any] = model(UpperCAmelCase_ , interpolate_pos_encoding=UpperCAmelCase_) # verify the logits a : Dict = torch.Size((1, 3_6_0_1, 3_8_4)) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_) a : str = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : str = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto') a : List[Any] = self.default_image_processor a : List[str] = prepare_img() a : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : Tuple = inputs.pixel_values.to(UpperCAmelCase_) # forward pass to make sure inference works in fp16 with torch.no_grad(): a : Tuple = model(UpperCAmelCase_)
345
1
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase : """simple docstring""" def __init__( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=1_3 , UpperCAmelCase_ : Tuple=3_2 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : str=1_6 , UpperCAmelCase_ : int=[1, 2, 1] , UpperCAmelCase_ : int=[2, 2, 4] , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=2.0 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : int=1e-5 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : int=1_0 , UpperCAmelCase_ : Any=8 , ): """simple docstring""" a : str = parent a : Optional[int] = batch_size a : Dict = image_size a : List[Any] = patch_size a : int = num_channels a : Any = embed_dim a : Any = depths a : List[Any] = num_heads a : Dict = window_size a : List[str] = mlp_ratio a : Optional[Any] = qkv_bias a : Optional[int] = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : List[Any] = drop_path_rate a : Optional[Any] = hidden_act a : Optional[int] = use_absolute_embeddings a : List[str] = patch_norm a : Union[str, Any] = layer_norm_eps a : str = initializer_range a : Optional[Any] = is_training a : str = scope a : int = use_labels a : str = type_sequence_label_size a : Dict = encoder_stride def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a : str = None if self.use_labels: a : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : Tuple = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any): """simple docstring""" a : List[str] = SwinvaModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[Any] = model(UpperCAmelCase_) a : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) a : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]): """simple docstring""" a : List[Any] = SwinvaForMaskedImageModeling(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Dict = model(UpperCAmelCase_) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images a : Optional[int] = 1 a : List[str] = SwinvaForMaskedImageModeling(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : List[str] = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size)) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any): """simple docstring""" a : List[str] = self.type_sequence_label_size a : Optional[Any] = SwinvaForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Optional[int] = self.prepare_config_and_inputs() a , a , a : Optional[int] = config_and_inputs a : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : Optional[int] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) A : Tuple = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) A : Tuple = False A : Union[str, Any] = False A : Optional[Any] = False A : Optional[Any] = False def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[str] = SwinvaModelTester(self) a : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase_ , embed_dim=3_7) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.') def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds') def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : List[Any] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a , a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : List[str] = model_class(UpperCAmelCase_) a : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : str = [*signature.parameters.keys()] a : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a , a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a : Any = True for model_class in self.all_model_classes: a : Union[str, Any] = True a : List[Any] = False a : int = True a : Tuple = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): a : List[Any] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) a : Tuple = outputs.attentions a : Union[str, Any] = len(self.model_tester.depths) self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) # check that output_attentions also work using config del inputs_dict["output_attentions"] a : str = True a : Optional[int] = config.window_size**2 a : Dict = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): a : Union[str, Any] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) a : Optional[Any] = outputs.attentions self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) a : Union[str, Any] = len(UpperCAmelCase_) # Check attention is always last and order is fine a : Tuple = True a : Optional[int] = True a : List[str] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): a : Any = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) if hasattr(self.model_tester , 'num_hidden_states_types'): a : Optional[int] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states a : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase_)) a : Union[str, Any] = outputs.attentions self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int): """simple docstring""" a : Tuple = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): a : Optional[Any] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) a : Union[str, Any] = outputs.hidden_states a : Union[str, Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths) + 1) self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) # Swinv2 has a different seq_length a : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) a : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) a : Any = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) a , a , a , a : List[Any] = reshaped_hidden_states[0].shape a : int = ( reshaped_hidden_states[0].view(UpperCAmelCase_ , UpperCAmelCase_ , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a , a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() a : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: a : str = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Optional[Any] = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a , a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a : Dict = 3 a : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) a : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) a : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) a : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: a : int = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Union[str, Any] = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width)) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Any = SwinvaModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : int = self.model_tester.prepare_config_and_inputs_for_common() a : Dict = _config_zero_init(UpperCAmelCase_) for model_class in self.all_model_classes: a : int = model_class(config=UpperCAmelCase_) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Any = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256').to( UpperCAmelCase_) a : Dict = self.default_image_processor a : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') a : List[Any] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : Any = model(**UpperCAmelCase_) # verify the logits a : Any = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) a : Union[str, Any] = torch.tensor([-0.39_47, -0.43_06, 0.00_26]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
345
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase ( a_ ): """simple docstring""" A : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) A : List[Any] = "CIDAS/clipseg-rd64-refined" A : Optional[Any] = "image_segmenter" A : List[Any] = CLIPSegForImageSegmentation A : Tuple = ["image", "text"] A : Optional[int] = ["image"] def __init__( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(self , ['vision']) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : "Image" , UpperCAmelCase_ : str): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=UpperCAmelCase_ , return_tensors='pt') def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str): """simple docstring""" with torch.no_grad(): a : Union[str, Any] = self.model(**UpperCAmelCase_).logits return logits def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : int): """simple docstring""" a : int = outputs.cpu().detach().numpy() a : str = 0 a : str = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta))
345
1
'''simple docstring''' import random from typing import Any def SCREAMING_SNAKE_CASE__ ( snake_case : list ) -> list[Any]: """simple docstring""" for _ in range(len(snake_case ) ): a : Union[str, Any] = random.randint(0 , len(snake_case ) - 1 ) a : Optional[int] = random.randint(0 , len(snake_case ) - 1 ) a , a : Dict = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase : Optional[int] = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase : Optional[int] = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
345
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( a_ , unittest.TestCase ): """simple docstring""" A : Union[str, Any] = CTRLTokenizer A : List[Any] = False A : Optional[Any] = False def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a : Dict = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] a : Tuple = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) a : Any = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] a : List[Any] = {'unk_token': '<unk>'} a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , **UpperCAmelCase_ : Dict): """simple docstring""" kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Any): """simple docstring""" a : List[str] = 'adapt react readapt apt' a : int = 'adapt react readapt apt' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : int = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) a : str = 'adapt react readapt apt' a : Optional[Any] = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() a : List[Any] = tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) a : Union[str, Any] = tokens + [tokenizer.unk_token] a : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
345
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] ) -> int: """simple docstring""" a : Optional[Any] = [0] * len(snake_case ) a : List[str] = [] a : Union[str, Any] = [] a : List[Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case ) ): if indegree[i] == 0: queue.append(snake_case ) while queue: a : str = queue.pop(0 ) cnt += 1 topo.append(snake_case ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(snake_case ) if cnt != len(snake_case ): print('Cycle exists' ) else: print(snake_case ) # Adjacency List of Graph UpperCamelCase : int = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
345
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
345
1
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCamelCase : List[str] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple ) -> Tuple: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def SCREAMING_SNAKE_CASE__ ( snake_case : Dict , snake_case : Optional[Any] , snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" return max(metric_fn(snake_case , snake_case ) for gt in ground_truths ) def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" a : Optional[Any] = [line.strip() for line in open(snake_case , 'r' ).readlines()] a : List[str] = [] if args.gold_data_mode == "qa": a : Optional[int] = pd.read_csv(snake_case , sep='\t' , header=snake_case ) for answer_list in data[1]: a : str = ast.literal_eval(snake_case ) answers.append(snake_case ) else: a : List[Any] = [line.strip() for line in open(snake_case , 'r' ).readlines()] a : Optional[int] = [[reference] for reference in references] a : Union[str, Any] = 0 for prediction, ground_truths in zip(snake_case , snake_case ): total += 1 em += metric_max_over_ground_truths(snake_case , snake_case , snake_case ) fa += metric_max_over_ground_truths(snake_case , snake_case , snake_case ) a : Optional[int] = 1_00.0 * em / total a : Union[str, Any] = 1_00.0 * fa / total logger.info(F"""F1: {fa:.2f}""" ) logger.info(F"""EM: {em:.2f}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Dict ) -> Dict: """simple docstring""" a : List[str] = args.k a : Optional[Any] = [line.strip() for line in open(snake_case , 'r' ).readlines()] a : int = [line.strip() for line in open(snake_case , 'r' ).readlines()] a : str = 0 for hypo, reference in zip(snake_case , snake_case ): a : Optional[int] = set(hypo.split('\t' )[:k] ) a : int = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a : Any = 1_00.0 * em / total logger.info(F"""Precision@{k}: {em: .2f}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Optional[Any] , snake_case : str ) -> Optional[Any]: """simple docstring""" def strip_title(snake_case : List[Any] ): if title.startswith('"' ): a : List[str] = title[1:] if title.endswith('"' ): a : Any = title[:-1] return title a : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( snake_case , return_tensors='pt' , padding=snake_case , truncation=snake_case , )['input_ids'].to(args.device ) a : List[str] = rag_model.rag.question_encoder(snake_case ) a : int = question_enc_outputs[0] a : Dict = rag_model.retriever( snake_case , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) a : int = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a : List[str] = [] for docs in all_docs: a : Tuple = [strip_title(snake_case ) for title in docs['title']] provenance_strings.append('\t'.join(snake_case ) ) return provenance_strings def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : List[str] , snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): a : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( snake_case , return_tensors='pt' , padding=snake_case , truncation=snake_case ) a : Dict = inputs_dict.input_ids.to(args.device ) a : int = inputs_dict.attention_mask.to(args.device ) a : Any = rag_model.generate( # rag_model overwrites generate snake_case , attention_mask=snake_case , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=snake_case , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a : List[Any] = rag_model.retriever.generator_tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) if args.print_predictions: for q, a in zip(snake_case , snake_case ): logger.info('Q: {} - A: {}'.format(snake_case , snake_case ) ) return answers def SCREAMING_SNAKE_CASE__ ( ) -> int: """simple docstring""" a : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=snake_case , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=snake_case , choices=['exact', 'compressed', 'legacy'] , type=snake_case , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=snake_case , type=snake_case , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=snake_case , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=snake_case , type=snake_case , required=snake_case , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=snake_case , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=snake_case , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=snake_case , type=snake_case , required=snake_case , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=snake_case , type=snake_case , required=snake_case , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=snake_case , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=snake_case , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=snake_case , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=snake_case , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=snake_case , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=snake_case , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) a : Union[str, Any] = parser.parse_args() a : Any = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def SCREAMING_SNAKE_CASE__ ( snake_case : Any ) -> str: """simple docstring""" a : List[str] = {} if args.model_type is None: a : int = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): a : str = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration a : Any = args.n_docs if args.index_name is not None: a : List[Any] = args.index_name if args.index_path is not None: a : Union[str, Any] = args.index_path else: a : Optional[int] = BartForConditionalGeneration a : Tuple = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , snake_case ) a : Optional[Any] = get_scores if args.eval_mode == 'e2e' else get_precision_at_k a : List[str] = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(snake_case , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(snake_case ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): a : List[Any] = RagRetriever.from_pretrained(snake_case , **snake_case ) a : str = model_class.from_pretrained(snake_case , retriever=snake_case , **snake_case ) model.retriever.init_retrieval() else: a : Dict = model_class.from_pretrained(snake_case , **snake_case ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: a : str = [] for line in tqdm(snake_case ): questions.append(line.strip() ) if len(snake_case ) == args.eval_batch_size: a : Any = evaluate_batch_fn(snake_case , snake_case , snake_case ) preds_file.write('\n'.join(snake_case ) + '\n' ) preds_file.flush() a : str = [] if len(snake_case ) > 0: a : Any = evaluate_batch_fn(snake_case , snake_case , snake_case ) preds_file.write('\n'.join(snake_case ) ) preds_file.flush() score_fn(snake_case , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCamelCase : Optional[int] = get_args() main(args)
345
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase : int = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = ["pixel_values"] def __init__( self : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : List[str] = size if size is not None else {'shortest_edge': 2_2_4} a : str = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a : int = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Any = do_resize a : Dict = size a : Optional[Any] = resample a : List[Any] = do_center_crop a : List[Any] = crop_size a : Optional[Any] = do_rescale a : Dict = rescale_factor a : Tuple = do_normalize a : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ): """simple docstring""" a : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: a : int = int((2_5_6 / 2_2_4) * size['shortest_edge']) a : Optional[int] = get_resize_output_image_size(UpperCAmelCase_ , size=UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : Optional[Any] = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""") return resize( UpperCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ): """simple docstring""" a : str = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , UpperCAmelCase_ : Optional[TensorType] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : int = do_resize if do_resize is not None else self.do_resize a : Optional[int] = resample if resample is not None else self.resample a : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop a : Tuple = do_rescale if do_rescale is not None else self.do_rescale a : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor a : Dict = do_normalize if do_normalize is not None else self.do_normalize a : Tuple = image_mean if image_mean is not None else self.image_mean a : int = image_std if image_std is not None else self.image_std a : Optional[int] = size if size is not None else self.size a : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : List[Any] = crop_size if crop_size is not None else self.crop_size a : str = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Dict = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a : Any = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: a : Optional[int] = [self.resize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_center_crop: a : int = [self.center_crop(UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_rescale: a : Any = [self.rescale(UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_normalize: a : str = [self.normalize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : Optional[int] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : Optional[int] = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
345
1
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : str = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Optional[int] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Optional[Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] a : List[Any] = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : str = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] a : str = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Optional[Any] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] a : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] a : Union[str, Any] = 'fp16' self.assertFalse(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] a : Optional[Any] = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Optional[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] a : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Optional[int] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] a : Any = 'fp16' self.assertFalse(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_))
345
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : float | Decimal , snake_case : float = 10**-10 ) -> float: """simple docstring""" a : Dict = a while True: a : Any = Decimal(snake_case ) - ( Decimal(eval(snake_case ) ) / Decimal(eval(str(diff(snake_case ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case ) ) < precision: # noqa: S307 return float(snake_case ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
345
1
'''simple docstring''' import os def SCREAMING_SNAKE_CASE__ ( snake_case : str = "input.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(snake_case ) , snake_case ) ) as input_file: a : Any = [ [int(snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] a : Tuple = len(snake_case ) a : Optional[Any] = len(matrix[0] ) a : int = [[-1 for _ in range(snake_case )] for _ in range(snake_case )] for i in range(snake_case ): a : Tuple = matrix[i][0] for j in range(1 , snake_case ): for i in range(snake_case ): a : str = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , snake_case ): a : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): a : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
345
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=1_3 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=9_9 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : int=3_2 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int="last" , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=0 , ): """simple docstring""" a : Tuple = parent a : Optional[Any] = batch_size a : Tuple = seq_length a : Union[str, Any] = is_training a : List[str] = use_input_lengths a : Union[str, Any] = use_token_type_ids a : Optional[int] = use_labels a : int = gelu_activation a : Dict = sinusoidal_embeddings a : Any = causal a : Optional[int] = asm a : int = n_langs a : List[str] = vocab_size a : List[str] = n_special a : List[str] = hidden_size a : Any = num_hidden_layers a : Union[str, Any] = num_attention_heads a : Optional[Any] = hidden_dropout_prob a : str = attention_probs_dropout_prob a : Dict = max_position_embeddings a : Union[str, Any] = type_sequence_label_size a : str = initializer_range a : List[Any] = num_labels a : Union[str, Any] = num_choices a : Optional[Any] = summary_type a : Optional[Any] = use_proj a : Optional[Any] = scope a : Dict = bos_token_id def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) a : Optional[int] = None if self.use_input_lengths: a : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a : int = None if self.use_token_type_ids: a : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a : Optional[Any] = None a : Tuple = None a : Optional[Any] = None if self.use_labels: a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : Optional[Any] = ids_tensor([self.batch_size] , 2).float() a : Dict = ids_tensor([self.batch_size] , self.num_choices) a : Any = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Any = XLMModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_ , lengths=UpperCAmelCase_ , langs=UpperCAmelCase_) a : str = model(UpperCAmelCase_ , langs=UpperCAmelCase_) a : int = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , ): """simple docstring""" a : Optional[Any] = XLMWithLMHeadModel(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Union[str, Any] = XLMForQuestionAnsweringSimple(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_) a : Tuple = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) a : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , ): """simple docstring""" a : Any = XLMForQuestionAnswering(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_) a : Dict = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , p_mask=UpperCAmelCase_ , ) a : int = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , ) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() a : int = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , ): """simple docstring""" a : Dict = XLMForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_) a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , ): """simple docstring""" a : Dict = self.num_labels a : int = XLMForTokenClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , ): """simple docstring""" a : str = self.num_choices a : Dict = XLMForMultipleChoice(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : str = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Any = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : int = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Union[str, Any] = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" A : int = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A : Optional[Any] = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=False): """simple docstring""" a : List[Any] = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": a : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) a : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[Any] = XLMModelTester(self) a : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , emb_dim=3_7) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_attentions in attentions] , [True] * len(UpperCAmelCase_)) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(UpperCAmelCase_): # adds PAD dummy token a : List[str] = min_length + idx + 1 a : Optional[Any] = min_length + idx + 1 a : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Union[str, Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase_) , ) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(UpperCAmelCase_): # adds PAD dummy token a : int = min_length + idx + 1 a : Any = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase_) , ) pass @slow def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Union[str, Any] = XLMModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(UpperCAmelCase_) a : List[Any] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase_) # the president a : Dict = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference a : Optional[Any] = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase_)
345
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase : List[str] = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : str = ["input_features", "attention_mask"] def __init__( self : Any , UpperCAmelCase_ : Dict=8_0 , UpperCAmelCase_ : List[Any]=1_6_0_0_0 , UpperCAmelCase_ : Optional[Any]=8_0 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=True , **UpperCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__(feature_size=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , padding_value=UpperCAmelCase_ , **UpperCAmelCase_) a : Dict = num_mel_bins a : List[str] = do_ceptral_normalize a : Dict = normalize_means a : int = normalize_vars a : Any = True def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : np.ndarray , ): """simple docstring""" a : str = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers a : str = torch.from_numpy(UpperCAmelCase_).unsqueeze(0) a : str = ta_kaldi.fbank(UpperCAmelCase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate) return features.numpy() @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : float = 0.0 , ): """simple docstring""" if normalize_means: a : int = x[:input_length].mean(axis=0) a : Any = np.subtract(UpperCAmelCase_ , UpperCAmelCase_) if normalize_vars: a : List[str] = x[:input_length].std(axis=0) a : Optional[int] = np.divide(UpperCAmelCase_ , UpperCAmelCase_) if input_length < x.shape[0]: a : List[str] = padding_value # make sure array is in float32 a : Optional[int] = x.astype(np.floataa) return x def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : List[np.ndarray] , UpperCAmelCase_ : Optional[np.ndarray] = None): """simple docstring""" a : int = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCAmelCase_ , UpperCAmelCase_ , self.normalize_means , self.normalize_vars , self.padding_value) for x, n in zip(UpperCAmelCase_ , UpperCAmelCase_) ] def __call__( self : str , UpperCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""") else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') a : str = isinstance(UpperCAmelCase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""") a : Tuple = is_batched_numpy or ( isinstance(UpperCAmelCase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: a : Optional[Any] = [np.asarray(UpperCAmelCase_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase_ , np.ndarray): a : Tuple = np.asarray(UpperCAmelCase_ , dtype=np.floataa) elif isinstance(UpperCAmelCase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): a : str = raw_speech.astype(np.floataa) # always return batch if not is_batched: a : List[Any] = [raw_speech] # extract fbank features a : Any = [self._extract_fbank_features(UpperCAmelCase_) for waveform in raw_speech] # convert into correct format for padding a : List[str] = BatchFeature({'input_features': features}) a : List[Any] = self.pad( UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) # make sure list is in array format a : Optional[int] = padded_inputs.get('input_features') if isinstance(input_features[0] , UpperCAmelCase_): a : List[str] = [np.asarray(UpperCAmelCase_ , dtype=np.floataa) for feature in input_features] a : str = padded_inputs.get('attention_mask') if attention_mask is not None: a : Tuple = [np.asarray(UpperCAmelCase_ , dtype=np.intaa) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: a : Tuple = ( np.array(UpperCAmelCase_ , dtype=np.intaa) if self._get_padding_strategies(UpperCAmelCase_ , max_length=UpperCAmelCase_) is not PaddingStrategy.DO_NOT_PAD else None ) a : Tuple = self.normalize( padded_inputs['input_features'] , attention_mask=UpperCAmelCase_) if return_tensors is not None: a : int = padded_inputs.convert_to_tensors(UpperCAmelCase_) return padded_inputs
345
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase : List[str] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
1
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase_ : Union[List[ControlNetModel], Tuple[ControlNetModel]]): """simple docstring""" super().__init__() a : Optional[Any] = nn.ModuleList(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Union[torch.Tensor, float, int] , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : List[torch.tensor] , UpperCAmelCase_ : List[float] , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(UpperCAmelCase_ , UpperCAmelCase_ , self.nets)): a , a : Union[str, Any] = controlnet( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) # merge samples if i == 0: a , a : Tuple = down_samples, mid_sample else: a : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(UpperCAmelCase_ , UpperCAmelCase_) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, os.PathLike] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Callable = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[str] = None , ): """simple docstring""" a : Any = 0 a : Dict = save_directory for controlnet in self.nets: controlnet.save_pretrained( UpperCAmelCase_ , is_main_process=UpperCAmelCase_ , save_function=UpperCAmelCase_ , safe_serialization=UpperCAmelCase_ , variant=UpperCAmelCase_ , ) idx += 1 a : str = model_path_to_save + f"""_{idx}""" @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , UpperCAmelCase_ : Optional[Union[str, os.PathLike]] , **UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Optional[int] = 0 a : Any = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... a : List[str] = pretrained_model_path while os.path.isdir(UpperCAmelCase_): a : Optional[int] = ControlNetModel.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) controlnets.append(UpperCAmelCase_) idx += 1 a : Optional[int] = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(UpperCAmelCase_)} controlnets loaded from {pretrained_model_path}.""") if len(UpperCAmelCase_) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(UpperCAmelCase_)}. Expected at least {pretrained_model_path + '_0'}.""") return cls(UpperCAmelCase_)
345
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Tuple = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : str = { """tiiuae/falcon-40b""": """https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json""", """tiiuae/falcon-7b""": """https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json""", } class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = "falcon" A : Optional[int] = ["past_key_values"] def __init__( self : str , UpperCAmelCase_ : str=6_5_0_2_4 , UpperCAmelCase_ : List[Any]=4_5_4_4 , UpperCAmelCase_ : str=3_2 , UpperCAmelCase_ : int=7_1 , UpperCAmelCase_ : List[Any]=1e-5 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Optional[int]=1_1 , UpperCAmelCase_ : List[Any]=1_1 , **UpperCAmelCase_ : Tuple , ): """simple docstring""" a : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a : Optional[int] = kwargs.pop('n_embed' , UpperCAmelCase_) a : int = hidden_size if n_embed is None else n_embed a : Dict = num_hidden_layers a : Tuple = num_attention_heads a : List[Any] = layer_norm_epsilon a : Tuple = initializer_range a : Any = use_cache a : str = hidden_dropout a : Optional[Any] = attention_dropout a : List[str] = bos_token_id a : List[str] = eos_token_id a : List[Any] = num_attention_heads if num_kv_heads is None else num_kv_heads a : Dict = alibi a : Any = new_decoder_architecture a : int = multi_query # Ignored when new_decoder_architecture is True a : str = parallel_attn a : Optional[Any] = bias super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" return self.hidden_size // self.num_attention_heads @property def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return not self.alibi
345
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = "data2vec-audio" def __init__( self : Dict , UpperCAmelCase_ : Optional[int]=3_2 , UpperCAmelCase_ : Union[str, Any]=7_6_8 , UpperCAmelCase_ : Dict=1_2 , UpperCAmelCase_ : str=1_2 , UpperCAmelCase_ : Optional[Any]=3_0_7_2 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : str=1e-5 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase_ : Dict=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : int=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=1_6 , UpperCAmelCase_ : Optional[Any]=1_9 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=0.05 , UpperCAmelCase_ : Dict=1_0 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Tuple=1_0 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Any="sum" , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=2_5_6 , UpperCAmelCase_ : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase_ : Optional[Any]=(5, 3, 3, 1, 1) , UpperCAmelCase_ : Optional[int]=(1, 2, 3, 1, 1) , UpperCAmelCase_ : int=5_1_2 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : int , ): """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) a : List[Any] = hidden_size a : Any = feat_extract_activation a : Any = list(UpperCAmelCase_) a : Optional[int] = list(UpperCAmelCase_) a : Dict = list(UpperCAmelCase_) a : Tuple = conv_bias a : str = num_conv_pos_embeddings a : Dict = num_conv_pos_embedding_groups a : Optional[Any] = conv_pos_kernel_size a : Any = len(self.conv_dim) a : Tuple = num_hidden_layers a : Any = intermediate_size a : Any = hidden_act a : Dict = num_attention_heads a : Dict = hidden_dropout a : Union[str, Any] = attention_dropout a : Dict = activation_dropout a : Optional[int] = feat_proj_dropout a : Tuple = final_dropout a : Union[str, Any] = layerdrop a : Tuple = layer_norm_eps a : Dict = initializer_range a : Tuple = vocab_size a : int = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a : List[str] = mask_time_prob a : int = mask_time_length a : Optional[int] = mask_time_min_masks a : Dict = mask_feature_prob a : List[str] = mask_feature_length a : str = mask_feature_min_masks # ctc loss a : str = ctc_loss_reduction a : Optional[Any] = ctc_zero_infinity # adapter a : List[str] = add_adapter a : Optional[Any] = adapter_kernel_size a : int = adapter_stride a : str = num_adapter_layers a : Optional[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a : List[Any] = list(UpperCAmelCase_) a : List[str] = list(UpperCAmelCase_) a : str = list(UpperCAmelCase_) a : Optional[Any] = xvector_output_dim @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return math.prod(self.conv_stride)
345
1
'''simple docstring''' UpperCamelCase : List[Any] = 256 # Modulus to hash a string UpperCamelCase : List[Any] = 1_000_003 def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str ) -> bool: """simple docstring""" a : Dict = len(snake_case ) a : Dict = len(snake_case ) if p_len > t_len: return False a : int = 0 a : int = 0 a : Any = 1 # Calculating the hash of pattern and substring of text for i in range(snake_case ): a : int = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus a : int = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue a : Dict = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash a : List[str] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" a : Union[str, Any] = 'abc1abc12' a : Union[str, Any] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' a : List[Any] = 'alskfjaldsk23adsfabcabc' assert rabin_karp(snake_case , snake_case ) and not rabin_karp(snake_case , snake_case ) # Test 2) a : Optional[int] = 'ABABX' a : Optional[int] = 'ABABZABABYABABX' assert rabin_karp(snake_case , snake_case ) # Test 3) a : List[Any] = 'AAAB' a : int = 'ABAAAAAB' assert rabin_karp(snake_case , snake_case ) # Test 4) a : int = 'abcdabcy' a : List[str] = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(snake_case , snake_case ) # Test 5) a : int = 'Lü' a : Tuple = 'Lüsai' assert rabin_karp(snake_case , snake_case ) a : str = 'Lue' assert not rabin_karp(snake_case , snake_case ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
345
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase : Optional[Any] = logging.getLogger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = "masked_bert" def __init__( self : Tuple , UpperCAmelCase_ : List[Any]=3_0_5_2_2 , UpperCAmelCase_ : str=7_6_8 , UpperCAmelCase_ : Optional[Any]=1_2 , UpperCAmelCase_ : Optional[int]=1_2 , UpperCAmelCase_ : Union[str, Any]=3_0_7_2 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[Any]=1e-12 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Dict="topK" , UpperCAmelCase_ : str="constant" , UpperCAmelCase_ : Optional[Any]=0.0 , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) a : Union[str, Any] = vocab_size a : List[Any] = hidden_size a : List[str] = num_hidden_layers a : Any = num_attention_heads a : Optional[Any] = hidden_act a : str = intermediate_size a : Dict = hidden_dropout_prob a : Any = attention_probs_dropout_prob a : Any = max_position_embeddings a : Dict = type_vocab_size a : List[str] = initializer_range a : int = layer_norm_eps a : Dict = pruning_method a : List[str] = mask_init a : Union[str, Any] = mask_scale
345
1
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase : str = { """susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""", """susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""", } class UpperCamelCase ( a_ ): """simple docstring""" A : List[Any] = "ernie_m" A : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : str , UpperCAmelCase_ : int = 2_5_0_0_0_2 , UpperCAmelCase_ : int = 7_6_8 , UpperCAmelCase_ : int = 1_2 , UpperCAmelCase_ : int = 1_2 , UpperCAmelCase_ : int = 3_0_7_2 , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : int = 5_1_4 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : float = 1e-05 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=0.0 , **UpperCAmelCase_ : Any , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) a : int = vocab_size a : Dict = hidden_size a : Optional[int] = num_hidden_layers a : Any = num_attention_heads a : Tuple = intermediate_size a : Union[str, Any] = hidden_act a : Optional[Any] = hidden_dropout_prob a : Dict = attention_probs_dropout_prob a : Union[str, Any] = max_position_embeddings a : Dict = initializer_range a : Optional[Any] = layer_norm_eps a : Any = classifier_dropout a : List[str] = is_decoder a : Dict = act_dropout
345
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any): """simple docstring""" super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) a : str = {} def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int): """simple docstring""" a : Dict = super().add_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.') def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=1 , **UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Any = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) else: a : int = [] for i in range(UpperCAmelCase_): a : Union[str, Any] = placeholder_token + f"""_{i}""" self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""") a : Any = output def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=1.0): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): a : Any = [] for i in range(len(UpperCAmelCase_)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCAmelCase_)) return output for placeholder_token in self.token_map: if placeholder_token in text: a : List[Any] = self.token_map[placeholder_token] a : int = tokens[: 1 + int(len(UpperCAmelCase_) * prop_tokens_to_load)] if vector_shuffle: a : List[Any] = copy.copy(UpperCAmelCase_) random.shuffle(UpperCAmelCase_) a : List[str] = text.replace(UpperCAmelCase_ , ' '.join(UpperCAmelCase_)) return text def __call__( self : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[int]=1.0 , **UpperCAmelCase_ : str): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1.0 , **UpperCAmelCase_ : Dict): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , )
345
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : List[Any] = torch.device("""cpu""") def SCREAMING_SNAKE_CASE__ ( ) -> int: """simple docstring""" a : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Tuple = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple ) -> Any: """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0, 8.8_6_8_5E-0_1, 2.4_3_6_0E-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6E-0_1, 2.3_4_7_8E-0_1, -1.6_9_6_3E0_0, -1.7_3_8_1E0_0, -8.6_3_3_7E-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8E-0_1, -4.7_4_2_9E-0_1, -1.0_8_9_7E0_0, -1.0_2_4_8E0_0, 3.5_5_2_3E-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0E-0_1, 2.4_2_1_1E-0_1, -6.0_1_8_5E-0_1, -8.2_7_8_9E-0_1, -6.0_4_4_6E-0_2] ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : int , snake_case : Dict ) -> List[Any]: """simple docstring""" a : List[Any] = dct.pop(snake_case ) a : Dict = val def SCREAMING_SNAKE_CASE__ ( snake_case : Any ) -> Tuple: """simple docstring""" a : Any = [] for k in state_dict.keys(): a : List[str] = k if ".pwconv" in k: a : Optional[int] = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a : Dict = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a : int = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a : List[Any] = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a : Any = k_new.split('.' ) if ls[2].isdigit(): a : Any = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a : Union[str, Any] = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Union[str, Any] , snake_case : Optional[int] ) -> Union[str, Any]: """simple docstring""" a : Optional[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a : Any = 1_000 a : Dict = 'huggingface/label-files' a : Any = 'imagenet-1k-id2label.json' a : str = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) a : Dict = {int(snake_case ): v for k, v in idalabel.items()} a : List[Any] = idalabel a : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a : int = [3, 3, 6, 4] a : List[Any] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a : str = [3, 3, 9, 6] a : int = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a : List[str] = [4, 3, 10, 5] a : int = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a : Any = [4, 4, 12, 6] a : Optional[int] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a : Any = torch.hub.load_state_dict_from_url(snake_case , map_location='cpu' , check_hash=snake_case ) else: a : List[str] = torch.load(snake_case , map_location='cpu' ) a : List[Any] = checkpoint a : List[str] = create_rename_keys(snake_case ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) # load HuggingFace model a : Union[str, Any] = SwiftFormerForImageClassification(snake_case ).eval() hf_model.load_state_dict(snake_case ) # prepare test inputs a : List[Any] = prepare_img() a : Dict = ViTImageProcessor.from_pretrained('preprocessor_config' ) a : str = processor(images=snake_case , return_tensors='pt' ) # compare outputs from both models a : Any = get_expected_output(snake_case ) a : str = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , snake_case , atol=1E-3 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") UpperCamelCase : Tuple = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
345
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[Any]: """simple docstring""" a : Union[str, Any] = SwinConfig() a : Optional[int] = swin_name.split('_' ) a : Union[str, Any] = name_split[1] a : Dict = int(name_split[4] ) a : Union[str, Any] = int(name_split[3][-1] ) if model_size == "tiny": a : Optional[Any] = 96 a : Any = (2, 2, 6, 2) a : List[str] = (3, 6, 12, 24) elif model_size == "small": a : int = 96 a : List[str] = (2, 2, 18, 2) a : int = (3, 6, 12, 24) elif model_size == "base": a : Tuple = 128 a : Optional[int] = (2, 2, 18, 2) a : List[Any] = (4, 8, 16, 32) else: a : Dict = 192 a : str = (2, 2, 18, 2) a : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: a : Any = 21_841 else: a : str = 1_000 a : str = 'huggingface/label-files' a : Optional[Any] = 'imagenet-1k-id2label.json' a : Dict = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) a : Tuple = {int(snake_case ): v for k, v in idalabel.items()} a : int = idalabel a : str = {v: k for k, v in idalabel.items()} a : Dict = img_size a : List[Any] = num_classes a : str = embed_dim a : Dict = depths a : Union[str, Any] = num_heads a : int = window_size return config def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[int]: """simple docstring""" if "patch_embed.proj" in name: a : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a : Tuple = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a : Optional[int] = 'encoder.' + name if "attn.proj" in name: a : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: a : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a : Any = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": a : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": a : List[str] = 'layernorm.bias' if "head" in name: a : Union[str, Any] = name.replace('head' , 'classifier' ) else: a : List[Any] = 'swin.' + name return name def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): a : Any = orig_state_dict.pop(snake_case ) if "mask" in key: continue elif "qkv" in key: a : Optional[Any] = key.split('.' ) a : Dict = int(key_split[1] ) a : Optional[int] = int(key_split[3] ) a : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a : Optional[Any] = val[:dim, :] a : List[Any] = val[ dim : dim * 2, : ] a : List[Any] = val[-dim:, :] else: a : Dict = val[ :dim ] a : Union[str, Any] = val[ dim : dim * 2 ] a : Union[str, Any] = val[ -dim: ] else: a : Dict = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Dict ) -> List[str]: """simple docstring""" a : Any = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() a : str = get_swin_config(snake_case ) a : Optional[int] = SwinForImageClassification(snake_case ) model.eval() a : Union[str, Any] = convert_state_dict(timm_model.state_dict() , snake_case ) model.load_state_dict(snake_case ) a : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) a : str = Image.open(requests.get(snake_case , stream=snake_case ).raw ) a : Union[str, Any] = image_processor(images=snake_case , return_tensors='pt' ) a : int = timm_model(inputs['pixel_values'] ) a : Optional[int] = model(**snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCamelCase : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
345
1
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : float | Decimal , snake_case : float = 10**-10 ) -> float: """simple docstring""" a : Dict = a while True: a : Any = Decimal(snake_case ) - ( Decimal(eval(snake_case ) ) / Decimal(eval(str(diff(snake_case ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case ) ) < precision: # noqa: S307 return float(snake_case ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
345
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class UpperCamelCase : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase_ : Tuple): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden a : Dict = deepcopy(UpperCAmelCase_) elif os.path.exists(UpperCAmelCase_): with io.open(UpperCAmelCase_ , 'r' , encoding='utf-8') as f: a : Union[str, Any] = json.load(UpperCAmelCase_) else: try: a : Union[str, Any] = baseaa.urlsafe_baadecode(UpperCAmelCase_).decode('utf-8') a : List[str] = json.loads(UpperCAmelCase_) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""") a : Optional[int] = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : str = self.get_value('zero_optimization.stage' , -1) # offload a : Any = False if self.is_zeroa() or self.is_zeroa(): a : Tuple = set(['cpu', 'nvme']) a : int = set( [ self.get_value('zero_optimization.offload_optimizer.device'), self.get_value('zero_optimization.offload_param.device'), ]) if len(offload_devices & offload_devices_valid) > 0: a : List[str] = True def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Dict): """simple docstring""" a : List[str] = self.config # find the config node of interest if it exists a : int = ds_key_long.split('.') a : Union[str, Any] = nodes.pop() for node in nodes: a : Union[str, Any] = config.get(UpperCAmelCase_) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=None): """simple docstring""" a , a : int = self.find_config_node(UpperCAmelCase_) if config is None: return default return config.get(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=False): """simple docstring""" a : Any = self.config # find the config node of interest if it exists a : Optional[Any] = ds_key_long.split('.') for node in nodes: a : List[str] = config a : int = config.get(UpperCAmelCase_) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""") else: return # if found remove it if parent_config is not None: parent_config.pop(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : str): """simple docstring""" a : List[str] = self.get_value(UpperCAmelCase_) return False if value is None else bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : List[Any] = self.get_value(UpperCAmelCase_) return False if value is None else not bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 3 def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return self._offload class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : int): """simple docstring""" a : Union[str, Any] = engine def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): """simple docstring""" self.engine.backward(UpperCAmelCase_ , **UpperCAmelCase_) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any): """simple docstring""" super().__init__(UpperCAmelCase_ , device_placement=UpperCAmelCase_ , scaler=UpperCAmelCase_) a : List[str] = hasattr(self.optimizer , 'overflow') def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Dict=None): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]=0.0_01 , UpperCAmelCase_ : List[Any]=0 , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : int = params a : str = lr a : Tuple = weight_decay a : Dict = kwargs class UpperCamelCase : """simple docstring""" def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=0 , **UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = optimizer a : Tuple = total_num_steps a : Optional[Any] = warmup_num_steps a : List[str] = kwargs
345
1
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCamelCase : Union[str, Any] = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : int ) -> Any: """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" a : Union[str, Any] = _TestCommandArgs(dataset=snake_case , all_configs=snake_case , save_infos=snake_case ) a : Dict = TestCommand(*snake_case ) test_command.run() a : str = os.path.join(snake_case , 'README.md' ) assert os.path.exists(snake_case ) a : Dict = DatasetInfosDict.from_directory(snake_case ) a : str = DatasetInfosDict( { 'default': DatasetInfo( features=Features( { 'tokens': Sequence(Value('string' ) ), 'ner_tags': Sequence( ClassLabel(names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] ) ), 'langs': Sequence(Value('string' ) ), 'spans': Sequence(Value('string' ) ), } ) , splits=[ { 'name': 'train', 'num_bytes': 2_351_563, 'num_examples': 10_000, }, { 'name': 'validation', 'num_bytes': 238_418, 'num_examples': 1_000, }, ] , download_size=3_940_680 , dataset_size=2_589_981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: a , a : Any = getattr(dataset_infos['default'] , snake_case ), getattr(expected_dataset_infos['default'] , snake_case ) if key == "num_bytes": assert is_apercent_close(snake_case , snake_case ) elif key == "splits": assert list(snake_case ) == list(snake_case ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
345
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCamelCase : List[str] = logging.get_logger(__name__) @dataclass class UpperCamelCase : """simple docstring""" A : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) A : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) A : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A : bool = field( default=a_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Union[str, Any] = self.task_name.lower() class UpperCamelCase ( a_ ): """simple docstring""" A : int = "train" A : Tuple = "dev" A : List[Any] = "test" class UpperCamelCase ( a_ ): """simple docstring""" A : GlueDataTrainingArguments A : str A : List[InputFeatures] def __init__( self : Tuple , UpperCAmelCase_ : GlueDataTrainingArguments , UpperCAmelCase_ : PreTrainedTokenizerBase , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Union[str, Split] = Split.train , UpperCAmelCase_ : Optional[str] = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , UpperCAmelCase_ , ) a : Dict = args a : int = glue_processors[args.task_name]() a : int = glue_output_modes[args.task_name] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): try: a : str = Split[mode] except KeyError: raise KeyError('mode is not a valid split name') # Load data features from cache or dataset file a : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) a : Tuple = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) a , a : str = label_list[2], label_list[1] a : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a : Union[str, Any] = cached_features_file + '.lock' with FileLock(UpperCAmelCase_): if os.path.exists(UpperCAmelCase_) and not args.overwrite_cache: a : Optional[Any] = time.time() a : Optional[Any] = torch.load(UpperCAmelCase_) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""") if mode == Split.dev: a : List[Any] = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: a : Optional[Any] = self.processor.get_test_examples(args.data_dir) else: a : List[str] = self.processor.get_train_examples(args.data_dir) if limit_length is not None: a : Dict = examples[:limit_length] a : List[Any] = glue_convert_examples_to_features( UpperCAmelCase_ , UpperCAmelCase_ , max_length=args.max_seq_length , label_list=UpperCAmelCase_ , output_mode=self.output_mode , ) a : Dict = time.time() torch.save(self.features , UpperCAmelCase_) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""") def __len__( self : Tuple): """simple docstring""" return len(self.features) def __getitem__( self : Optional[int] , UpperCAmelCase_ : List[str]): """simple docstring""" return self.features[i] def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return self.label_list
345
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : Optional[int] = {"""vocab_file""": """spiece.model"""} UpperCamelCase : Optional[int] = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : str="</s>" , UpperCAmelCase_ : Optional[int]="<unk>" , UpperCAmelCase_ : Any="<sep>" , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : Optional[Any]="<cls>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : Optional[Any]=["<eop>", "<eod>"] , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Dict , ): """simple docstring""" a : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token a : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) a : str = 3 a : str = do_lower_case a : List[Any] = remove_space a : List[Any] = keep_accents a : Dict = vocab_file a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase_) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.') a : str = jieba a : List[Any] = str.maketrans(' \n' , '\u2582\u2583') @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return len(self.sp_model) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : int = {self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any): """simple docstring""" a : List[Any] = self.__dict__.copy() a : Any = None return state def __setstate__( self : Union[str, Any] , UpperCAmelCase_ : str): """simple docstring""" a : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): a : Any = {} a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Dict): """simple docstring""" if self.remove_space: a : int = ' '.join(inputs.strip().split()) else: a : Union[str, Any] = inputs a : Any = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: a : Dict = unicodedata.normalize('NFKD' , UpperCAmelCase_) a : List[str] = ''.join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_)]) if self.do_lower_case: a : Union[str, Any] = outputs.lower() return outputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : str): """simple docstring""" a : Optional[Any] = self.preprocess_text(UpperCAmelCase_) a : Tuple = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) a : Optional[int] = [] for piece in pieces: if len(UpperCAmelCase_) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): a : Optional[int] = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: a : Any = cur_pieces[1:] else: a : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(UpperCAmelCase_) else: new_pieces.append(UpperCAmelCase_) return new_pieces def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" return self.sp_model.PieceToId(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Any): """simple docstring""" return self.sp_model.IdToPiece(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : int = ''.join(UpperCAmelCase_).replace(UpperCAmelCase_ , ' ').strip() return out_string def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): """simple docstring""" a : Optional[int] = [self.sep_token_id] a : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is not None: return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] return ([0] * len(UpperCAmelCase_)) + [1, 1] def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): """simple docstring""" a : List[str] = [self.sep_token_id] a : str = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): """simple docstring""" if not os.path.isdir(UpperCAmelCase_): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return a : Union[str, Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , 'wb') as fi: a : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict): """simple docstring""" a : Dict = super()._decode(*UpperCAmelCase_ , **UpperCAmelCase_) a : Union[str, Any] = text.replace(' ' , '').replace('\u2582' , ' ').replace('\u2583' , '\n') return text
345
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : Dict = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Any = ["pixel_values"] def __init__( self : str , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : str = size if size is not None else {'shortest_edge': 2_5_6} a : Dict = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a : int = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Any = do_resize a : List[str] = size a : Union[str, Any] = resample a : int = do_center_crop a : Optional[int] = crop_size a : Tuple = do_rescale a : int = rescale_factor a : Optional[Any] = do_normalize a : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : Optional[int] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a : Union[str, Any] = get_resize_output_image_size(UpperCAmelCase_ , size=size['shortest_edge'] , default_to_square=UpperCAmelCase_) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : List[str] = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[str] , ): """simple docstring""" a : int = do_resize if do_resize is not None else self.do_resize a : int = size if size is not None else self.size a : Union[str, Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = resample if resample is not None else self.resample a : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop a : Union[str, Any] = crop_size if crop_size is not None else self.crop_size a : Dict = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : str = do_rescale if do_rescale is not None else self.do_rescale a : int = rescale_factor if rescale_factor is not None else self.rescale_factor a : str = do_normalize if do_normalize is not None else self.do_normalize a : List[str] = image_mean if image_mean is not None else self.image_mean a : Optional[int] = image_std if image_std is not None else self.image_std a : Dict = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a : List[Any] = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: a : Dict = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_) for image in images] if do_center_crop: a : Any = [self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_) for image in images] if do_rescale: a : Optional[int] = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_) for image in images] if do_normalize: a : Dict = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_) for image in images] a : List[Any] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : List[str] = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Tuple] = None): """simple docstring""" a : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_) != len(UpperCAmelCase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(UpperCAmelCase_): a : Optional[Any] = target_sizes.numpy() a : List[str] = [] for idx in range(len(UpperCAmelCase_)): a : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=UpperCAmelCase_) a : Union[str, Any] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(UpperCAmelCase_) else: a : Optional[int] = logits.argmax(dim=1) a : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
345
1
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : int = AutoencoderKL A : Tuple = "sample" A : List[Any] = 1E-2 @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Tuple = 4 a : Any = 3 a : Optional[int] = (3_2, 3_2) a : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes).to(UpperCAmelCase_) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return (3, 3_2, 3_2) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" return (3, 3_2, 3_2) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Tuple = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } a : List[Any] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS') def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a , a : List[str] = self.prepare_init_args_and_inputs_for_common() a : Optional[Any] = self.model_class(**UpperCAmelCase_) model.to(UpperCAmelCase_) assert not model.is_gradient_checkpointing and model.training a : List[str] = model(**UpperCAmelCase_).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() a : Union[str, Any] = torch.randn_like(UpperCAmelCase_) a : str = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing a : Dict = self.model_class(**UpperCAmelCase_) # clone model model_a.load_state_dict(model.state_dict()) model_a.to(UpperCAmelCase_) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training a : int = model_a(**UpperCAmelCase_).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() a : Tuple = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5) a : Tuple = dict(model.named_parameters()) a : int = dict(model_a.named_parameters()) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a , a : Union[str, Any] = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertEqual(len(loading_info['missing_keys']) , 0) model.to(UpperCAmelCase_) a : str = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Tuple = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy') a : List[Any] = model.to(UpperCAmelCase_) model.eval() if torch_device == "mps": a : List[Any] = torch.manual_seed(0) else: a : Tuple = torch.Generator(device=UpperCAmelCase_).manual_seed(0) a : Any = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0) , ) a : Tuple = image.to(UpperCAmelCase_) with torch.no_grad(): a : Any = model(UpperCAmelCase_ , sample_posterior=UpperCAmelCase_ , generator=UpperCAmelCase_).sample a : str = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": a : Optional[Any] = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ]) elif torch_device == "cpu": a : Tuple = torch.tensor( [-0.13_52, 0.08_78, 0.04_19, -0.08_18, -0.10_69, 0.06_88, -0.14_58, -0.44_46, -0.00_26]) else: a : List[str] = torch.tensor( [-0.24_21, 0.46_42, 0.25_07, -0.04_38, 0.06_82, 0.31_60, -0.20_18, -0.07_27, 0.24_85]) self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-2)) @slow class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str): """simple docstring""" return f"""gaussian_noise_s={seed}_shape={'_'.join([str(UpperCAmelCase_) for s in shape])}.npy""" def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : str=(4, 3, 5_1_2, 5_1_2) , UpperCAmelCase_ : Tuple=False): """simple docstring""" a : Optional[Any] = torch.floataa if fpaa else torch.floataa a : str = torch.from_numpy(load_hf_numpy(self.get_file_format(UpperCAmelCase_ , UpperCAmelCase_))).to(UpperCAmelCase_).to(UpperCAmelCase_) return image def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : List[str]="CompVis/stable-diffusion-v1-4" , UpperCAmelCase_ : int=False): """simple docstring""" a : Any = 'fp16' if fpaa else None a : Tuple = torch.floataa if fpaa else torch.floataa a : Union[str, Any] = AutoencoderKL.from_pretrained( UpperCAmelCase_ , subfolder='vae' , torch_dtype=UpperCAmelCase_ , revision=UpperCAmelCase_ , ) model.to(UpperCAmelCase_).eval() return model def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Dict=0): """simple docstring""" if torch_device == "mps": return torch.manual_seed(UpperCAmelCase_) return torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) @parameterized.expand( [ # fmt: off [3_3, [-0.16_03, 0.98_78, -0.04_95, -0.07_90, -0.27_09, 0.83_75, -0.20_60, -0.08_24], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [4_7, [-0.23_76, 0.11_68, 0.13_32, -0.48_40, -0.25_08, -0.07_91, -0.04_93, -0.40_89], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ]) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple): """simple docstring""" a : str = self.get_sd_vae_model() a : str = self.get_sd_image(UpperCAmelCase_) a : Optional[int] = self.get_generator(UpperCAmelCase_) with torch.no_grad(): a : Any = model(UpperCAmelCase_ , generator=UpperCAmelCase_ , sample_posterior=UpperCAmelCase_).sample assert sample.shape == image.shape a : int = sample[-1, -2:, -2:, :2].flatten().float().cpu() a : Optional[int] = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=3e-3) @parameterized.expand( [ # fmt: off [3_3, [-0.05_13, 0.02_89, 1.37_99, 0.21_66, -0.25_73, -0.08_71, 0.51_03, -0.09_99]], [4_7, [-0.41_28, -0.13_20, -0.37_04, 0.19_65, -0.41_16, -0.23_32, -0.33_40, 0.22_47]], # fmt: on ]) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str]): """simple docstring""" a : Optional[int] = self.get_sd_vae_model(fpaa=UpperCAmelCase_) a : List[str] = self.get_sd_image(UpperCAmelCase_ , fpaa=UpperCAmelCase_) a : List[str] = self.get_generator(UpperCAmelCase_) with torch.no_grad(): a : int = model(UpperCAmelCase_ , generator=UpperCAmelCase_ , sample_posterior=UpperCAmelCase_).sample assert sample.shape == image.shape a : List[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() a : Union[str, Any] = torch.tensor(UpperCAmelCase_) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-2) @parameterized.expand( [ # fmt: off [3_3, [-0.16_09, 0.98_66, -0.04_87, -0.07_77, -0.27_16, 0.83_68, -0.20_55, -0.08_14], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [4_7, [-0.23_77, 0.11_47, 0.13_33, -0.48_41, -0.25_06, -0.08_05, -0.04_91, -0.40_85], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ]) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple): """simple docstring""" a : str = self.get_sd_vae_model() a : Tuple = self.get_sd_image(UpperCAmelCase_) with torch.no_grad(): a : Any = model(UpperCAmelCase_).sample assert sample.shape == image.shape a : Tuple = sample[-1, -2:, -2:, :2].flatten().float().cpu() a : Optional[Any] = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=3e-3) @parameterized.expand( [ # fmt: off [1_3, [-0.20_51, -0.18_03, -0.23_11, -0.21_14, -0.32_92, -0.35_74, -0.29_53, -0.33_23]], [3_7, [-0.26_32, -0.26_25, -0.21_99, -0.27_41, -0.45_39, -0.49_90, -0.37_20, -0.49_25]], # fmt: on ]) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]): """simple docstring""" a : Optional[Any] = self.get_sd_vae_model() a : Optional[int] = self.get_sd_image(UpperCAmelCase_ , shape=(3, 4, 6_4, 6_4)) with torch.no_grad(): a : int = model.decode(UpperCAmelCase_).sample assert list(sample.shape) == [3, 3, 5_1_2, 5_1_2] a : Optional[Any] = sample[-1, -2:, :2, -2:].flatten().cpu() a : Tuple = torch.tensor(UpperCAmelCase_) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-3) @parameterized.expand( [ # fmt: off [2_7, [-0.03_69, 0.02_07, -0.07_76, -0.06_82, -0.17_47, -0.19_30, -0.14_65, -0.20_39]], [1_6, [-0.16_28, -0.21_34, -0.27_47, -0.26_42, -0.37_74, -0.44_04, -0.36_87, -0.42_77]], # fmt: on ]) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict): """simple docstring""" a : Tuple = self.get_sd_vae_model(fpaa=UpperCAmelCase_) a : int = self.get_sd_image(UpperCAmelCase_ , shape=(3, 4, 6_4, 6_4) , fpaa=UpperCAmelCase_) with torch.no_grad(): a : List[str] = model.decode(UpperCAmelCase_).sample assert list(sample.shape) == [3, 3, 5_1_2, 5_1_2] a : Optional[int] = sample[-1, -2:, :2, -2:].flatten().float().cpu() a : str = torch.tensor(UpperCAmelCase_) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=5e-3) @parameterized.expand([(1_3,), (1_6,), (2_7,)]) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.') def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Any): """simple docstring""" a : Any = self.get_sd_vae_model(fpaa=UpperCAmelCase_) a : Optional[int] = self.get_sd_image(UpperCAmelCase_ , shape=(3, 4, 6_4, 6_4) , fpaa=UpperCAmelCase_) with torch.no_grad(): a : Dict = model.decode(UpperCAmelCase_).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): a : Optional[Any] = model.decode(UpperCAmelCase_).sample assert list(sample.shape) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-1) @parameterized.expand([(1_3,), (1_6,), (3_7,)]) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.') def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : int): """simple docstring""" a : List[Any] = self.get_sd_vae_model() a : Optional[int] = self.get_sd_image(UpperCAmelCase_ , shape=(3, 4, 6_4, 6_4)) with torch.no_grad(): a : List[Any] = model.decode(UpperCAmelCase_).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): a : Tuple = model.decode(UpperCAmelCase_).sample assert list(sample.shape) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-2) @parameterized.expand( [ # fmt: off [3_3, [-0.30_01, 0.09_18, -2.69_84, -3.97_20, -3.20_99, -5.03_53, 1.73_38, -0.20_65, 3.42_67]], [4_7, [-1.50_30, -4.38_71, -6.03_55, -9.11_57, -1.66_61, -2.78_53, 2.16_07, -5.08_23, 2.56_33]], # fmt: on ]) def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : Any = self.get_sd_vae_model() a : str = self.get_sd_image(UpperCAmelCase_) a : int = self.get_generator(UpperCAmelCase_) with torch.no_grad(): a : Optional[int] = model.encode(UpperCAmelCase_).latent_dist a : Union[str, Any] = dist.sample(generator=UpperCAmelCase_) assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] a : List[str] = sample[0, -1, -3:, -3:].flatten().cpu() a : int = torch.tensor(UpperCAmelCase_) a : Tuple = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=UpperCAmelCase_)
345
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : int | float | str , snake_case : int | float | str ) -> list[str]: """simple docstring""" if nth_term == "": return [""] a : Dict = int(snake_case ) a : Optional[int] = int(snake_case ) a : list[str] = [] for temp in range(int(snake_case ) ): series.append(F"""1 / {pow(temp + 1 , int(snake_case ) )}""" if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : Optional[int] = int(input("""Enter the last number (nth term) of the P-Series""")) UpperCamelCase : List[Any] = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
345
1
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Optional[Any] = 'ylacombe/bark-small' a : Optional[Any] = tempfile.mkdtemp() a : str = 'en_speaker_1' a : List[str] = 'This is a test string' a : Dict = 'speaker_embeddings_path.json' a : Union[str, Any] = 'speaker_embeddings' def SCREAMING_SNAKE_CASE_ ( self : Tuple , **UpperCAmelCase_ : List[Any]): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Tuple = self.get_tokenizer() a : Optional[int] = BarkProcessor(tokenizer=UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) a : List[Any] = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Union[str, Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) a : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') a : Dict = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) a : Tuple = 3_5 a : int = 2 a : Any = 8 a : Dict = { 'semantic_prompt': np.ones(UpperCAmelCase_), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len)), 'fine_prompt': np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset a : List[Any] = processor(text=self.input_string , voice_preset=UpperCAmelCase_) a : Dict = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([])).tolist()) # test loading voice preset from npz file a : Union[str, Any] = os.path.join(self.tmpdirname , 'file.npz') np.savez(UpperCAmelCase_ , **UpperCAmelCase_) a : Optional[int] = processor(text=self.input_string , voice_preset=UpperCAmelCase_) a : int = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([])).tolist()) # test loading voice preset from the hub a : Any = processor(text=self.input_string , voice_preset=self.voice_preset) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : int = self.get_tokenizer() a : Union[str, Any] = BarkProcessor(tokenizer=UpperCAmelCase_) a : Union[str, Any] = processor(text=self.input_string) a : Tuple = tokenizer( self.input_string , padding='max_length' , max_length=2_5_6 , add_special_tokens=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
345
'''simple docstring''' import torch def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" if torch.cuda.is_available(): a : int = torch.cuda.device_count() else: a : Any = 0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
345
1
'''simple docstring''' UpperCamelCase : Any = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
345
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ UpperCamelCase : Optional[Any] = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ UpperCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple="auto" , UpperCAmelCase_ : Any=-1 , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : int=5_0_0 , UpperCAmelCase_ : int="gpt2-large" , UpperCAmelCase_ : Tuple=-1 , UpperCAmelCase_ : Dict=1_0_2_4 , UpperCAmelCase_ : List[str]=2_5 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=2_5 , ): """simple docstring""" a : List[str] = compute_mauve( p_text=UpperCAmelCase_ , q_text=UpperCAmelCase_ , p_features=UpperCAmelCase_ , q_features=UpperCAmelCase_ , p_tokens=UpperCAmelCase_ , q_tokens=UpperCAmelCase_ , num_buckets=UpperCAmelCase_ , pca_max_data=UpperCAmelCase_ , kmeans_explained_var=UpperCAmelCase_ , kmeans_num_redo=UpperCAmelCase_ , kmeans_max_iter=UpperCAmelCase_ , featurize_model_name=UpperCAmelCase_ , device_id=UpperCAmelCase_ , max_text_length=UpperCAmelCase_ , divergence_curve_discretization_size=UpperCAmelCase_ , mauve_scaling_factor=UpperCAmelCase_ , verbose=UpperCAmelCase_ , seed=UpperCAmelCase_ , ) return out
345
1
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = "M-CLIP" def __init__( self : Dict , UpperCAmelCase_ : Any=1_0_2_4 , UpperCAmelCase_ : List[Any]=7_6_8 , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" a : int = transformerDimSize a : str = imageDimSize super().__init__(**UpperCAmelCase_) class UpperCamelCase ( a_ ): """simple docstring""" A : Union[str, Any] = MCLIPConfig def __init__( self : Optional[Any] , UpperCAmelCase_ : str , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" super().__init__(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) a : Optional[int] = XLMRobertaModel(UpperCAmelCase_) a : Any = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any): """simple docstring""" a : Optional[Any] = self.transformer(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_)[0] a : List[Any] = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(UpperCAmelCase_), embs
345
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : list[int | float] , snake_case : int , snake_case : int ) -> int | float: """simple docstring""" if len(snake_case ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(snake_case ) or left < -len(snake_case ) or right >= len(snake_case ) or right < -len(snake_case ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] a : Union[str, Any] = (left + right) >> 1 # the middle a : List[str] = find_max(snake_case , snake_case , snake_case ) # find max in range[left, mid] a : Dict = find_max(snake_case , mid + 1 , snake_case ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
345
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Any = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Dict = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase : int = """true""" def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : int=82 , snake_case : Tuple=16 ) -> Union[str, Any]: """simple docstring""" set_seed(42 ) a : List[str] = RegressionModel() a : Union[str, Any] = deepcopy(snake_case ) a : Dict = RegressionDataset(length=snake_case ) a : Dict = DataLoader(snake_case , batch_size=snake_case ) model.to(accelerator.device ) a , a : Optional[int] = accelerator.prepare(snake_case , snake_case ) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( snake_case : Accelerator , snake_case : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" a : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) a : Any = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(snake_case : int ): a : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case , max_length=snake_case ) return outputs with accelerator.main_process_first(): a : Dict = dataset.map( snake_case , batched=snake_case , remove_columns=['idx', 'sentence1', 'sentence2'] , ) a : List[str] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case : Optional[Any] ): if use_longest: return tokenizer.pad(snake_case , padding='longest' , return_tensors='pt' ) return tokenizer.pad(snake_case , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(snake_case , shuffle=snake_case , collate_fn=snake_case , batch_size=16 ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" a : int = Accelerator(dispatch_batches=snake_case , split_batches=snake_case ) a : List[str] = get_dataloader(snake_case , not dispatch_batches ) a : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=snake_case ) a , a : Optional[Any] = accelerator.prepare(snake_case , snake_case ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" a : Dict = [] for batch in dataloader: a , a : Any = batch.values() with torch.no_grad(): a : Tuple = model(snake_case ) a , a : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) a , a : List[str] = [], [] for logit, targ in logits_and_targets: logits.append(snake_case ) targs.append(snake_case ) a , a : Any = torch.cat(snake_case ), torch.cat(snake_case ) return logits, targs def SCREAMING_SNAKE_CASE__ ( snake_case : Accelerator , snake_case : Dict=82 , snake_case : str=False , snake_case : List[str]=False , snake_case : List[Any]=16 ) -> Optional[int]: """simple docstring""" a , a , a : int = get_basic_setup(snake_case , snake_case , snake_case ) a , a : int = generate_predictions(snake_case , snake_case , snake_case ) assert ( len(snake_case ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case )}""" def SCREAMING_SNAKE_CASE__ ( snake_case : bool = False , snake_case : bool = False ) -> List[str]: """simple docstring""" a : int = evaluate.load('glue' , 'mrpc' ) a , a : Tuple = get_mrpc_setup(snake_case , snake_case ) # First do baseline a , a , a : Tuple = setup['no'] model.to(snake_case ) model.eval() for batch in dataloader: batch.to(snake_case ) with torch.inference_mode(): a : List[Any] = model(**snake_case ) a : Optional[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=snake_case , references=batch['labels'] ) a : Tuple = metric.compute() # Then do distributed a , a , a : Tuple = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): a : List[str] = model(**snake_case ) a : Optional[Any] = outputs.logits.argmax(dim=-1 ) a : Optional[int] = batch['labels'] a , a : Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=snake_case , references=snake_case ) a : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" a : Dict = Accelerator(split_batches=snake_case , dispatch_batches=snake_case ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(snake_case , snake_case ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: a : List[Any] = Accelerator(split_batches=snake_case , dispatch_batches=snake_case ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(snake_case , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) a : Optional[Any] = Accelerator() test_torch_metrics(snake_case , 512 ) accelerator.state._reset_state() def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] ) -> int: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
345
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : List[Any] = { """configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""], """feature_extraction_whisper""": ["""WhisperFeatureExtractor"""], """processing_whisper""": ["""WhisperProcessor"""], """tokenization_whisper""": ["""WhisperTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = ["""WhisperTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ """WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """WhisperForConditionalGeneration""", """WhisperModel""", """WhisperPreTrainedModel""", """WhisperForAudioClassification""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ """TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWhisperForConditionalGeneration""", """TFWhisperModel""", """TFWhisperPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[Any] = [ """FlaxWhisperForConditionalGeneration""", """FlaxWhisperModel""", """FlaxWhisperPreTrainedModel""", """FlaxWhisperForAudioClassification""", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = ["vqvae"] def __init__( self : List[str] , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Mel , UpperCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , mel=UpperCAmelCase_ , vqvae=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return 5_0 if isinstance(self.scheduler , UpperCAmelCase_) else 1_0_0_0 @torch.no_grad() def __call__( self : Dict , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = None , UpperCAmelCase_ : np.ndarray = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = None , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : Optional[Any]=True , ): """simple docstring""" a : Optional[Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase_) a : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: a : Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a : Dict = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCAmelCase_ , device=self.device , ) a : Tuple = noise a : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase_ , UpperCAmelCase_) a : List[Any] = self.mel.audio_slice_to_image(UpperCAmelCase_) a : str = np.frombuffer(input_image.tobytes() , dtype='uint8').reshape( (input_image.height, input_image.width)) a : List[str] = (input_image / 2_5_5) * 2 - 1 a : Any = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: a : List[Any] = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase_ , 0)).latent_dist.sample( generator=UpperCAmelCase_)[0] a : str = self.vqvae.config.scaling_factor * input_images if start_step > 0: a : Union[str, Any] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler.timesteps[start_step - 1]) a : Dict = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a : List[Any] = int(mask_start_secs * pixels_per_second) a : Optional[Any] = int(mask_end_secs * pixels_per_second) a : Optional[int] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , UpperCAmelCase_): a : Dict = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)['sample'] else: a : str = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] if isinstance(self.scheduler , UpperCAmelCase_): a : List[Any] = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] else: a : Any = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] if mask is not None: if mask_start > 0: a : str = mask[:, step, :, :mask_start] if mask_end > 0: a : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a : List[str] = 1 / self.vqvae.config.scaling_factor * images a : str = self.vqvae.decode(UpperCAmelCase_)['sample'] a : Tuple = (images / 2 + 0.5).clamp(0 , 1) a : Any = images.cpu().permute(0 , 2 , 3 , 1).numpy() a : List[str] = (images * 2_5_5).round().astype('uint8') a : Tuple = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase_ , mode='RGB').convert('L') for _ in images)) a : List[str] = [self.mel.image_to_audio(UpperCAmelCase_) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase_)[:, np.newaxis, :]) , **ImagePipelineOutput(UpperCAmelCase_)) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : List[Image.Image] , UpperCAmelCase_ : int = 5_0): """simple docstring""" assert isinstance(self.scheduler , UpperCAmelCase_) self.scheduler.set_timesteps(UpperCAmelCase_) a : Dict = np.array( [np.frombuffer(image.tobytes() , dtype='uint8').reshape((1, image.height, image.width)) for image in images]) a : Tuple = (sample / 2_5_5) * 2 - 1 a : int = torch.Tensor(UpperCAmelCase_).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): a : Optional[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a : Optional[Any] = self.scheduler.alphas_cumprod[t] a : List[Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a : List[str] = 1 - alpha_prod_t a : Optional[Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] a : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output a : Dict = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a : Union[str, Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : float): """simple docstring""" a : List[Any] = acos(torch.dot(torch.flatten(UpperCAmelCase_) , torch.flatten(UpperCAmelCase_)) / torch.norm(UpperCAmelCase_) / torch.norm(UpperCAmelCase_)) return sin((1 - alpha) * theta) * xa / sin(UpperCAmelCase_) + sin(alpha * theta) * xa / sin(UpperCAmelCase_)
345
1
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=9_9 , UpperCAmelCase_ : Optional[int]=3_6 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Optional[int]=3_7 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : Tuple=1_6 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : str=6 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : str=1_0_0_0 , ): """simple docstring""" a : int = parent a : Union[str, Any] = batch_size a : str = num_channels a : Dict = image_size a : List[Any] = patch_size a : Any = text_seq_length a : Optional[int] = is_training a : Dict = use_input_mask a : List[Any] = use_token_type_ids a : Any = use_labels a : Tuple = vocab_size a : Tuple = hidden_size a : Optional[Any] = num_hidden_layers a : Dict = num_attention_heads a : Any = intermediate_size a : List[str] = hidden_act a : Optional[int] = hidden_dropout_prob a : Dict = attention_probs_dropout_prob a : Optional[int] = max_position_embeddings a : Optional[Any] = type_vocab_size a : Union[str, Any] = type_sequence_label_size a : Tuple = initializer_range a : Optional[int] = coordinate_size a : Dict = shape_size a : Optional[Any] = num_labels a : Union[str, Any] = num_choices a : List[str] = scope a : Union[str, Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) a : Any = text_seq_length a : Any = (image_size // patch_size) ** 2 + 1 a : Optional[int] = self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size) a : List[str] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a : List[Any] = bbox[i, j, 3] a : Optional[Any] = bbox[i, j, 1] a : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: a : Tuple = bbox[i, j, 2] a : Dict = bbox[i, j, 0] a : List[str] = t a : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a : Dict = None if self.use_input_mask: a : Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length]) a : List[Any] = None if self.use_token_type_ids: a : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size) a : Optional[Any] = None a : Optional[Any] = None if self.use_labels: a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels) a : Any = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]): """simple docstring""" a : List[Any] = LayoutLMvaModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # text + image a : List[Any] = model(UpperCAmelCase_ , pixel_values=UpperCAmelCase_) a : Optional[int] = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) a : int = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) a : Dict = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # text only a : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size)) # image only a : Tuple = model(pixel_values=UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str]): """simple docstring""" a : List[Any] = self.num_labels a : Optional[int] = LayoutLMvaForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Any = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict): """simple docstring""" a : Optional[int] = self.num_labels a : Dict = LayoutLMvaForTokenClassification(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : str = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]): """simple docstring""" a : List[str] = LayoutLMvaForQuestionAnswering(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Dict = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : List[Any] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Optional[Any] = config_and_inputs a : Union[str, Any] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : Optional[Any] = False A : str = False A : List[str] = False A : int = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) A : str = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict): """simple docstring""" return True def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = LayoutLMvaModelTester(self) a : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int=False): """simple docstring""" a : Any = copy.deepcopy(UpperCAmelCase_) if model_class in get_values(UpperCAmelCase_): a : Tuple = { k: v.unsqueeze(1).expand(-1 , self.model_tester.num_choices , -1).contiguous() if isinstance(UpperCAmelCase_ , torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase_): a : str = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in get_values(UpperCAmelCase_): a : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) a : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in [ *get_values(UpperCAmelCase_), ]: a : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in [ *get_values(UpperCAmelCase_), ]: a : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase_ , ) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a : int = type self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Any = LayoutLMvaModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE__ ( ) -> Any: """simple docstring""" a : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase_) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Optional[Any] = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base').to(UpperCAmelCase_) a : List[str] = self.default_image_processor a : Union[str, Any] = prepare_img() a : Dict = image_processor(images=UpperCAmelCase_ , return_tensors='pt').pixel_values.to(UpperCAmelCase_) a : Dict = torch.tensor([[1, 2]]) a : Any = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) # forward pass a : Dict = model( input_ids=input_ids.to(UpperCAmelCase_) , bbox=bbox.to(UpperCAmelCase_) , pixel_values=pixel_values.to(UpperCAmelCase_) , ) # verify the logits a : Optional[int] = torch.Size((1, 1_9_9, 7_6_8)) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_) a : int = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1e-4))
345
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=1_3 , UpperCAmelCase_ : List[str]=3_0 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=3_2 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Dict=3_7 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=1_0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=2 , ): """simple docstring""" a : Any = parent a : Optional[int] = batch_size a : str = image_size a : str = patch_size a : List[Any] = num_channels a : Optional[int] = is_training a : Dict = use_labels a : Any = hidden_size a : Optional[int] = num_hidden_layers a : int = num_attention_heads a : int = intermediate_size a : Any = hidden_act a : Optional[int] = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : Dict = type_sequence_label_size a : Tuple = initializer_range a : List[str] = scope a : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[Any] = (image_size // patch_size) ** 2 a : str = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a : List[Any] = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict): """simple docstring""" a : int = ViTModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = ViTForMaskedImageModeling(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[Any] = model(UpperCAmelCase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images a : int = 1 a : Union[str, Any] = ViTForMaskedImageModeling(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : Optional[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any): """simple docstring""" a : str = self.type_sequence_label_size a : Tuple = ViTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a : List[Any] = 1 a : Union[str, Any] = ViTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ) : Tuple = config_and_inputs a : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : str = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) A : Optional[Any] = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) A : List[str] = True A : Optional[int] = False A : Dict = False A : Optional[int] = False def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : str = ViTModelTester(self) a : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(UpperCAmelCase_) a : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Dict = [*signature.parameters.keys()] a : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = ViTModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: """simple docstring""" a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Optional[Any] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(UpperCAmelCase_) a : List[Any] = self.default_image_processor a : List[str] = prepare_img() a : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : List[Any] = model(**UpperCAmelCase_) # verify the logits a : List[str] = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) a : Union[str, Any] = torch.tensor([-0.27_44, 0.82_15, -0.08_36]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[str] = ViTModel.from_pretrained('facebook/dino-vits8').to(UpperCAmelCase_) a : Any = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_8_0) a : int = prepare_img() a : List[str] = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : List[str] = inputs.pixel_values.to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : List[Any] = model(UpperCAmelCase_ , interpolate_pos_encoding=UpperCAmelCase_) # verify the logits a : Dict = torch.Size((1, 3_6_0_1, 3_8_4)) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_) a : str = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : str = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto') a : List[Any] = self.default_image_processor a : List[str] = prepare_img() a : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : Tuple = inputs.pixel_values.to(UpperCAmelCase_) # forward pass to make sure inference works in fp16 with torch.no_grad(): a : Tuple = model(UpperCAmelCase_)
345
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Dict = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = "markuplm" def __init__( self : int , UpperCAmelCase_ : Dict=3_0_5_2_2 , UpperCAmelCase_ : Optional[Any]=7_6_8 , UpperCAmelCase_ : Tuple=1_2 , UpperCAmelCase_ : List[str]=1_2 , UpperCAmelCase_ : int=3_0_7_2 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Any=5_1_2 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Tuple=1e-12 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Any=2_5_6 , UpperCAmelCase_ : Optional[int]=1_0_2_4 , UpperCAmelCase_ : Optional[Any]=2_1_6 , UpperCAmelCase_ : Union[str, Any]=1_0_0_1 , UpperCAmelCase_ : List[Any]=3_2 , UpperCAmelCase_ : List[Any]=5_0 , UpperCAmelCase_ : str="absolute" , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Dict , ): """simple docstring""" super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) a : str = vocab_size a : Tuple = hidden_size a : Any = num_hidden_layers a : int = num_attention_heads a : Dict = hidden_act a : Optional[int] = intermediate_size a : Optional[Any] = hidden_dropout_prob a : Dict = attention_probs_dropout_prob a : Dict = max_position_embeddings a : List[Any] = type_vocab_size a : str = initializer_range a : Dict = layer_norm_eps a : Dict = position_embedding_type a : Optional[int] = use_cache a : Dict = classifier_dropout # additional properties a : Optional[Any] = max_depth a : Optional[Any] = max_xpath_tag_unit_embeddings a : Tuple = max_xpath_subs_unit_embeddings a : int = tag_pad_id a : Dict = subs_pad_id a : List[str] = xpath_unit_hidden_size
345
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase ( a_ ): """simple docstring""" A : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) A : List[Any] = "CIDAS/clipseg-rd64-refined" A : Optional[Any] = "image_segmenter" A : List[Any] = CLIPSegForImageSegmentation A : Tuple = ["image", "text"] A : Optional[int] = ["image"] def __init__( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(self , ['vision']) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : "Image" , UpperCAmelCase_ : str): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=UpperCAmelCase_ , return_tensors='pt') def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str): """simple docstring""" with torch.no_grad(): a : Union[str, Any] = self.model(**UpperCAmelCase_).logits return logits def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : int): """simple docstring""" a : int = outputs.cpu().detach().numpy() a : str = 0 a : str = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta))
345
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> bool: """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) a : List[Any] = sorted(string.lower() ) return len(snake_case ) == len(set(snake_case ) ) if __name__ == "__main__": UpperCamelCase : List[str] = input("""Enter a string """).strip() UpperCamelCase : List[Any] = is_isogram(input_str) print(f'''{input_str} is {"an" if isogram else "not an"} isogram.''')
345
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( a_ , unittest.TestCase ): """simple docstring""" A : Union[str, Any] = CTRLTokenizer A : List[Any] = False A : Optional[Any] = False def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a : Dict = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] a : Tuple = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) a : Any = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] a : List[Any] = {'unk_token': '<unk>'} a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , **UpperCAmelCase_ : Dict): """simple docstring""" kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Any): """simple docstring""" a : List[str] = 'adapt react readapt apt' a : int = 'adapt react readapt apt' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : int = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) a : str = 'adapt react readapt apt' a : Optional[Any] = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() a : List[Any] = tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) a : Union[str, Any] = tokens + [tokenizer.unk_token] a : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
345
1
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=1_3 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=9_9 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : int=3_2 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int="last" , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=0 , ): """simple docstring""" a : Tuple = parent a : Optional[Any] = batch_size a : Tuple = seq_length a : Union[str, Any] = is_training a : List[str] = use_input_lengths a : Union[str, Any] = use_token_type_ids a : Optional[int] = use_labels a : int = gelu_activation a : Dict = sinusoidal_embeddings a : Any = causal a : Optional[int] = asm a : int = n_langs a : List[str] = vocab_size a : List[str] = n_special a : List[str] = hidden_size a : Any = num_hidden_layers a : Union[str, Any] = num_attention_heads a : Optional[Any] = hidden_dropout_prob a : str = attention_probs_dropout_prob a : Dict = max_position_embeddings a : Union[str, Any] = type_sequence_label_size a : str = initializer_range a : List[Any] = num_labels a : Union[str, Any] = num_choices a : Optional[Any] = summary_type a : Optional[Any] = use_proj a : Optional[Any] = scope a : Dict = bos_token_id def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) a : Optional[int] = None if self.use_input_lengths: a : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a : int = None if self.use_token_type_ids: a : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a : Optional[Any] = None a : Tuple = None a : Optional[Any] = None if self.use_labels: a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : Optional[Any] = ids_tensor([self.batch_size] , 2).float() a : Dict = ids_tensor([self.batch_size] , self.num_choices) a : Any = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Any = XLMModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_ , lengths=UpperCAmelCase_ , langs=UpperCAmelCase_) a : str = model(UpperCAmelCase_ , langs=UpperCAmelCase_) a : int = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , ): """simple docstring""" a : Optional[Any] = XLMWithLMHeadModel(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Union[str, Any] = XLMForQuestionAnsweringSimple(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_) a : Tuple = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) a : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , ): """simple docstring""" a : Any = XLMForQuestionAnswering(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_) a : Dict = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , p_mask=UpperCAmelCase_ , ) a : int = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , ) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() a : int = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , ): """simple docstring""" a : Dict = XLMForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_) a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , ): """simple docstring""" a : Dict = self.num_labels a : int = XLMForTokenClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , ): """simple docstring""" a : str = self.num_choices a : Dict = XLMForMultipleChoice(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : str = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Any = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : int = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Union[str, Any] = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" A : int = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A : Optional[Any] = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=False): """simple docstring""" a : List[Any] = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": a : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) a : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[Any] = XLMModelTester(self) a : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , emb_dim=3_7) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_attentions in attentions] , [True] * len(UpperCAmelCase_)) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(UpperCAmelCase_): # adds PAD dummy token a : List[str] = min_length + idx + 1 a : Optional[Any] = min_length + idx + 1 a : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Union[str, Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase_) , ) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(UpperCAmelCase_): # adds PAD dummy token a : int = min_length + idx + 1 a : Any = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase_) , ) pass @slow def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Union[str, Any] = XLMModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(UpperCAmelCase_) a : List[Any] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase_) # the president a : Dict = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference a : Optional[Any] = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase_)
345
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
345
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = "donut-swin" A : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Tuple , UpperCAmelCase_ : Any=2_2_4 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : str=9_6 , UpperCAmelCase_ : Tuple=[2, 2, 6, 2] , UpperCAmelCase_ : List[Any]=[3, 6, 1_2, 2_4] , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Dict=4.0 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : List[str]=1e-5 , **UpperCAmelCase_ : List[str] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : Optional[Any] = image_size a : Optional[int] = patch_size a : Dict = num_channels a : Optional[int] = embed_dim a : List[str] = depths a : List[str] = len(UpperCAmelCase_) a : str = num_heads a : Optional[Any] = window_size a : int = mlp_ratio a : Optional[Any] = qkv_bias a : List[str] = hidden_dropout_prob a : str = attention_probs_dropout_prob a : int = drop_path_rate a : Dict = hidden_act a : Dict = use_absolute_embeddings a : Optional[int] = layer_norm_eps a : Union[str, Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a : Tuple = int(embed_dim * 2 ** (len(UpperCAmelCase_) - 1))
345
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase : int = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = ["pixel_values"] def __init__( self : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : List[str] = size if size is not None else {'shortest_edge': 2_2_4} a : str = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a : int = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Any = do_resize a : Dict = size a : Optional[Any] = resample a : List[Any] = do_center_crop a : List[Any] = crop_size a : Optional[Any] = do_rescale a : Dict = rescale_factor a : Tuple = do_normalize a : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ): """simple docstring""" a : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: a : int = int((2_5_6 / 2_2_4) * size['shortest_edge']) a : Optional[int] = get_resize_output_image_size(UpperCAmelCase_ , size=UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : Optional[Any] = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""") return resize( UpperCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ): """simple docstring""" a : str = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , UpperCAmelCase_ : Optional[TensorType] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : int = do_resize if do_resize is not None else self.do_resize a : Optional[int] = resample if resample is not None else self.resample a : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop a : Tuple = do_rescale if do_rescale is not None else self.do_rescale a : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor a : Dict = do_normalize if do_normalize is not None else self.do_normalize a : Tuple = image_mean if image_mean is not None else self.image_mean a : int = image_std if image_std is not None else self.image_std a : Optional[int] = size if size is not None else self.size a : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : List[Any] = crop_size if crop_size is not None else self.crop_size a : str = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Dict = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a : Any = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: a : Optional[int] = [self.resize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_center_crop: a : int = [self.center_crop(UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_rescale: a : Any = [self.rescale(UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_normalize: a : str = [self.normalize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : Optional[int] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : Optional[int] = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
345
1
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase : List[str] = logging.get_logger(__name__) UpperCamelCase : List[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase : List[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } UpperCamelCase : Optional[int] = { """allenai/led-base-16384""": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: """simple docstring""" a : Tuple = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) a : Dict = bs[:] a : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case ) cs.append(2**8 + n ) n += 1 a : int = [chr(snake_case ) for n in cs] return dict(zip(snake_case , snake_case ) ) def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] ) -> str: """simple docstring""" a : str = set() a : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a : Tuple = char return pairs class UpperCamelCase ( a_ ): """simple docstring""" A : int = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]="replace" , UpperCAmelCase_ : Union[str, Any]="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Dict="</s>" , UpperCAmelCase_ : Tuple="<s>" , UpperCAmelCase_ : Optional[int]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Union[str, Any]="<mask>" , UpperCAmelCase_ : int=False , **UpperCAmelCase_ : Dict , ): """simple docstring""" a : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token a : str = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token a : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token a : Dict = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token a : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token a : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it a : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: a : str = json.load(UpperCAmelCase_) a : int = {v: k for k, v in self.encoder.items()} a : List[Any] = errors # how to handle errors in decoding a : Union[str, Any] = bytes_to_unicode() a : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: a : List[Any] = merges_handle.read().split('\n')[1:-1] a : Optional[Any] = [tuple(merge.split()) for merge in bpe_merges] a : List[str] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) a : Optional[int] = {} a : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a : str = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return len(self.encoder) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Tuple): """simple docstring""" if token in self.cache: return self.cache[token] a : Optional[Any] = tuple(UpperCAmelCase_) a : Tuple = get_pairs(UpperCAmelCase_) if not pairs: return token while True: a : Optional[Any] = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break a , a : Union[str, Any] = bigram a : Optional[Any] = [] a : List[str] = 0 while i < len(UpperCAmelCase_): try: a : List[Any] = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) a : Union[str, Any] = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 a : Dict = tuple(UpperCAmelCase_) a : int = new_word if len(UpperCAmelCase_) == 1: break else: a : Tuple = get_pairs(UpperCAmelCase_) a : Any = ' '.join(UpperCAmelCase_) a : Tuple = word return word def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : List[Any]): """simple docstring""" a : List[str] = [] for token in re.findall(self.pat , UpperCAmelCase_): a : int = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[Any]): """simple docstring""" return self.decoder.get(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict): """simple docstring""" a : int = ''.join(UpperCAmelCase_) a : int = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): """simple docstring""" if not os.path.isdir(UpperCAmelCase_): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return a : Union[str, Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) a : int = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') a : Optional[Any] = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!') a : Tuple = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a : List[Any] = [self.cls_token_id] a : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): """simple docstring""" a : Union[str, Any] = [self.sep_token_id] a : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=False , **UpperCAmelCase_ : List[str]): """simple docstring""" a : List[Any] = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): a : Dict = ' ' + text return (text, kwargs) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , ): """simple docstring""" a : Union[str, Any] = super()._pad( encoded_inputs=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding_strategy=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) # Load from model defaults if return_attention_mask is None: a : Dict = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a : Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a : Dict = len(encoded_inputs['global_attention_mask']) != len(UpperCAmelCase_) if needs_to_be_padded: a : Union[str, Any] = len(UpperCAmelCase_) - len(encoded_inputs['global_attention_mask']) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a : Optional[Any] = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": a : Dict = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side)) return encoded_inputs
345
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : float | Decimal , snake_case : float = 10**-10 ) -> float: """simple docstring""" a : Dict = a while True: a : Any = Decimal(snake_case ) - ( Decimal(eval(snake_case ) ) / Decimal(eval(str(diff(snake_case ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case ) ) < precision: # noqa: S307 return float(snake_case ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
345
1
'''simple docstring''' import math def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> bool: """simple docstring""" a : Dict = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : float = 1 / 12_345 ) -> int: """simple docstring""" a : Optional[int] = 0 a : Optional[int] = 0 a : int = 3 while True: a : List[str] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(snake_case ): a : Any = int(snake_case ) total_partitions += 1 if check_partition_perfect(snake_case ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(snake_case ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
345
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=1_3 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=9_9 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : int=3_2 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int="last" , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=0 , ): """simple docstring""" a : Tuple = parent a : Optional[Any] = batch_size a : Tuple = seq_length a : Union[str, Any] = is_training a : List[str] = use_input_lengths a : Union[str, Any] = use_token_type_ids a : Optional[int] = use_labels a : int = gelu_activation a : Dict = sinusoidal_embeddings a : Any = causal a : Optional[int] = asm a : int = n_langs a : List[str] = vocab_size a : List[str] = n_special a : List[str] = hidden_size a : Any = num_hidden_layers a : Union[str, Any] = num_attention_heads a : Optional[Any] = hidden_dropout_prob a : str = attention_probs_dropout_prob a : Dict = max_position_embeddings a : Union[str, Any] = type_sequence_label_size a : str = initializer_range a : List[Any] = num_labels a : Union[str, Any] = num_choices a : Optional[Any] = summary_type a : Optional[Any] = use_proj a : Optional[Any] = scope a : Dict = bos_token_id def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) a : Optional[int] = None if self.use_input_lengths: a : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a : int = None if self.use_token_type_ids: a : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a : Optional[Any] = None a : Tuple = None a : Optional[Any] = None if self.use_labels: a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : Optional[Any] = ids_tensor([self.batch_size] , 2).float() a : Dict = ids_tensor([self.batch_size] , self.num_choices) a : Any = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Any = XLMModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_ , lengths=UpperCAmelCase_ , langs=UpperCAmelCase_) a : str = model(UpperCAmelCase_ , langs=UpperCAmelCase_) a : int = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , ): """simple docstring""" a : Optional[Any] = XLMWithLMHeadModel(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Union[str, Any] = XLMForQuestionAnsweringSimple(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_) a : Tuple = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) a : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , ): """simple docstring""" a : Any = XLMForQuestionAnswering(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_) a : Dict = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , p_mask=UpperCAmelCase_ , ) a : int = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , ) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() a : int = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , ): """simple docstring""" a : Dict = XLMForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_) a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , ): """simple docstring""" a : Dict = self.num_labels a : int = XLMForTokenClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , ): """simple docstring""" a : str = self.num_choices a : Dict = XLMForMultipleChoice(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : str = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Any = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : int = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Union[str, Any] = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" A : int = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A : Optional[Any] = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=False): """simple docstring""" a : List[Any] = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": a : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) a : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[Any] = XLMModelTester(self) a : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , emb_dim=3_7) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_attentions in attentions] , [True] * len(UpperCAmelCase_)) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(UpperCAmelCase_): # adds PAD dummy token a : List[str] = min_length + idx + 1 a : Optional[Any] = min_length + idx + 1 a : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Union[str, Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase_) , ) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(UpperCAmelCase_): # adds PAD dummy token a : int = min_length + idx + 1 a : Any = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase_) , ) pass @slow def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Union[str, Any] = XLMModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(UpperCAmelCase_) a : List[Any] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase_) # the president a : Dict = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference a : Optional[Any] = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase_)
345
1
'''simple docstring''' import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger UpperCamelCase : str = get_logger(__name__) UpperCamelCase : int = Path(__file__).parent / """model_card_template.md""" UpperCamelCase : Any = uuida().hex UpperCamelCase : List[Any] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES UpperCamelCase : Tuple = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES UpperCamelCase : List[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None ) -> str: """simple docstring""" a : Any = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(snake_case , snake_case ): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(snake_case , snake_case ): ua += "; " + user_agent return ua def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None ) -> Optional[int]: """simple docstring""" if token is None: a : Union[str, Any] = HfFolder.get_token() if organization is None: a : List[str] = whoami(snake_case )['name'] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(snake_case , 'local_rank' ) and args.local_rank not in [-1, 0]: return a : Dict = args.hub_token if hasattr(snake_case , 'hub_token' ) else None a : Dict = get_full_repo_name(snake_case , token=snake_case ) a : str = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(snake_case , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(snake_case , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(snake_case , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a : Tuple = os.path.join(args.output_dir , 'README.md' ) model_card.save(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None ) -> str: """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash a : Optional[int] = str(Path(snake_case ).as_posix() ) a : Tuple = re.search(R'snapshots/([^/]+)/' , snake_case ) if search is None: return None a : Tuple = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. UpperCamelCase : Optional[int] = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) UpperCamelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""") def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None ) -> None: """simple docstring""" if new_cache_dir is None: a : Optional[Any] = DIFFUSERS_CACHE if old_cache_dir is None: a : Any = old_diffusers_cache a : Dict = Path(snake_case ).expanduser() a : str = Path(snake_case ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a : List[Any] = new_cache_dir / old_blob_path.relative_to(snake_case ) new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) os.replace(snake_case , snake_case ) try: os.symlink(snake_case , snake_case ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). UpperCamelCase : List[str] = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): UpperCamelCase : str = 0 else: with open(cache_version_file) as f: try: UpperCamelCase : Union[str, Any] = int(f.read()) except ValueError: UpperCamelCase : Optional[Any] = 0 if cache_version < 1: UpperCamelCase : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: UpperCamelCase : Optional[int] = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' """the directory exists and can be written to.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None ) -> str: """simple docstring""" if variant is not None: a : Optional[int] = weights_name.split('.' ) a : Dict = splits[:-1] + [variant] + splits[-1:] a : Any = '.'.join(snake_case ) return weights_name def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , *, snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : List[str] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Any , snake_case : Union[str, Any] , snake_case : str , snake_case : List[str] , snake_case : Optional[int]=None , ) -> Optional[int]: """simple docstring""" a : Optional[int] = str(snake_case ) if os.path.isfile(snake_case ): return pretrained_model_name_or_path elif os.path.isdir(snake_case ): if os.path.isfile(os.path.join(snake_case , snake_case ) ): # Load from a PyTorch checkpoint a : Optional[int] = os.path.join(snake_case , snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(snake_case , snake_case , snake_case ) ): a : List[Any] = os.path.join(snake_case , snake_case , snake_case ) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(snake_case ).base_version ) >= version.parse('0.20.0' ) ): try: a : Tuple = hf_hub_download( snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , snake_case , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}' so that the correct variant file can be added.""" , snake_case , ) try: # 2. Load model file as usual a : Any = hf_hub_download( snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""" )
345
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase : List[str] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class UpperCamelCase ( a_ ): """simple docstring""" A : Any = "layoutlmv3" def __init__( self : Union[str, Any] , UpperCAmelCase_ : str=5_0_2_6_5 , UpperCAmelCase_ : List[str]=7_6_8 , UpperCAmelCase_ : Optional[int]=1_2 , UpperCAmelCase_ : Optional[Any]=1_2 , UpperCAmelCase_ : Optional[int]=3_0_7_2 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : str=1e-5 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : Optional[Any]=1_0_2_4 , UpperCAmelCase_ : str=1_2_8 , UpperCAmelCase_ : Optional[int]=1_2_8 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : str=3_2 , UpperCAmelCase_ : Optional[int]=1_2_8 , UpperCAmelCase_ : int=6_4 , UpperCAmelCase_ : Dict=2_5_6 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=2_2_4 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=1_6 , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : int , ): """simple docstring""" super().__init__( vocab_size=UpperCAmelCase_ , hidden_size=UpperCAmelCase_ , num_hidden_layers=UpperCAmelCase_ , num_attention_heads=UpperCAmelCase_ , intermediate_size=UpperCAmelCase_ , hidden_act=UpperCAmelCase_ , hidden_dropout_prob=UpperCAmelCase_ , attention_probs_dropout_prob=UpperCAmelCase_ , max_position_embeddings=UpperCAmelCase_ , type_vocab_size=UpperCAmelCase_ , initializer_range=UpperCAmelCase_ , layer_norm_eps=UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) a : List[Any] = max_ad_position_embeddings a : Optional[int] = coordinate_size a : Tuple = shape_size a : Any = has_relative_attention_bias a : Optional[Any] = rel_pos_bins a : List[Any] = max_rel_pos a : int = has_spatial_attention_bias a : Union[str, Any] = rel_ad_pos_bins a : Any = max_rel_ad_pos a : Dict = text_embed a : List[Any] = visual_embed a : List[str] = input_size a : int = num_channels a : List[Any] = patch_size a : Optional[int] = classifier_dropout class UpperCamelCase ( a_ ): """simple docstring""" A : int = version.parse("1.12" ) @property def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ]) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" return 1e-5 @property def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return 1_2 def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : "ProcessorMixin" , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 4_0 , UpperCAmelCase_ : int = 4_0 , ): """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , UpperCAmelCase_) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a : List[str] = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a : Optional[Any] = processor.tokenizer.num_special_tokens_to_add(UpperCAmelCase_) a : Dict = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase_) # Generate dummy inputs according to compute batch and sequence a : Dict = [[' '.join([processor.tokenizer.unk_token]) * seq_length]] * batch_size # Generate dummy bounding boxes a : int = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) a : Tuple = self._generate_dummy_images(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) a : int = dict( processor( UpperCAmelCase_ , text=UpperCAmelCase_ , boxes=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , )) return inputs
345
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Tuple = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCamelCase : int = 250_004 UpperCamelCase : List[str] = 250_020 @require_sentencepiece @require_tokenizers class UpperCamelCase ( a_ , unittest.TestCase ): """simple docstring""" A : Any = MBartaaTokenizer A : List[Any] = MBartaaTokenizerFast A : str = True A : List[str] = True def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a : Optional[Any] = MBartaaTokenizer(UpperCAmelCase_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=UpperCAmelCase_) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Optional[int] = '<s>' a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_) , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , '<mask>') self.assertEqual(len(UpperCAmelCase_) , 1_0_5_4) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Tuple = MBartaaTokenizer(UpperCAmelCase_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=UpperCAmelCase_) a : Any = tokenizer.tokenize('This is a test') self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) a : List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) a : Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) a : List[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = {'input_ids': [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return a : Union[str, Any] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""): a : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) a : int = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) a : str = tempfile.mkdtemp() a : Any = tokenizer_r.save_pretrained(UpperCAmelCase_) a : Union[str, Any] = tokenizer_p.save_pretrained(UpperCAmelCase_) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files)) a : str = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f) self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_) # Checks everything loads correctly in the same way a : Any = tokenizer_r.from_pretrained(UpperCAmelCase_) a : str = tokenizer_p.from_pretrained(UpperCAmelCase_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase_) # Save tokenizer rust, legacy_format=True a : List[Any] = tempfile.mkdtemp() a : Optional[Any] = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_) a : List[Any] = tokenizer_p.save_pretrained(UpperCAmelCase_) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_) # Checks everything loads correctly in the same way a : int = tokenizer_r.from_pretrained(UpperCAmelCase_) a : List[str] = tokenizer_p.from_pretrained(UpperCAmelCase_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_)) shutil.rmtree(UpperCAmelCase_) # Save tokenizer rust, legacy_format=False a : Dict = tempfile.mkdtemp() a : str = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_) a : List[str] = tokenizer_p.save_pretrained(UpperCAmelCase_) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way a : Union[str, Any] = tokenizer_r.from_pretrained(UpperCAmelCase_) a : Optional[Any] = tokenizer_p.from_pretrained(UpperCAmelCase_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_)) shutil.rmtree(UpperCAmelCase_) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase ( unittest.TestCase ): """simple docstring""" A : Optional[int] = "facebook/mbart-large-50-one-to-many-mmt" A : Dict = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] A : List[Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] A : int = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2] @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any): """simple docstring""" a : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO') a : str = 1 return cls def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 2_5_0_0_0_1) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 2_5_0_0_0_4) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 2_5_0_0_2_0) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 2_5_0_0_3_8) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Dict = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" self.assertIn(UpperCAmelCase_ , self.tokenizer.all_special_ids) a : Dict = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] a : Any = self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_) a : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : str = ['this is gunna be a long sentence ' * 2_0] assert isinstance(src_text[0] , UpperCAmelCase_) a : Dict = 1_0 a : Optional[int] = self.tokenizer(UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_).input_ids[0] self.assertEqual(ids[0] , UpperCAmelCase_) self.assertEqual(ids[-1] , 2) self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR']) , [2_5_0_0_5_3, 2_5_0_0_0_1]) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Any = tempfile.mkdtemp() a : int = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase_) a : Tuple = MBartaaTokenizer.from_pretrained(UpperCAmelCase_) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase_) @require_torch def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Union[str, Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , return_tensors='pt') a : List[Any] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=len(self.expected_src_tokens) , return_tensors='pt' , ) a : Dict = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual((2, 1_4) , batch.input_ids.shape) self.assertEqual((2, 1_4) , batch.attention_mask.shape) a : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_) self.assertEqual(2 , batch.decoder_input_ids[0, 0]) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Dict = self.tokenizer(self.src_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=3 , return_tensors='pt') a : Tuple = self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=1_0 , return_tensors='pt') a : Tuple = targets['input_ids'] a : List[Any] = shift_tokens_right(UpperCAmelCase_ , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0) @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Dict = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR') self.assertEqual( nested_simplify(UpperCAmelCase_) , { # en_XX, A, test, EOS 'input_ids': [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 2_5_0_0_0_1, } , )
345
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = "data2vec-audio" def __init__( self : Dict , UpperCAmelCase_ : Optional[int]=3_2 , UpperCAmelCase_ : Union[str, Any]=7_6_8 , UpperCAmelCase_ : Dict=1_2 , UpperCAmelCase_ : str=1_2 , UpperCAmelCase_ : Optional[Any]=3_0_7_2 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : str=1e-5 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase_ : Dict=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : int=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=1_6 , UpperCAmelCase_ : Optional[Any]=1_9 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=0.05 , UpperCAmelCase_ : Dict=1_0 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Tuple=1_0 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Any="sum" , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=2_5_6 , UpperCAmelCase_ : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase_ : Optional[Any]=(5, 3, 3, 1, 1) , UpperCAmelCase_ : Optional[int]=(1, 2, 3, 1, 1) , UpperCAmelCase_ : int=5_1_2 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : int , ): """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) a : List[Any] = hidden_size a : Any = feat_extract_activation a : Any = list(UpperCAmelCase_) a : Optional[int] = list(UpperCAmelCase_) a : Dict = list(UpperCAmelCase_) a : Tuple = conv_bias a : str = num_conv_pos_embeddings a : Dict = num_conv_pos_embedding_groups a : Optional[Any] = conv_pos_kernel_size a : Any = len(self.conv_dim) a : Tuple = num_hidden_layers a : Any = intermediate_size a : Any = hidden_act a : Dict = num_attention_heads a : Dict = hidden_dropout a : Union[str, Any] = attention_dropout a : Dict = activation_dropout a : Optional[int] = feat_proj_dropout a : Tuple = final_dropout a : Union[str, Any] = layerdrop a : Tuple = layer_norm_eps a : Dict = initializer_range a : Tuple = vocab_size a : int = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a : List[str] = mask_time_prob a : int = mask_time_length a : Optional[int] = mask_time_min_masks a : Dict = mask_feature_prob a : List[str] = mask_feature_length a : str = mask_feature_min_masks # ctc loss a : str = ctc_loss_reduction a : Optional[Any] = ctc_zero_infinity # adapter a : List[str] = add_adapter a : Optional[Any] = adapter_kernel_size a : int = adapter_stride a : str = num_adapter_layers a : Optional[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a : List[Any] = list(UpperCAmelCase_) a : List[str] = list(UpperCAmelCase_) a : str = list(UpperCAmelCase_) a : Optional[Any] = xvector_output_dim @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return math.prod(self.conv_stride)
345
1
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def SCREAMING_SNAKE_CASE__ ( snake_case : float , snake_case : float , snake_case : bool = False ) -> list[float]: """simple docstring""" if radian_mode: return [magnitude * cos(snake_case ), magnitude * sin(snake_case )] return [magnitude * cos(radians(snake_case ) ), magnitude * sin(radians(snake_case ) )] def SCREAMING_SNAKE_CASE__ ( snake_case : NDArray[floataa] , snake_case : NDArray[floataa] , snake_case : float = 10**-1 ) -> bool: """simple docstring""" a : NDArray[floataa] = cross(snake_case , snake_case ) a : float = sum(snake_case ) return abs(snake_case ) < eps if __name__ == "__main__": # Test to check if it works UpperCamelCase : List[Any] = array( [ polar_force(7_18.4, 180 - 30), polar_force(8_79.54, 45), polar_force(100, -90), ] ) UpperCamelCase : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg UpperCamelCase : Any = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) UpperCamelCase : int = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg UpperCamelCase : Optional[Any] = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]]) UpperCamelCase : int = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
345
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase : Optional[Any] = logging.getLogger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = "masked_bert" def __init__( self : Tuple , UpperCAmelCase_ : List[Any]=3_0_5_2_2 , UpperCAmelCase_ : str=7_6_8 , UpperCAmelCase_ : Optional[Any]=1_2 , UpperCAmelCase_ : Optional[int]=1_2 , UpperCAmelCase_ : Union[str, Any]=3_0_7_2 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[Any]=1e-12 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Dict="topK" , UpperCAmelCase_ : str="constant" , UpperCAmelCase_ : Optional[Any]=0.0 , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) a : Union[str, Any] = vocab_size a : List[Any] = hidden_size a : List[str] = num_hidden_layers a : Any = num_attention_heads a : Optional[Any] = hidden_act a : str = intermediate_size a : Dict = hidden_dropout_prob a : Any = attention_probs_dropout_prob a : Any = max_position_embeddings a : Dict = type_vocab_size a : List[str] = initializer_range a : int = layer_norm_eps a : Dict = pruning_method a : List[str] = mask_init a : Union[str, Any] = mask_scale
345
1
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : Dict = {"""vocab_file""": """vocab.json"""} UpperCamelCase : Union[str, Any] = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } UpperCamelCase : Any = {"""mgp-str""": 27} class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int="[GO]" , UpperCAmelCase_ : int="[GO]" , UpperCAmelCase_ : Optional[int]="[s]" , UpperCAmelCase_ : Dict="[GO]" , **UpperCAmelCase_ : Optional[int]): """simple docstring""" super().__init__( unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: a : Optional[int] = json.load(UpperCAmelCase_) a : Any = {v: k for k, v in self.vocab.items()} @property def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" return len(self.vocab) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" a : List[str] = [] for s in text: char_tokens.extend(UpperCAmelCase_) return char_tokens def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" return self.vocab.get(UpperCAmelCase_ , self.vocab.get(self.unk_token)) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int]): """simple docstring""" return self.decoder.get(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): """simple docstring""" if not os.path.isdir(UpperCAmelCase_): logger.error('Vocabulary path ({}) should be a directory'.format(UpperCAmelCase_)) return a : Optional[int] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') return (vocab_file,)
345
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any): """simple docstring""" super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) a : str = {} def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int): """simple docstring""" a : Dict = super().add_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.') def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=1 , **UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Any = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) else: a : int = [] for i in range(UpperCAmelCase_): a : Union[str, Any] = placeholder_token + f"""_{i}""" self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""") a : Any = output def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=1.0): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): a : Any = [] for i in range(len(UpperCAmelCase_)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCAmelCase_)) return output for placeholder_token in self.token_map: if placeholder_token in text: a : List[Any] = self.token_map[placeholder_token] a : int = tokens[: 1 + int(len(UpperCAmelCase_) * prop_tokens_to_load)] if vector_shuffle: a : List[Any] = copy.copy(UpperCAmelCase_) random.shuffle(UpperCAmelCase_) a : List[str] = text.replace(UpperCAmelCase_ , ' '.join(UpperCAmelCase_)) return text def __call__( self : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[int]=1.0 , **UpperCAmelCase_ : str): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1.0 , **UpperCAmelCase_ : Dict): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , )
345
1
'''simple docstring''' import math def SCREAMING_SNAKE_CASE__ ( snake_case : list , snake_case : int ) -> int: """simple docstring""" a : Optional[int] = len(snake_case ) a : Optional[int] = int(math.floor(math.sqrt(snake_case ) ) ) a : Tuple = 0 while arr[min(snake_case , snake_case ) - 1] < x: a : Optional[int] = step step += int(math.floor(math.sqrt(snake_case ) ) ) if prev >= n: return -1 while arr[prev] < x: a : Any = prev + 1 if prev == min(snake_case , snake_case ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": UpperCamelCase : int = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] UpperCamelCase : Dict = int(input("""Enter the number to be searched:\n""")) UpperCamelCase : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f'''Number {x} is at index {res}''')
345
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[Any]: """simple docstring""" a : Union[str, Any] = SwinConfig() a : Optional[int] = swin_name.split('_' ) a : Union[str, Any] = name_split[1] a : Dict = int(name_split[4] ) a : Union[str, Any] = int(name_split[3][-1] ) if model_size == "tiny": a : Optional[Any] = 96 a : Any = (2, 2, 6, 2) a : List[str] = (3, 6, 12, 24) elif model_size == "small": a : int = 96 a : List[str] = (2, 2, 18, 2) a : int = (3, 6, 12, 24) elif model_size == "base": a : Tuple = 128 a : Optional[int] = (2, 2, 18, 2) a : List[Any] = (4, 8, 16, 32) else: a : Dict = 192 a : str = (2, 2, 18, 2) a : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: a : Any = 21_841 else: a : str = 1_000 a : str = 'huggingface/label-files' a : Optional[Any] = 'imagenet-1k-id2label.json' a : Dict = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) a : Tuple = {int(snake_case ): v for k, v in idalabel.items()} a : int = idalabel a : str = {v: k for k, v in idalabel.items()} a : Dict = img_size a : List[Any] = num_classes a : str = embed_dim a : Dict = depths a : Union[str, Any] = num_heads a : int = window_size return config def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[int]: """simple docstring""" if "patch_embed.proj" in name: a : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a : Tuple = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a : Optional[int] = 'encoder.' + name if "attn.proj" in name: a : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: a : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a : Any = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": a : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": a : List[str] = 'layernorm.bias' if "head" in name: a : Union[str, Any] = name.replace('head' , 'classifier' ) else: a : List[Any] = 'swin.' + name return name def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): a : Any = orig_state_dict.pop(snake_case ) if "mask" in key: continue elif "qkv" in key: a : Optional[Any] = key.split('.' ) a : Dict = int(key_split[1] ) a : Optional[int] = int(key_split[3] ) a : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a : Optional[Any] = val[:dim, :] a : List[Any] = val[ dim : dim * 2, : ] a : List[Any] = val[-dim:, :] else: a : Dict = val[ :dim ] a : Union[str, Any] = val[ dim : dim * 2 ] a : Union[str, Any] = val[ -dim: ] else: a : Dict = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Dict ) -> List[str]: """simple docstring""" a : Any = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() a : str = get_swin_config(snake_case ) a : Optional[int] = SwinForImageClassification(snake_case ) model.eval() a : Union[str, Any] = convert_state_dict(timm_model.state_dict() , snake_case ) model.load_state_dict(snake_case ) a : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) a : str = Image.open(requests.get(snake_case , stream=snake_case ).raw ) a : Union[str, Any] = image_processor(images=snake_case , return_tensors='pt' ) a : int = timm_model(inputs['pixel_values'] ) a : Optional[int] = model(**snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCamelCase : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
345
1
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase : Optional[int] = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Optional[Any] , snake_case : Tuple=None , snake_case : List[str]=None , snake_case : int=None , snake_case : List[Any]=None , snake_case : List[Any]=None , snake_case : Union[str, Any]=None , ) -> Optional[Any]: """simple docstring""" if attention_mask is None: a : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: a : Dict = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: a : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: a : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCamelCase : """simple docstring""" def __init__( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str]=1_3 , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Optional[int]=9_9 , UpperCAmelCase_ : int=1_6 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : List[Any]=3_2 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Dict=1 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , ): """simple docstring""" a : Optional[Any] = parent a : List[Any] = batch_size a : Optional[int] = seq_length a : Optional[int] = is_training a : Optional[Any] = use_labels a : Tuple = vocab_size a : List[Any] = hidden_size a : List[Any] = num_hidden_layers a : Union[str, Any] = num_attention_heads a : Tuple = intermediate_size a : Any = hidden_act a : Optional[Any] = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : Tuple = max_position_embeddings a : List[str] = eos_token_id a : Any = pad_token_id a : Tuple = bos_token_id a : int = initializer_range def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) a : Union[str, Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) a : str = shift_tokens_right(UpperCAmelCase_ , 1 , 2) a : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) a : Optional[int] = prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" a : Optional[Any] = 2_0 a : List[str] = model_class_name(UpperCAmelCase_) a : List[Any] = model.encode(inputs_dict['input_ids']) a , a : Tuple = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) a : List[str] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) a : Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4') a : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a : List[str] = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) a : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4') a : Optional[int] = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) a : Union[str, Any] = model.decode(UpperCAmelCase_ , UpperCAmelCase_) a : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple): """simple docstring""" a : Union[str, Any] = 2_0 a : List[str] = model_class_name(UpperCAmelCase_) a : Dict = model.encode(inputs_dict['input_ids']) a , a : List[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) a : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) a : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) a : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a : List[Any] = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) a : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4') a : List[Any] = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) a : int = model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) a : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""") @require_flax class UpperCamelCase ( unittest.TestCase ): """simple docstring""" A : Optional[Any] = 99 def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Tuple = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) a : Union[str, Any] = input_ids.shape[0] a : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a , a , a : List[str] = self._get_config_and_data() a : str = FlaxBlenderbotSmallForConditionalGeneration(UpperCAmelCase_) a : Optional[Any] = lm_model(input_ids=UpperCAmelCase_) a : Optional[int] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : str = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) a : int = FlaxBlenderbotSmallForConditionalGeneration(UpperCAmelCase_) a : Tuple = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa) a : List[Any] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa) a : str = lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) a : Any = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Any = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa) a : str = shift_tokens_right(UpperCAmelCase_ , 1 , 2) a : Optional[int] = np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() a : Dict = np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class UpperCamelCase ( a_ , unittest.TestCase , a_ ): """simple docstring""" A : List[str] = True A : List[Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) A : Union[str, Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Optional[Any] = FlaxBlenderbotSmallModelTester(self) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a , a : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a , a : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a , a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): a : Tuple = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) a : str = model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : int): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest('JIT Enabled'): a : str = encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): a : Tuple = encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a , a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): a : Dict = model_class(UpperCAmelCase_) a : Any = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask']) a : Union[str, Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest('JIT Enabled'): a : Optional[Any] = decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): a : Optional[Any] = decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" for model_class_name in self.all_model_classes: a : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M') # FlaxBlenderbotForSequenceClassification expects eos token in input_ids a : List[str] = np.ones((1, 1)) * model.config.eos_token_id a : Optional[int] = model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_)
345
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class UpperCamelCase : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase_ : Tuple): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden a : Dict = deepcopy(UpperCAmelCase_) elif os.path.exists(UpperCAmelCase_): with io.open(UpperCAmelCase_ , 'r' , encoding='utf-8') as f: a : Union[str, Any] = json.load(UpperCAmelCase_) else: try: a : Union[str, Any] = baseaa.urlsafe_baadecode(UpperCAmelCase_).decode('utf-8') a : List[str] = json.loads(UpperCAmelCase_) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""") a : Optional[int] = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : str = self.get_value('zero_optimization.stage' , -1) # offload a : Any = False if self.is_zeroa() or self.is_zeroa(): a : Tuple = set(['cpu', 'nvme']) a : int = set( [ self.get_value('zero_optimization.offload_optimizer.device'), self.get_value('zero_optimization.offload_param.device'), ]) if len(offload_devices & offload_devices_valid) > 0: a : List[str] = True def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Dict): """simple docstring""" a : List[str] = self.config # find the config node of interest if it exists a : int = ds_key_long.split('.') a : Union[str, Any] = nodes.pop() for node in nodes: a : Union[str, Any] = config.get(UpperCAmelCase_) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=None): """simple docstring""" a , a : int = self.find_config_node(UpperCAmelCase_) if config is None: return default return config.get(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=False): """simple docstring""" a : Any = self.config # find the config node of interest if it exists a : Optional[Any] = ds_key_long.split('.') for node in nodes: a : List[str] = config a : int = config.get(UpperCAmelCase_) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""") else: return # if found remove it if parent_config is not None: parent_config.pop(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : str): """simple docstring""" a : List[str] = self.get_value(UpperCAmelCase_) return False if value is None else bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : List[Any] = self.get_value(UpperCAmelCase_) return False if value is None else not bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 3 def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return self._offload class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : int): """simple docstring""" a : Union[str, Any] = engine def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): """simple docstring""" self.engine.backward(UpperCAmelCase_ , **UpperCAmelCase_) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any): """simple docstring""" super().__init__(UpperCAmelCase_ , device_placement=UpperCAmelCase_ , scaler=UpperCAmelCase_) a : List[str] = hasattr(self.optimizer , 'overflow') def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Dict=None): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]=0.0_01 , UpperCAmelCase_ : List[Any]=0 , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : int = params a : str = lr a : Tuple = weight_decay a : Dict = kwargs class UpperCamelCase : """simple docstring""" def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=0 , **UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = optimizer a : Tuple = total_num_steps a : Optional[Any] = warmup_num_steps a : List[str] = kwargs
345
1
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCamelCase ( nn.Module ): """simple docstring""" A : int A : int A : float = 0.0 A : int = 1 A : int = 1 A : bool = True A : bool = False A : bool = False A : bool = False A : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = [] a : Optional[Any] = [] for i in range(self.num_layers): a : int = self.in_channels if i == 0 else self.out_channels a : Any = FlaxResnetBlockaD( in_channels=UpperCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_) a : Optional[Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_) a : Optional[int] = resnets a : List[Any] = attentions if self.add_downsample: a : Dict = FlaxDownsampleaD(self.out_channels , dtype=self.dtype) def __call__( self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int=True): """simple docstring""" a : List[str] = () for resnet, attn in zip(self.resnets , self.attentions): a : str = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_) a : int = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_) output_states += (hidden_states,) if self.add_downsample: a : Any = self.downsamplers_a(UpperCAmelCase_) output_states += (hidden_states,) return hidden_states, output_states class UpperCamelCase ( nn.Module ): """simple docstring""" A : int A : int A : float = 0.0 A : int = 1 A : bool = True A : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Tuple = [] for i in range(self.num_layers): a : Dict = self.in_channels if i == 0 else self.out_channels a : Tuple = FlaxResnetBlockaD( in_channels=UpperCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_) a : Any = resnets if self.add_downsample: a : Optional[int] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype) def __call__( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str=True): """simple docstring""" a : Dict = () for resnet in self.resnets: a : Any = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_) output_states += (hidden_states,) if self.add_downsample: a : Tuple = self.downsamplers_a(UpperCAmelCase_) output_states += (hidden_states,) return hidden_states, output_states class UpperCamelCase ( nn.Module ): """simple docstring""" A : int A : int A : int A : float = 0.0 A : int = 1 A : int = 1 A : bool = True A : bool = False A : bool = False A : bool = False A : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = [] a : str = [] for i in range(self.num_layers): a : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels a : List[Any] = self.prev_output_channel if i == 0 else self.out_channels a : List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_) a : Optional[int] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_) a : int = resnets a : Dict = attentions if self.add_upsample: a : Optional[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype) def __call__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any]=True): """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions): # pop res hidden states a : Union[str, Any] = res_hidden_states_tuple[-1] a : Tuple = res_hidden_states_tuple[:-1] a : Tuple = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1) a : Tuple = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_) a : str = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_) if self.add_upsample: a : List[str] = self.upsamplers_a(UpperCAmelCase_) return hidden_states class UpperCamelCase ( nn.Module ): """simple docstring""" A : int A : int A : int A : float = 0.0 A : int = 1 A : bool = True A : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Tuple = [] for i in range(self.num_layers): a : Any = self.in_channels if (i == self.num_layers - 1) else self.out_channels a : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels a : Optional[int] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_) a : int = resnets if self.add_upsample: a : Tuple = FlaxUpsampleaD(self.out_channels , dtype=self.dtype) def __call__( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int=True): """simple docstring""" for resnet in self.resnets: # pop res hidden states a : Optional[Any] = res_hidden_states_tuple[-1] a : Dict = res_hidden_states_tuple[:-1] a : str = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1) a : int = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_) if self.add_upsample: a : List[str] = self.upsamplers_a(UpperCAmelCase_) return hidden_states class UpperCamelCase ( nn.Module ): """simple docstring""" A : int A : float = 0.0 A : int = 1 A : int = 1 A : bool = False A : bool = False A : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : str = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] a : Any = [] for _ in range(self.num_layers): a : int = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_) a : Tuple = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_) a : Tuple = resnets a : Tuple = attentions def __call__( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=True): """simple docstring""" a : Dict = self.resnets[0](UpperCAmelCase_ , UpperCAmelCase_) for attn, resnet in zip(self.attentions , self.resnets[1:]): a : Dict = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_) a : int = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_) return hidden_states
345
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCamelCase : List[str] = logging.get_logger(__name__) @dataclass class UpperCamelCase : """simple docstring""" A : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) A : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) A : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A : bool = field( default=a_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Union[str, Any] = self.task_name.lower() class UpperCamelCase ( a_ ): """simple docstring""" A : int = "train" A : Tuple = "dev" A : List[Any] = "test" class UpperCamelCase ( a_ ): """simple docstring""" A : GlueDataTrainingArguments A : str A : List[InputFeatures] def __init__( self : Tuple , UpperCAmelCase_ : GlueDataTrainingArguments , UpperCAmelCase_ : PreTrainedTokenizerBase , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Union[str, Split] = Split.train , UpperCAmelCase_ : Optional[str] = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , UpperCAmelCase_ , ) a : Dict = args a : int = glue_processors[args.task_name]() a : int = glue_output_modes[args.task_name] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): try: a : str = Split[mode] except KeyError: raise KeyError('mode is not a valid split name') # Load data features from cache or dataset file a : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) a : Tuple = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) a , a : str = label_list[2], label_list[1] a : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a : Union[str, Any] = cached_features_file + '.lock' with FileLock(UpperCAmelCase_): if os.path.exists(UpperCAmelCase_) and not args.overwrite_cache: a : Optional[Any] = time.time() a : Optional[Any] = torch.load(UpperCAmelCase_) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""") if mode == Split.dev: a : List[Any] = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: a : Optional[Any] = self.processor.get_test_examples(args.data_dir) else: a : List[str] = self.processor.get_train_examples(args.data_dir) if limit_length is not None: a : Dict = examples[:limit_length] a : List[Any] = glue_convert_examples_to_features( UpperCAmelCase_ , UpperCAmelCase_ , max_length=args.max_seq_length , label_list=UpperCAmelCase_ , output_mode=self.output_mode , ) a : Dict = time.time() torch.save(self.features , UpperCAmelCase_) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""") def __len__( self : Tuple): """simple docstring""" return len(self.features) def __getitem__( self : Optional[int] , UpperCAmelCase_ : List[str]): """simple docstring""" return self.features[i] def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return self.label_list
345
1
'''simple docstring''' from collections import namedtuple UpperCamelCase : Dict = namedtuple("""from_to""", """from_ to""") UpperCamelCase : Union[str, Any] = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.0_01, 1_000), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.0_04_54, 2_64.1_72), """cubicyard""": from_to(0.7_64_55, 1.3_07_95), """cubicfoot""": from_to(0.0_28, 35.31_47), """cup""": from_to(0.0_00_23_65_88, 42_26.75), } def SCREAMING_SNAKE_CASE__ ( snake_case : float , snake_case : str , snake_case : str ) -> float: """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ', '.join(snake_case ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ', '.join(snake_case ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
345
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : Dict = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Any = ["pixel_values"] def __init__( self : str , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : str = size if size is not None else {'shortest_edge': 2_5_6} a : Dict = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a : int = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Any = do_resize a : List[str] = size a : Union[str, Any] = resample a : int = do_center_crop a : Optional[int] = crop_size a : Tuple = do_rescale a : int = rescale_factor a : Optional[Any] = do_normalize a : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : Optional[int] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a : Union[str, Any] = get_resize_output_image_size(UpperCAmelCase_ , size=size['shortest_edge'] , default_to_square=UpperCAmelCase_) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : List[str] = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[str] , ): """simple docstring""" a : int = do_resize if do_resize is not None else self.do_resize a : int = size if size is not None else self.size a : Union[str, Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = resample if resample is not None else self.resample a : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop a : Union[str, Any] = crop_size if crop_size is not None else self.crop_size a : Dict = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : str = do_rescale if do_rescale is not None else self.do_rescale a : int = rescale_factor if rescale_factor is not None else self.rescale_factor a : str = do_normalize if do_normalize is not None else self.do_normalize a : List[str] = image_mean if image_mean is not None else self.image_mean a : Optional[int] = image_std if image_std is not None else self.image_std a : Dict = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a : List[Any] = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: a : Dict = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_) for image in images] if do_center_crop: a : Any = [self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_) for image in images] if do_rescale: a : Optional[int] = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_) for image in images] if do_normalize: a : Dict = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_) for image in images] a : List[Any] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : List[str] = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Tuple] = None): """simple docstring""" a : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_) != len(UpperCAmelCase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(UpperCAmelCase_): a : Optional[Any] = target_sizes.numpy() a : List[str] = [] for idx in range(len(UpperCAmelCase_)): a : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=UpperCAmelCase_) a : Union[str, Any] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(UpperCAmelCase_) else: a : Optional[int] = logits.argmax(dim=1) a : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
345
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" torch.manual_seed(0) a : Dict = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" torch.manual_seed(0) a : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" torch.manual_seed(0) a : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : int = self.dummy_uncond_unet a : Tuple = DDIMScheduler() a : Dict = self.dummy_vq_model a : str = LDMPipeline(unet=UpperCAmelCase_ , vqvae=UpperCAmelCase_ , scheduler=UpperCAmelCase_) ldm.to(UpperCAmelCase_) ldm.set_progress_bar_config(disable=UpperCAmelCase_) a : str = torch.manual_seed(0) a : Dict = ldm(generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='numpy').images a : Optional[Any] = torch.manual_seed(0) a : Union[str, Any] = ldm(generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='numpy' , return_dict=UpperCAmelCase_)[0] a : str = image[0, -3:, -3:, -1] a : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a : Dict = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72]) a : Union[str, Any] = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance @slow @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : str = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256') ldm.to(UpperCAmelCase_) ldm.set_progress_bar_config(disable=UpperCAmelCase_) a : Optional[Any] = torch.manual_seed(0) a : Union[str, Any] = ldm(generator=UpperCAmelCase_ , num_inference_steps=5 , output_type='numpy').images a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) a : Dict = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47]) a : Any = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
345
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : int | float | str , snake_case : int | float | str ) -> list[str]: """simple docstring""" if nth_term == "": return [""] a : Dict = int(snake_case ) a : Optional[int] = int(snake_case ) a : list[str] = [] for temp in range(int(snake_case ) ): series.append(F"""1 / {pow(temp + 1 , int(snake_case ) )}""" if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : Optional[int] = int(input("""Enter the last number (nth term) of the P-Series""")) UpperCamelCase : List[Any] = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
345
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase ( a_ ): """simple docstring""" A : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) A : List[Any] = "CIDAS/clipseg-rd64-refined" A : Optional[Any] = "image_segmenter" A : List[Any] = CLIPSegForImageSegmentation A : Tuple = ["image", "text"] A : Optional[int] = ["image"] def __init__( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(self , ['vision']) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : "Image" , UpperCAmelCase_ : str): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=UpperCAmelCase_ , return_tensors='pt') def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str): """simple docstring""" with torch.no_grad(): a : Union[str, Any] = self.model(**UpperCAmelCase_).logits return logits def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : int): """simple docstring""" a : int = outputs.cpu().detach().numpy() a : str = 0 a : str = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta))
345
'''simple docstring''' import torch def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" if torch.cuda.is_available(): a : int = torch.cuda.device_count() else: a : Any = 0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
345
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : str = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class UpperCamelCase ( a_ ): """simple docstring""" A : Any = "lilt" def __init__( self : List[Any] , UpperCAmelCase_ : Union[str, Any]=3_0_5_2_2 , UpperCAmelCase_ : str=7_6_8 , UpperCAmelCase_ : List[Any]=1_2 , UpperCAmelCase_ : Tuple=1_2 , UpperCAmelCase_ : Dict=3_0_7_2 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=5_1_2 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : str=1e-12 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Optional[Any]="absolute" , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : int=1_0_2_4 , **UpperCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) a : int = vocab_size a : List[Any] = hidden_size a : List[str] = num_hidden_layers a : List[str] = num_attention_heads a : Tuple = hidden_act a : List[Any] = intermediate_size a : Tuple = hidden_dropout_prob a : Optional[Any] = attention_probs_dropout_prob a : int = max_position_embeddings a : int = type_vocab_size a : int = initializer_range a : Union[str, Any] = layer_norm_eps a : Union[str, Any] = position_embedding_type a : Optional[int] = classifier_dropout a : int = channel_shrink_ratio a : Dict = max_ad_position_embeddings
345
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ UpperCamelCase : Optional[Any] = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ UpperCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple="auto" , UpperCAmelCase_ : Any=-1 , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : int=5_0_0 , UpperCAmelCase_ : int="gpt2-large" , UpperCAmelCase_ : Tuple=-1 , UpperCAmelCase_ : Dict=1_0_2_4 , UpperCAmelCase_ : List[str]=2_5 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=2_5 , ): """simple docstring""" a : List[str] = compute_mauve( p_text=UpperCAmelCase_ , q_text=UpperCAmelCase_ , p_features=UpperCAmelCase_ , q_features=UpperCAmelCase_ , p_tokens=UpperCAmelCase_ , q_tokens=UpperCAmelCase_ , num_buckets=UpperCAmelCase_ , pca_max_data=UpperCAmelCase_ , kmeans_explained_var=UpperCAmelCase_ , kmeans_num_redo=UpperCAmelCase_ , kmeans_max_iter=UpperCAmelCase_ , featurize_model_name=UpperCAmelCase_ , device_id=UpperCAmelCase_ , max_text_length=UpperCAmelCase_ , divergence_curve_discretization_size=UpperCAmelCase_ , mauve_scaling_factor=UpperCAmelCase_ , verbose=UpperCAmelCase_ , seed=UpperCAmelCase_ , ) return out
345
1
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase : """simple docstring""" def __init__( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]=1_3 , UpperCAmelCase_ : Union[str, Any]=3_0 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]=3_2 , UpperCAmelCase_ : List[Any]=5 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : int=3_7 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Tuple=1_0 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=2 , ): """simple docstring""" a : Optional[int] = parent a : Any = batch_size a : str = image_size a : List[Any] = patch_size a : Dict = num_channels a : List[str] = is_training a : Any = use_labels a : Union[str, Any] = hidden_size a : List[str] = num_hidden_layers a : List[str] = num_attention_heads a : Optional[Any] = intermediate_size a : str = hidden_act a : str = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : Optional[Any] = type_sequence_label_size a : Optional[Any] = initializer_range a : List[Any] = scope a : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) a : str = (image_size // patch_size) ** 2 a : Dict = num_patches + 2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a : List[Any] = None if self.use_labels: a : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : Tuple = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Optional[Any] = DeiTModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Tuple = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str]): """simple docstring""" a : int = DeiTForMaskedImageModeling(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images a : List[str] = 1 a : Tuple = DeiTForMaskedImageModeling(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : int = model(UpperCAmelCase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str]): """simple docstring""" a : List[str] = self.type_sequence_label_size a : Optional[int] = DeiTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a : List[Any] = 1 a : Union[str, Any] = DeiTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : int = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Dict = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ) : List[str] = config_and_inputs a : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : Tuple = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) A : Optional[int] = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) A : Union[str, Any] = False A : List[str] = False A : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Tuple = DeiTModelTester(self) a : int = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds') def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Any = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a , a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : int = model_class(UpperCAmelCase_) a : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Tuple = [*signature.parameters.keys()] a : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=False): """simple docstring""" a : int = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" if not self.model_tester.is_training: return a , a : str = self.model_tester.prepare_config_and_inputs_for_common() a : List[str] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCAmelCase_) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue a : Union[str, Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.train() a : Optional[Any] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) a : Optional[int] = model(**UpperCAmelCase_).loss loss.backward() def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a , a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a : Dict = False a : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(UpperCAmelCase_) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue a : Any = model_class(UpperCAmelCase_) model.gradient_checkpointing_enable() model.to(UpperCAmelCase_) model.train() a : Any = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) a : List[str] = model(**UpperCAmelCase_).loss loss.backward() def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a , a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() a : Union[str, Any] = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCAmelCase_), *get_values(UpperCAmelCase_), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type['title']}"""): a : List[Any] = problem_type['title'] a : Any = problem_type['num_labels'] a : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.train() a : Tuple = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) if problem_type["num_labels"] > 1: a : Optional[int] = inputs['labels'].unsqueeze(1).repeat(1 , problem_type['num_labels']) a : Any = inputs['labels'].to(problem_type['dtype']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCAmelCase_) as warning_list: a : int = model(**UpperCAmelCase_).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""") loss.backward() @slow def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = DeiTModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE__ ( ) -> Dict: """simple docstring""" a : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Optional[Any] = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224').to( UpperCAmelCase_) a : List[Any] = self.default_image_processor a : Dict = prepare_img() a : Union[str, Any] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : int = model(**UpperCAmelCase_) # verify the logits a : Optional[int] = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) a : Dict = torch.tensor([-1.02_66, 0.19_12, -1.28_61]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Optional[int] = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto') a : List[Any] = self.default_image_processor a : Any = prepare_img() a : Union[str, Any] = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : Union[str, Any] = inputs.pixel_values.to(UpperCAmelCase_) # forward pass to make sure inference works in fp16 with torch.no_grad(): a : Tuple = model(UpperCAmelCase_)
345
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : list[int | float] , snake_case : int , snake_case : int ) -> int | float: """simple docstring""" if len(snake_case ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(snake_case ) or left < -len(snake_case ) or right >= len(snake_case ) or right < -len(snake_case ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] a : Union[str, Any] = (left + right) >> 1 # the middle a : List[str] = find_max(snake_case , snake_case , snake_case ) # find max in range[left, mid] a : Dict = find_max(snake_case , mid + 1 , snake_case ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
345
1
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=1_3 , UpperCAmelCase_ : List[str]=3_0 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=3_2 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Dict=3_7 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=1_0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=2 , ): """simple docstring""" a : Any = parent a : Optional[int] = batch_size a : str = image_size a : str = patch_size a : List[Any] = num_channels a : Optional[int] = is_training a : Dict = use_labels a : Any = hidden_size a : Optional[int] = num_hidden_layers a : int = num_attention_heads a : int = intermediate_size a : Any = hidden_act a : Optional[int] = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : Dict = type_sequence_label_size a : Tuple = initializer_range a : List[str] = scope a : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[Any] = (image_size // patch_size) ** 2 a : str = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a : List[Any] = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict): """simple docstring""" a : int = ViTModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = ViTForMaskedImageModeling(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[Any] = model(UpperCAmelCase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images a : int = 1 a : Union[str, Any] = ViTForMaskedImageModeling(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : Optional[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any): """simple docstring""" a : str = self.type_sequence_label_size a : Tuple = ViTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a : List[Any] = 1 a : Union[str, Any] = ViTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ) : Tuple = config_and_inputs a : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : str = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) A : Optional[Any] = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) A : List[str] = True A : Optional[int] = False A : Dict = False A : Optional[int] = False def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : str = ViTModelTester(self) a : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(UpperCAmelCase_) a : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Dict = [*signature.parameters.keys()] a : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = ViTModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: """simple docstring""" a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Optional[Any] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(UpperCAmelCase_) a : List[Any] = self.default_image_processor a : List[str] = prepare_img() a : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : List[Any] = model(**UpperCAmelCase_) # verify the logits a : List[str] = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) a : Union[str, Any] = torch.tensor([-0.27_44, 0.82_15, -0.08_36]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[str] = ViTModel.from_pretrained('facebook/dino-vits8').to(UpperCAmelCase_) a : Any = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_8_0) a : int = prepare_img() a : List[str] = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : List[str] = inputs.pixel_values.to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : List[Any] = model(UpperCAmelCase_ , interpolate_pos_encoding=UpperCAmelCase_) # verify the logits a : Dict = torch.Size((1, 3_6_0_1, 3_8_4)) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_) a : str = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : str = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto') a : List[Any] = self.default_image_processor a : List[str] = prepare_img() a : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : Tuple = inputs.pixel_values.to(UpperCAmelCase_) # forward pass to make sure inference works in fp16 with torch.no_grad(): a : Tuple = model(UpperCAmelCase_)
345
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase : int = """true""" def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : int=82 , snake_case : Tuple=16 ) -> Union[str, Any]: """simple docstring""" set_seed(42 ) a : List[str] = RegressionModel() a : Union[str, Any] = deepcopy(snake_case ) a : Dict = RegressionDataset(length=snake_case ) a : Dict = DataLoader(snake_case , batch_size=snake_case ) model.to(accelerator.device ) a , a : Optional[int] = accelerator.prepare(snake_case , snake_case ) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( snake_case : Accelerator , snake_case : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" a : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) a : Any = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(snake_case : int ): a : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case , max_length=snake_case ) return outputs with accelerator.main_process_first(): a : Dict = dataset.map( snake_case , batched=snake_case , remove_columns=['idx', 'sentence1', 'sentence2'] , ) a : List[str] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case : Optional[Any] ): if use_longest: return tokenizer.pad(snake_case , padding='longest' , return_tensors='pt' ) return tokenizer.pad(snake_case , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(snake_case , shuffle=snake_case , collate_fn=snake_case , batch_size=16 ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" a : int = Accelerator(dispatch_batches=snake_case , split_batches=snake_case ) a : List[str] = get_dataloader(snake_case , not dispatch_batches ) a : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=snake_case ) a , a : Optional[Any] = accelerator.prepare(snake_case , snake_case ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" a : Dict = [] for batch in dataloader: a , a : Any = batch.values() with torch.no_grad(): a : Tuple = model(snake_case ) a , a : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) a , a : List[str] = [], [] for logit, targ in logits_and_targets: logits.append(snake_case ) targs.append(snake_case ) a , a : Any = torch.cat(snake_case ), torch.cat(snake_case ) return logits, targs def SCREAMING_SNAKE_CASE__ ( snake_case : Accelerator , snake_case : Dict=82 , snake_case : str=False , snake_case : List[str]=False , snake_case : List[Any]=16 ) -> Optional[int]: """simple docstring""" a , a , a : int = get_basic_setup(snake_case , snake_case , snake_case ) a , a : int = generate_predictions(snake_case , snake_case , snake_case ) assert ( len(snake_case ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case )}""" def SCREAMING_SNAKE_CASE__ ( snake_case : bool = False , snake_case : bool = False ) -> List[str]: """simple docstring""" a : int = evaluate.load('glue' , 'mrpc' ) a , a : Tuple = get_mrpc_setup(snake_case , snake_case ) # First do baseline a , a , a : Tuple = setup['no'] model.to(snake_case ) model.eval() for batch in dataloader: batch.to(snake_case ) with torch.inference_mode(): a : List[Any] = model(**snake_case ) a : Optional[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=snake_case , references=batch['labels'] ) a : Tuple = metric.compute() # Then do distributed a , a , a : Tuple = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): a : List[str] = model(**snake_case ) a : Optional[Any] = outputs.logits.argmax(dim=-1 ) a : Optional[int] = batch['labels'] a , a : Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=snake_case , references=snake_case ) a : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" a : Dict = Accelerator(split_batches=snake_case , dispatch_batches=snake_case ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(snake_case , snake_case ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: a : List[Any] = Accelerator(split_batches=snake_case , dispatch_batches=snake_case ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(snake_case , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) a : Optional[Any] = Accelerator() test_torch_metrics(snake_case , 512 ) accelerator.state._reset_state() def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] ) -> int: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
345
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase : Dict = get_tests_dir("""fixtures""") UpperCamelCase : Optional[Any] = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") UpperCamelCase : Any = get_tests_dir("""fixtures/dummy-config.json""") class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : List[Any] = 0 def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h') self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = AutoFeatureExtractor.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: a : Dict = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally a : List[Any] = AutoFeatureExtractor.from_pretrained(UpperCAmelCase_).to_dict() config_dict.pop('feature_extractor_type') a : Dict = WavaVecaFeatureExtractor(**UpperCAmelCase_) # save in new folder model_config.save_pretrained(UpperCAmelCase_) config.save_pretrained(UpperCAmelCase_) a : Union[str, Any] = AutoFeatureExtractor.from_pretrained(UpperCAmelCase_) # make sure private variable is not incorrectly saved a : Tuple = json.loads(config.to_json_string()) self.assertTrue('_processor_class' not in dict_as_saved) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : List[Any] = AutoFeatureExtractor.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , 'bert-base is not a local folder and is not a valid model identifier'): a : Dict = AutoFeatureExtractor.from_pretrained('bert-base') def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): a : Tuple = AutoFeatureExtractor.from_pretrained(UpperCAmelCase_ , revision='aaaaaa') def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): a : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model') def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" with self.assertRaises(UpperCAmelCase_): a : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor') # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_): a : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=UpperCAmelCase_) a : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=UpperCAmelCase_) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCAmelCase_) a : int = AutoFeatureExtractor.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor') def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" try: AutoConfig.register('custom' , UpperCAmelCase_) AutoFeatureExtractor.register(UpperCAmelCase_ , UpperCAmelCase_) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_): AutoFeatureExtractor.register(UpperCAmelCase_ , UpperCAmelCase_) # Now that the config is registered, it can be used as any other config with the auto-API a : Tuple = CustomFeatureExtractor.from_pretrained(UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCAmelCase_) a : Optional[Any] = AutoFeatureExtractor.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[Any] = True try: AutoConfig.register('custom' , UpperCAmelCase_) AutoFeatureExtractor.register(UpperCAmelCase_ , UpperCAmelCase_) # If remote code is not set, the default is to use local a : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor') self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') self.assertTrue(feature_extractor.is_local) # If remote code is disabled, we load the local one. a : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=UpperCAmelCase_) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') self.assertTrue(feature_extractor.is_local) # If remote is enabled, we load from the Hub a : str = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=UpperCAmelCase_) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') self.assertTrue(not hasattr(UpperCAmelCase_ , 'is_local')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
345
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = ["vqvae"] def __init__( self : List[str] , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Mel , UpperCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , mel=UpperCAmelCase_ , vqvae=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return 5_0 if isinstance(self.scheduler , UpperCAmelCase_) else 1_0_0_0 @torch.no_grad() def __call__( self : Dict , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = None , UpperCAmelCase_ : np.ndarray = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = None , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : Optional[Any]=True , ): """simple docstring""" a : Optional[Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase_) a : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: a : Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a : Dict = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCAmelCase_ , device=self.device , ) a : Tuple = noise a : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase_ , UpperCAmelCase_) a : List[Any] = self.mel.audio_slice_to_image(UpperCAmelCase_) a : str = np.frombuffer(input_image.tobytes() , dtype='uint8').reshape( (input_image.height, input_image.width)) a : List[str] = (input_image / 2_5_5) * 2 - 1 a : Any = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: a : List[Any] = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase_ , 0)).latent_dist.sample( generator=UpperCAmelCase_)[0] a : str = self.vqvae.config.scaling_factor * input_images if start_step > 0: a : Union[str, Any] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler.timesteps[start_step - 1]) a : Dict = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a : List[Any] = int(mask_start_secs * pixels_per_second) a : Optional[Any] = int(mask_end_secs * pixels_per_second) a : Optional[int] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , UpperCAmelCase_): a : Dict = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)['sample'] else: a : str = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] if isinstance(self.scheduler , UpperCAmelCase_): a : List[Any] = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] else: a : Any = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] if mask is not None: if mask_start > 0: a : str = mask[:, step, :, :mask_start] if mask_end > 0: a : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a : List[str] = 1 / self.vqvae.config.scaling_factor * images a : str = self.vqvae.decode(UpperCAmelCase_)['sample'] a : Tuple = (images / 2 + 0.5).clamp(0 , 1) a : Any = images.cpu().permute(0 , 2 , 3 , 1).numpy() a : List[str] = (images * 2_5_5).round().astype('uint8') a : Tuple = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase_ , mode='RGB').convert('L') for _ in images)) a : List[str] = [self.mel.image_to_audio(UpperCAmelCase_) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase_)[:, np.newaxis, :]) , **ImagePipelineOutput(UpperCAmelCase_)) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : List[Image.Image] , UpperCAmelCase_ : int = 5_0): """simple docstring""" assert isinstance(self.scheduler , UpperCAmelCase_) self.scheduler.set_timesteps(UpperCAmelCase_) a : Dict = np.array( [np.frombuffer(image.tobytes() , dtype='uint8').reshape((1, image.height, image.width)) for image in images]) a : Tuple = (sample / 2_5_5) * 2 - 1 a : int = torch.Tensor(UpperCAmelCase_).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): a : Optional[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a : Optional[Any] = self.scheduler.alphas_cumprod[t] a : List[Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a : List[str] = 1 - alpha_prod_t a : Optional[Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] a : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output a : Dict = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a : Union[str, Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : float): """simple docstring""" a : List[Any] = acos(torch.dot(torch.flatten(UpperCAmelCase_) , torch.flatten(UpperCAmelCase_)) / torch.norm(UpperCAmelCase_) / torch.norm(UpperCAmelCase_)) return sin((1 - alpha) * theta) * xa / sin(UpperCAmelCase_) + sin(alpha * theta) * xa / sin(UpperCAmelCase_)
345
1
'''simple docstring''' from typing import Any class UpperCamelCase : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase_ : Any): """simple docstring""" a : List[str] = data a : Optional[int] = None class UpperCamelCase : """simple docstring""" def __init__( self : Tuple): """simple docstring""" a : Tuple = None def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Tuple = self.head while temp is not None: print(temp.data , end=' ') a : List[Any] = temp.next print() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Any): """simple docstring""" a : str = Node(UpperCAmelCase_) a : Tuple = self.head a : Optional[int] = new_node def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" if node_data_a == node_data_a: return else: a : Optional[Any] = self.head while node_a is not None and node_a.data != node_data_a: a : str = node_a.next a : Dict = self.head while node_a is not None and node_a.data != node_data_a: a : Any = node_a.next if node_a is None or node_a is None: return a , a : str = node_a.data, node_a.data if __name__ == "__main__": UpperCamelCase : Union[str, Any] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
345
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=1_3 , UpperCAmelCase_ : List[str]=3_0 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=3_2 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Dict=3_7 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=1_0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=2 , ): """simple docstring""" a : Any = parent a : Optional[int] = batch_size a : str = image_size a : str = patch_size a : List[Any] = num_channels a : Optional[int] = is_training a : Dict = use_labels a : Any = hidden_size a : Optional[int] = num_hidden_layers a : int = num_attention_heads a : int = intermediate_size a : Any = hidden_act a : Optional[int] = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : Dict = type_sequence_label_size a : Tuple = initializer_range a : List[str] = scope a : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[Any] = (image_size // patch_size) ** 2 a : str = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a : List[Any] = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict): """simple docstring""" a : int = ViTModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = ViTForMaskedImageModeling(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[Any] = model(UpperCAmelCase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images a : int = 1 a : Union[str, Any] = ViTForMaskedImageModeling(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : Optional[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any): """simple docstring""" a : str = self.type_sequence_label_size a : Tuple = ViTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a : List[Any] = 1 a : Union[str, Any] = ViTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ) : Tuple = config_and_inputs a : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : str = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) A : Optional[Any] = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) A : List[str] = True A : Optional[int] = False A : Dict = False A : Optional[int] = False def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : str = ViTModelTester(self) a : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(UpperCAmelCase_) a : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Dict = [*signature.parameters.keys()] a : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = ViTModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: """simple docstring""" a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Optional[Any] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(UpperCAmelCase_) a : List[Any] = self.default_image_processor a : List[str] = prepare_img() a : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : List[Any] = model(**UpperCAmelCase_) # verify the logits a : List[str] = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) a : Union[str, Any] = torch.tensor([-0.27_44, 0.82_15, -0.08_36]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[str] = ViTModel.from_pretrained('facebook/dino-vits8').to(UpperCAmelCase_) a : Any = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_8_0) a : int = prepare_img() a : List[str] = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : List[str] = inputs.pixel_values.to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : List[Any] = model(UpperCAmelCase_ , interpolate_pos_encoding=UpperCAmelCase_) # verify the logits a : Dict = torch.Size((1, 3_6_0_1, 3_8_4)) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_) a : str = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : str = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto') a : List[Any] = self.default_image_processor a : List[str] = prepare_img() a : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : Tuple = inputs.pixel_values.to(UpperCAmelCase_) # forward pass to make sure inference works in fp16 with torch.no_grad(): a : Tuple = model(UpperCAmelCase_)
345
1
'''simple docstring''' import math class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Union[str, Any]=0): # a graph with Node 0,1,...,N-1 """simple docstring""" a : Any = n a : Optional[Any] = [ [math.inf for j in range(0 , UpperCAmelCase_)] for i in range(0 , UpperCAmelCase_) ] # adjacency matrix for weight a : Any = [ [math.inf for j in range(0 , UpperCAmelCase_)] for i in range(0 , UpperCAmelCase_) ] # dp[i][j] stores minimum distance from i to j def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int): """simple docstring""" a : Optional[int] = w def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" for k in range(0 , self.n): for i in range(0 , self.n): for j in range(0 , self.n): a : Dict = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j]) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any): """simple docstring""" return self.dp[u][v] if __name__ == "__main__": UpperCamelCase : Union[str, Any] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
345
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase ( a_ ): """simple docstring""" A : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) A : List[Any] = "CIDAS/clipseg-rd64-refined" A : Optional[Any] = "image_segmenter" A : List[Any] = CLIPSegForImageSegmentation A : Tuple = ["image", "text"] A : Optional[int] = ["image"] def __init__( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(self , ['vision']) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : "Image" , UpperCAmelCase_ : str): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=UpperCAmelCase_ , return_tensors='pt') def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str): """simple docstring""" with torch.no_grad(): a : Union[str, Any] = self.model(**UpperCAmelCase_).logits return logits def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : int): """simple docstring""" a : int = outputs.cpu().detach().numpy() a : str = 0 a : str = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta))
345
1
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version UpperCamelCase : Any = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize UpperCamelCase : int = """\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } """ UpperCamelCase : Any = """\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. """ UpperCamelCase : str = """ Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: 'meteor': meteor score. Examples: >>> meteor = datasets.load_metric('meteor') >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"] >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results[\"meteor\"], 4)) 0.6944 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : str): """simple docstring""" import nltk nltk.download('wordnet') if NLTK_VERSION >= version.Version('3.6.5'): nltk.download('punkt') if NLTK_VERSION >= version.Version('3.6.6'): nltk.download('omw-1.4') def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Optional[int]=0.5): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5'): a : Union[str, Any] = [ meteor_score.single_meteor_score( word_tokenize(UpperCAmelCase_) , word_tokenize(UpperCAmelCase_) , alpha=UpperCAmelCase_ , beta=UpperCAmelCase_ , gamma=UpperCAmelCase_) for ref, pred in zip(UpperCAmelCase_ , UpperCAmelCase_) ] else: a : Optional[int] = [ meteor_score.single_meteor_score(UpperCAmelCase_ , UpperCAmelCase_ , alpha=UpperCAmelCase_ , beta=UpperCAmelCase_ , gamma=UpperCAmelCase_) for ref, pred in zip(UpperCAmelCase_ , UpperCAmelCase_) ] return {"meteor": np.mean(UpperCAmelCase_)}
345
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( a_ , unittest.TestCase ): """simple docstring""" A : Union[str, Any] = CTRLTokenizer A : List[Any] = False A : Optional[Any] = False def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a : Dict = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] a : Tuple = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) a : Any = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] a : List[Any] = {'unk_token': '<unk>'} a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , **UpperCAmelCase_ : Dict): """simple docstring""" kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Any): """simple docstring""" a : List[str] = 'adapt react readapt apt' a : int = 'adapt react readapt apt' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : int = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) a : str = 'adapt react readapt apt' a : Optional[Any] = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() a : List[Any] = tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) a : Union[str, Any] = tokens + [tokenizer.unk_token] a : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
345
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : int | float | str , snake_case : int | float | str ) -> list[str]: """simple docstring""" if nth_term == "": return [""] a : Dict = int(snake_case ) a : Optional[int] = int(snake_case ) a : list[str] = [] for temp in range(int(snake_case ) ): series.append(F"""1 / {pow(temp + 1 , int(snake_case ) )}""" if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : Optional[int] = int(input("""Enter the last number (nth term) of the P-Series""")) UpperCamelCase : List[Any] = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
345
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
345
1
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Dict=False ) -> int: """simple docstring""" try: a : Tuple = os.environ[key] except KeyError: # KEY isn't set, default to `default`. a : str = default else: # KEY is set, convert it to True or False. try: a : List[str] = strtobool(snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value UpperCamelCase : str = parse_flag_from_env("""RUN_SLOW""", default=False) UpperCamelCase : Optional[int] = parse_flag_from_env("""RUN_REMOTE""", default=False) UpperCamelCase : Union[str, Any] = parse_flag_from_env("""RUN_LOCAL""", default=True) UpperCamelCase : List[Any] = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression UpperCamelCase : Tuple = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") UpperCamelCase : Tuple = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") UpperCamelCase : Union[str, Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio UpperCamelCase : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam UpperCamelCase : Dict = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility UpperCamelCase : Optional[Any] = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows UpperCamelCase : Dict = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple ) -> Optional[Any]: """simple docstring""" try: import faiss # noqa except ImportError: a : Dict = unittest.skip('test requires faiss' )(snake_case ) return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> List[Any]: """simple docstring""" try: import regex # noqa except ImportError: a : int = unittest.skip('test requires regex' )(snake_case ) return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" try: import elasticsearch # noqa except ImportError: a : List[Any] = unittest.skip('test requires elasticsearch' )(snake_case ) return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] ) -> Dict: """simple docstring""" try: import sqlalchemy # noqa except ImportError: a : Dict = unittest.skip('test requires sqlalchemy' )(snake_case ) return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[int]: """simple docstring""" if not config.TORCH_AVAILABLE: a : str = unittest.skip('test requires PyTorch' )(snake_case ) return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Tuple: """simple docstring""" if not config.TF_AVAILABLE: a : Tuple = unittest.skip('test requires TensorFlow' )(snake_case ) return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if not config.JAX_AVAILABLE: a : Optional[Any] = unittest.skip('test requires JAX' )(snake_case ) return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> Dict: """simple docstring""" if not config.PIL_AVAILABLE: a : str = unittest.skip('test requires Pillow' )(snake_case ) return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple ) -> str: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(snake_case ) else: return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> List[str]: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(snake_case ) else: return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple ) -> List[Any]: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(snake_case ) else: return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : Dict ) -> Union[str, Any]: """simple docstring""" def _require_spacy_model(snake_case : Optional[int] ): try: import spacy # noqa F401 spacy.load(snake_case ) except ImportError: return unittest.skip('test requires spacy' )(snake_case ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(snake_case ) )(snake_case ) else: return test_case return _require_spacy_model def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(snake_case ) else: return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] ) -> Dict: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(snake_case ) else: return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> List[str]: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: a : List[Any] = unittest.skip('test is slow' )(snake_case ) return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] ) -> Tuple: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: a : Dict = unittest.skip('test is local' )(snake_case ) return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> int: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: a : Optional[Any] = unittest.skip('test is packaged' )(snake_case ) return test_case def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] ) -> Dict: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: a : Union[str, Any] = unittest.skip('test requires remote' )(snake_case ) return test_case def SCREAMING_SNAKE_CASE__ ( *snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" def decorate(cls : Optional[int] ): for name, fn in cls.__dict__.items(): if callable(snake_case ) and name.startswith('test' ): for decorator in decorators: a : Tuple = decorator(snake_case ) setattr(cls , snake_case , snake_case ) return cls return decorate class UpperCamelCase ( a_ ): """simple docstring""" pass class UpperCamelCase ( a_ ): """simple docstring""" A : List[str] = 0 A : Optional[int] = 1 A : Tuple = 2 @contextmanager def SCREAMING_SNAKE_CASE__ ( snake_case : List[str]=OfflineSimulationMode.CONNECTION_FAILS , snake_case : List[Any]=1E-1_6 ) -> Dict: """simple docstring""" a : List[Any] = requests.Session().request def timeout_request(snake_case : Optional[int] , snake_case : Tuple , snake_case : List[Any] , **snake_case : Optional[int] ): # Change the url to an invalid url so that the connection hangs a : List[str] = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) a : Any = timeout try: return online_request(snake_case , snake_case , **snake_case ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier a : str = url a : Union[str, Any] = e.args[0] a : Dict = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) a : Tuple = (max_retry_error,) raise def raise_connection_error(snake_case : Union[str, Any] , snake_case : Optional[Any] , **snake_case : Any ): raise requests.ConnectionError('Offline mode is enabled.' , request=snake_case ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , snake_case ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , snake_case ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , snake_case ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def SCREAMING_SNAKE_CASE__ ( *snake_case : Union[str, Any] , **snake_case : int ) -> Any: """simple docstring""" a : str = str(Path().resolve() ) with tempfile.TemporaryDirectory(*snake_case , **snake_case ) as tmp_dir: try: os.chdir(snake_case ) yield finally: os.chdir(snake_case ) @contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" import gc gc.collect() a : List[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: """simple docstring""" import gc gc.collect() a : List[str] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Tuple ) -> List[str]: """simple docstring""" return deepcopy(snake_case ).integers(0 , 100 , 10 ).tolist() == deepcopy(snake_case ).integers(0 , 100 , 10 ).tolist() def SCREAMING_SNAKE_CASE__ ( snake_case : Any ) -> Any: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(snake_case : Tuple , *snake_case : Tuple , **snake_case : str ): try: return func(*snake_case , **snake_case ) except HTTPError as err: if str(snake_case ).startswith('500' ) or str(snake_case ).startswith('502' ): pytest.xfail(str(snake_case ) ) raise err return decorator.decorator(_wrapper , snake_case ) class UpperCamelCase : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Optional[int] = returncode a : Optional[Any] = stdout a : Dict = stderr async def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : List[Any] ) -> Any: """simple docstring""" while True: a : Tuple = await stream.readline() if line: callback(snake_case ) else: break async def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : int=None , snake_case : Union[str, Any]=None , snake_case : Optional[Any]=None , snake_case : Optional[int]=False , snake_case : Optional[int]=False ) -> _RunOutput: """simple docstring""" if echo: print('\nRunning: ' , ' '.join(snake_case ) ) a : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) a : int = [] a : List[str] = [] def tee(snake_case : int , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : List[str]="" ): a : Any = line.decode('utf-8' ).rstrip() sink.append(snake_case ) if not quiet: print(snake_case , snake_case , file=snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda snake_case : tee(snake_case , snake_case , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda snake_case : tee(snake_case , snake_case , sys.stderr , label='stderr:' ) ), ] , timeout=snake_case , ) return _RunOutput(await p.wait() , snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Union[str, Any]=None , snake_case : List[Any]=None , snake_case : Dict=180 , snake_case : List[Any]=False , snake_case : Union[str, Any]=True ) -> _RunOutput: """simple docstring""" a : Union[str, Any] = asyncio.get_event_loop() a : Tuple = loop.run_until_complete( _stream_subprocess(snake_case , env=snake_case , stdin=snake_case , timeout=snake_case , quiet=snake_case , echo=snake_case ) ) a : Optional[int] = ' '.join(snake_case ) if result.returncode > 0: a : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: """simple docstring""" a : Union[str, Any] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) a : List[str] = re.sub(R'^gw' , '' , snake_case , 0 , re.M ) return int(snake_case ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" a : List[Any] = 29_500 a : int = pytest_xdist_worker_id() return port + uniq_delta
345
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase : int = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = ["pixel_values"] def __init__( self : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : List[str] = size if size is not None else {'shortest_edge': 2_2_4} a : str = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a : int = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Any = do_resize a : Dict = size a : Optional[Any] = resample a : List[Any] = do_center_crop a : List[Any] = crop_size a : Optional[Any] = do_rescale a : Dict = rescale_factor a : Tuple = do_normalize a : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ): """simple docstring""" a : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: a : int = int((2_5_6 / 2_2_4) * size['shortest_edge']) a : Optional[int] = get_resize_output_image_size(UpperCAmelCase_ , size=UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : Optional[Any] = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""") return resize( UpperCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ): """simple docstring""" a : str = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , UpperCAmelCase_ : Optional[TensorType] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : int = do_resize if do_resize is not None else self.do_resize a : Optional[int] = resample if resample is not None else self.resample a : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop a : Tuple = do_rescale if do_rescale is not None else self.do_rescale a : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor a : Dict = do_normalize if do_normalize is not None else self.do_normalize a : Tuple = image_mean if image_mean is not None else self.image_mean a : int = image_std if image_std is not None else self.image_std a : Optional[int] = size if size is not None else self.size a : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : List[Any] = crop_size if crop_size is not None else self.crop_size a : str = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Dict = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a : Any = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: a : Optional[int] = [self.resize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_center_crop: a : int = [self.center_crop(UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_rescale: a : Any = [self.rescale(UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_normalize: a : str = [self.normalize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : Optional[int] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : Optional[int] = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
345
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( a_ , unittest.TestCase ): """simple docstring""" A : Optional[Any] = LEDTokenizer A : str = LEDTokenizerFast A : Optional[Any] = True def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" super().setUp() a : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] a : Union[str, Any] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) a : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a : Any = {'unk_token': '<unk>'} a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , **UpperCAmelCase_ : Optional[int]): """simple docstring""" kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" return "lower newer", "lower newer" @cached_property def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" return LEDTokenizer.from_pretrained('allenai/led-base-16384') @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" return LEDTokenizerFast.from_pretrained('allenai/led-base-16384') @require_torch def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] a : List[str] = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a : List[str] = tokenizer(UpperCAmelCase_ , max_length=len(UpperCAmelCase_) , padding=UpperCAmelCase_ , return_tensors='pt') self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) a : int = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a : List[Any] = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors='pt') self.assertIn('input_ids' , UpperCAmelCase_) self.assertIn('attention_mask' , UpperCAmelCase_) self.assertNotIn('labels' , UpperCAmelCase_) self.assertNotIn('decoder_attention_mask' , UpperCAmelCase_) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : str = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a : Dict = tokenizer(text_target=UpperCAmelCase_ , max_length=3_2 , padding='max_length' , return_tensors='pt') self.assertEqual(3_2 , targets['input_ids'].shape[1]) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a : Any = tokenizer( ['I am a small frog' * 1_0_2_4, 'I am a small frog'] , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors='pt') self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2)) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Union[str, Any] = ['A long paragraph for summarization.'] a : List[Any] = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a : Optional[Any] = tokenizer(UpperCAmelCase_ , return_tensors='pt') a : Any = tokenizer(text_target=UpperCAmelCase_ , return_tensors='pt') a : Dict = inputs['input_ids'] a : Optional[int] = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a : Any = ['Summary of the text.', 'Another summary.'] a : Tuple = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] a : Dict = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_) a : int = [[0] * len(UpperCAmelCase_) for x in encoded_output['input_ids']] a : Optional[Any] = tokenizer.pad(UpperCAmelCase_) self.assertSequenceEqual(outputs['global_attention_mask'] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""): a : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) a : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) a : int = 'A, <mask> AllenNLP sentence.' a : Any = tokenizer_r.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_) a : int = tokenizer_p.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_) self.assertEqual(sum(tokens_r['token_type_ids']) , sum(tokens_p['token_type_ids'])) self.assertEqual( sum(tokens_r['attention_mask']) / len(tokens_r['attention_mask']) , sum(tokens_p['attention_mask']) / len(tokens_p['attention_mask']) , ) a : str = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids']) a : Any = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids']) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2]) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2]) self.assertSequenceEqual( UpperCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>']) self.assertSequenceEqual( UpperCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'])
345
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : float | Decimal , snake_case : float = 10**-10 ) -> float: """simple docstring""" a : Dict = a while True: a : Any = Decimal(snake_case ) - ( Decimal(eval(snake_case ) ) / Decimal(eval(str(diff(snake_case ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case ) ) < precision: # noqa: S307 return float(snake_case ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
345
1
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 UpperCamelCase : List[Any] = { # 1536-bit 5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 2048-bit 14: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 3072-bit 15: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 4096-bit 16: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 6144-bit 17: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 8192-bit 18: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, } class UpperCamelCase : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase_ : int = 1_4): """simple docstring""" if group not in primes: raise ValueError('Unsupported Group') a : List[Any] = primes[group]['prime'] a : List[Any] = primes[group]['generator'] a : Tuple = int(hexlify(urandom(3_2)) , base=1_6) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return hex(self.__private_key)[2:] def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : List[Any] = pow(self.generator , self.__private_key , self.prime) return hex(UpperCAmelCase_)[2:] def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : int): """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(UpperCAmelCase_ , (self.prime - 1) // 2 , self.prime) == 1 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str): """simple docstring""" a : Dict = int(UpperCAmelCase_ , base=1_6) if not self.is_valid_public_key(UpperCAmelCase_): raise ValueError('Invalid public key') a : List[str] = pow(UpperCAmelCase_ , self.__private_key , self.prime) return shaaaa(str(UpperCAmelCase_).encode()).hexdigest() @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int): """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(UpperCAmelCase_ , (prime - 1) // 2 , UpperCAmelCase_) == 1 ) @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 1_4): """simple docstring""" a : int = int(UpperCAmelCase_ , base=1_6) a : str = int(UpperCAmelCase_ , base=1_6) a : Any = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(UpperCAmelCase_ , UpperCAmelCase_): raise ValueError('Invalid public key') a : Optional[Any] = pow(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return shaaaa(str(UpperCAmelCase_).encode()).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
345
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=1_3 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=9_9 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : int=3_2 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int="last" , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=0 , ): """simple docstring""" a : Tuple = parent a : Optional[Any] = batch_size a : Tuple = seq_length a : Union[str, Any] = is_training a : List[str] = use_input_lengths a : Union[str, Any] = use_token_type_ids a : Optional[int] = use_labels a : int = gelu_activation a : Dict = sinusoidal_embeddings a : Any = causal a : Optional[int] = asm a : int = n_langs a : List[str] = vocab_size a : List[str] = n_special a : List[str] = hidden_size a : Any = num_hidden_layers a : Union[str, Any] = num_attention_heads a : Optional[Any] = hidden_dropout_prob a : str = attention_probs_dropout_prob a : Dict = max_position_embeddings a : Union[str, Any] = type_sequence_label_size a : str = initializer_range a : List[Any] = num_labels a : Union[str, Any] = num_choices a : Optional[Any] = summary_type a : Optional[Any] = use_proj a : Optional[Any] = scope a : Dict = bos_token_id def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) a : Optional[int] = None if self.use_input_lengths: a : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a : int = None if self.use_token_type_ids: a : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a : Optional[Any] = None a : Tuple = None a : Optional[Any] = None if self.use_labels: a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : Optional[Any] = ids_tensor([self.batch_size] , 2).float() a : Dict = ids_tensor([self.batch_size] , self.num_choices) a : Any = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Any = XLMModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_ , lengths=UpperCAmelCase_ , langs=UpperCAmelCase_) a : str = model(UpperCAmelCase_ , langs=UpperCAmelCase_) a : int = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , ): """simple docstring""" a : Optional[Any] = XLMWithLMHeadModel(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : Union[str, Any] = XLMForQuestionAnsweringSimple(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[str] = model(UpperCAmelCase_) a : Tuple = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) a : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , ): """simple docstring""" a : Any = XLMForQuestionAnswering(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_) a : Dict = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , p_mask=UpperCAmelCase_ , ) a : int = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , ) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() a : int = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) ((a) , ) : Union[str, Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , ): """simple docstring""" a : Dict = XLMForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_) a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , ): """simple docstring""" a : Dict = self.num_labels a : int = XLMForTokenClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , ): """simple docstring""" a : str = self.num_choices a : Dict = XLMForMultipleChoice(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : str = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Any = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : int = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Union[str, Any] = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" A : int = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A : Optional[Any] = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=False): """simple docstring""" a : List[Any] = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": a : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) a : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[Any] = XLMModelTester(self) a : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , emb_dim=3_7) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_attentions in attentions] , [True] * len(UpperCAmelCase_)) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(UpperCAmelCase_): # adds PAD dummy token a : List[str] = min_length + idx + 1 a : Optional[Any] = min_length + idx + 1 a : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Union[str, Any]=1): """simple docstring""" self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual( [isinstance(UpperCAmelCase_ , UpperCAmelCase_) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase_) , ) self.assertEqual(len(UpperCAmelCase_) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(UpperCAmelCase_): # adds PAD dummy token a : int = min_length + idx + 1 a : Any = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase_) , ) pass @slow def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Union[str, Any] = XLMModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(UpperCAmelCase_) a : List[Any] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase_) # the president a : Dict = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference a : Optional[Any] = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase_)
345
1
'''simple docstring''' from math import pow def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int , snake_case : int , snake_case : int , snake_case : int , ) -> tuple[int, int]: """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count a : Dict = int(pow(snake_case , snake_case ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n a , a : List[str] = backtrack( snake_case , snake_case , current_number + 1 , snake_case , snake_case ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. a , a : Union[str, Any] = backtrack( snake_case , snake_case , current_number + 1 , snake_case , snake_case ) return current_sum, solutions_count def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> int: """simple docstring""" if not (1 <= needed_sum <= 1_000 and 2 <= power <= 10): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(snake_case , snake_case , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
345
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase : List[str] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase : List[str] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Tuple = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
1
'''simple docstring''' import math import os import sys def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> str: """simple docstring""" a : int = '' try: with open(snake_case , 'rb' ) as binary_file: a : Union[str, Any] = binary_file.read() for dat in data: a : Optional[int] = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def SCREAMING_SNAKE_CASE__ ( snake_case : dict[str, str] , snake_case : str , snake_case : int , snake_case : str ) -> None: """simple docstring""" lexicon.pop(snake_case ) a : str = last_match_id if math.loga(snake_case ).is_integer(): for curr_key in lexicon: a : Optional[Any] = '0' + lexicon[curr_key] a : Optional[Any] = bin(snake_case )[2:] def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> str: """simple docstring""" a : List[Any] = {'0': '0', '1': '1'} a , a : Optional[Any] = '', '' a : Dict = len(snake_case ) for i in range(len(snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue a : int = lexicon[curr_string] result += last_match_id add_key_to_lexicon(snake_case , snake_case , snake_case , snake_case ) index += 1 a : str = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": a : Dict = lexicon[curr_string] result += last_match_id return result def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str ) -> str: """simple docstring""" a : List[Any] = os.path.getsize(snake_case ) a : List[str] = bin(snake_case )[2:] a : Tuple = len(snake_case ) return "0" * (length_length - 1) + file_length_binary + compressed def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str ) -> None: """simple docstring""" a : Union[str, Any] = 8 try: with open(snake_case , 'wb' ) as opened_file: a : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case ) , snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(snake_case , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str ) -> None: """simple docstring""" a : List[Any] = read_file_binary(snake_case ) a : Optional[Any] = compress_data(snake_case ) a : str = add_file_length(snake_case , snake_case ) write_file_binary(snake_case , snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
345
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = "data2vec-audio" def __init__( self : Dict , UpperCAmelCase_ : Optional[int]=3_2 , UpperCAmelCase_ : Union[str, Any]=7_6_8 , UpperCAmelCase_ : Dict=1_2 , UpperCAmelCase_ : str=1_2 , UpperCAmelCase_ : Optional[Any]=3_0_7_2 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : str=1e-5 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase_ : Dict=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : int=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=1_6 , UpperCAmelCase_ : Optional[Any]=1_9 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=0.05 , UpperCAmelCase_ : Dict=1_0 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Tuple=1_0 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Any="sum" , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=2_5_6 , UpperCAmelCase_ : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase_ : Optional[Any]=(5, 3, 3, 1, 1) , UpperCAmelCase_ : Optional[int]=(1, 2, 3, 1, 1) , UpperCAmelCase_ : int=5_1_2 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : int , ): """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) a : List[Any] = hidden_size a : Any = feat_extract_activation a : Any = list(UpperCAmelCase_) a : Optional[int] = list(UpperCAmelCase_) a : Dict = list(UpperCAmelCase_) a : Tuple = conv_bias a : str = num_conv_pos_embeddings a : Dict = num_conv_pos_embedding_groups a : Optional[Any] = conv_pos_kernel_size a : Any = len(self.conv_dim) a : Tuple = num_hidden_layers a : Any = intermediate_size a : Any = hidden_act a : Dict = num_attention_heads a : Dict = hidden_dropout a : Union[str, Any] = attention_dropout a : Dict = activation_dropout a : Optional[int] = feat_proj_dropout a : Tuple = final_dropout a : Union[str, Any] = layerdrop a : Tuple = layer_norm_eps a : Dict = initializer_range a : Tuple = vocab_size a : int = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a : List[str] = mask_time_prob a : int = mask_time_length a : Optional[int] = mask_time_min_masks a : Dict = mask_feature_prob a : List[str] = mask_feature_length a : str = mask_feature_min_masks # ctc loss a : str = ctc_loss_reduction a : Optional[Any] = ctc_zero_infinity # adapter a : List[str] = add_adapter a : Optional[Any] = adapter_kernel_size a : int = adapter_stride a : str = num_adapter_layers a : Optional[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a : List[Any] = list(UpperCAmelCase_) a : List[str] = list(UpperCAmelCase_) a : str = list(UpperCAmelCase_) a : Optional[Any] = xvector_output_dim @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return math.prod(self.conv_stride)
345
1
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel UpperCamelCase : Optional[int] = { """gwf-440k""": { """url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""", """sample_rate""": 48_000, """sample_size""": 65_536, }, """jmann-small-190k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""", """sample_rate""": 48_000, """sample_size""": 65_536, }, """jmann-large-580k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""", """sample_rate""": 48_000, """sample_size""": 131_072, }, """maestro-uncond-150k""": { """url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""", """sample_rate""": 16_000, """sample_size""": 65_536, }, """unlocked-uncond-250k""": { """url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""", """sample_rate""": 16_000, """sample_size""": 65_536, }, """honk-140k""": { """url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""", """sample_rate""": 16_000, """sample_size""": 65_536, }, } def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Union[str, Any] ) -> int: """simple docstring""" return torch.atana(snake_case , snake_case ) / math.pi * 2 def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[int]: """simple docstring""" a : int = torch.sin(t * math.pi / 2 ) ** 2 a : Any = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(snake_case , snake_case ) class UpperCamelCase ( a_ ): """simple docstring""" pass class UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase_ : int): """simple docstring""" super().__init__() a : int = DiffusionAttnUnetaD(UpperCAmelCase_ , n_attn_layers=4) a : Union[str, Any] = deepcopy(self.diffusion) a : Tuple = torch.quasirandom.SobolEngine(1 , scramble=UpperCAmelCase_) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] ) -> List[str]: """simple docstring""" a : Optional[Any] = MODELS_MAP[model_name]['url'] os.system(F"""wget {url} ./""" ) return F"""./{model_name}.ckpt""" UpperCamelCase : Tuple = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", } UpperCamelCase : str = { """8""": """resnets.0""", """9""": """attentions.0""", """10""": """resnets.1""", """11""": """attentions.1""", """12""": """resnets.2""", """13""": """attentions.2""", } UpperCamelCase : Optional[int] = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", """8""": """resnets.3""", """9""": """attentions.3""", """10""": """resnets.4""", """11""": """attentions.4""", """12""": """resnets.5""", """13""": """attentions.5""", } UpperCamelCase : List[Any] = { """0""": """resnets.0""", """1""": """resnets.1""", """2""": """resnets.2""", """4""": """resnets.0""", """5""": """resnets.1""", """6""": """resnets.2""", } UpperCamelCase : Union[str, Any] = { """skip""": """conv_skip""", """main.0""": """conv_1""", """main.1""": """group_norm_1""", """main.3""": """conv_2""", """main.4""": """group_norm_2""", } UpperCamelCase : List[str] = { """norm""": """group_norm""", """qkv_proj""": ["""query""", """key""", """value"""], """out_proj""": ["""proj_attn"""], } def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] ) -> List[str]: """simple docstring""" if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(F"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] ) -> int: """simple docstring""" for key, value in ATTN_MAP.items(): if name.startswith(snake_case ) and not isinstance(snake_case , snake_case ): return name.replace(snake_case , snake_case ) elif name.startswith(snake_case ): return [name.replace(snake_case , snake_case ) for v in value] raise ValueError(F"""Attn error with {name}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : Tuple=13 ) -> Any: """simple docstring""" a : str = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) a : Dict = 0 if string.startswith('net.3.' ): depth += 1 a : Any = string[6:] elif string.startswith('net.' ): a : Optional[int] = string[4:] while string.startswith('main.7.' ): depth += 1 a : str = string[7:] if string.startswith('main.' ): a : Optional[Any] = string[5:] # mid block if string[:2].isdigit(): a : Tuple = string[:2] a : int = string[2:] else: a : Any = string[0] a : str = string[1:] if depth == max_depth: a : str = MID_NUM_TO_LAYER[layer_num] a : int = 'mid_block' elif depth > 0 and int(snake_case ) < 7: a : int = DOWN_NUM_TO_LAYER[layer_num] a : Optional[Any] = F"""down_blocks.{depth}""" elif depth > 0 and int(snake_case ) > 7: a : Any = UP_NUM_TO_LAYER[layer_num] a : Any = F"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: a : List[str] = DEPTH_0_TO_LAYER[layer_num] a : List[Any] = F"""up_blocks.{max_depth - 1}""" if int(snake_case ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" ) a : Optional[int] = string_left[1:] if "resnets" in new_layer: a : int = convert_resconv_naming(snake_case ) elif "attentions" in new_layer: a : Any = convert_attn_naming(snake_case ) a : int = new_string_left if not isinstance(snake_case , snake_case ): a : Tuple = prefix + '.' + new_layer + '.' + string_left else: a : List[Any] = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[Any]: """simple docstring""" a : int = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue a : List[Any] = rename(snake_case ) # check if we need to transform from Conv => Linear for attention if isinstance(snake_case , snake_case ): a : Any = transform_conv_attns(snake_case , snake_case , snake_case ) else: a : Dict = v return new_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[int] ) -> str: """simple docstring""" if len(snake_case ) == 1: if len(v.shape ) == 3: # weight a : int = v[:, :, 0] else: # bias a : List[str] = v else: # qkv matrices a : Any = v.shape[0] a : Tuple = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: a : Tuple = v[i * single_shape : (i + 1) * single_shape, :, 0] else: a : str = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] ) -> Dict: """simple docstring""" a : List[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) a : Any = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" a : Any = download(snake_case ) a : List[str] = MODELS_MAP[model_name]['sample_rate'] a : Optional[int] = MODELS_MAP[model_name]['sample_size'] a : Union[str, Any] = Object() a : Any = sample_size a : Dict = sample_rate a : Dict = 0 a : List[str] = UNetaDModel(sample_size=snake_case , sample_rate=snake_case ) a : Any = diffusers_model.state_dict() a : Tuple = DiffusionUncond(snake_case ) orig_model.load_state_dict(torch.load(args.model_path , map_location=snake_case )['state_dict'] ) a : int = orig_model.diffusion_ema.eval() a : Tuple = orig_model.state_dict() a : Optional[Any] = rename_orig_weights(snake_case ) a : Tuple = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) a : Tuple = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(snake_case ) == 0, F"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(snake_case ) ), F"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": a : str = value.squeeze() a : Optional[int] = value diffusers_model.load_state_dict(snake_case ) a : Union[str, Any] = 100 a : Dict = 33 a : str = IPNDMScheduler(num_train_timesteps=snake_case ) a : List[Any] = torch.manual_seed(snake_case ) a : List[str] = torch.randn([1, 2, config.sample_size] , generator=snake_case ).to(snake_case ) a : int = torch.linspace(1 , 0 , steps + 1 , device=snake_case )[:-1] a : Tuple = get_crash_schedule(snake_case ) a : Union[str, Any] = DanceDiffusionPipeline(unet=snake_case , scheduler=snake_case ) a : Optional[Any] = torch.manual_seed(33 ) a : Optional[Any] = pipe(num_inference_steps=snake_case , generator=snake_case ).audios a : Union[str, Any] = sampling.iplms_sample(snake_case , snake_case , snake_case , {} ) a : Union[str, Any] = generated.clamp(-1 , 1 ) a : Tuple = (generated - audio).abs().sum() a : str = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , snake_case ) print('Diff max' , snake_case ) assert diff_max < 1E-3, F"""Diff max: {diff_max} is too much :-/""" print(F"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") UpperCamelCase : int = parser.parse_args() main(args)
345
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase : Optional[Any] = logging.getLogger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = "masked_bert" def __init__( self : Tuple , UpperCAmelCase_ : List[Any]=3_0_5_2_2 , UpperCAmelCase_ : str=7_6_8 , UpperCAmelCase_ : Optional[Any]=1_2 , UpperCAmelCase_ : Optional[int]=1_2 , UpperCAmelCase_ : Union[str, Any]=3_0_7_2 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[Any]=1e-12 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Dict="topK" , UpperCAmelCase_ : str="constant" , UpperCAmelCase_ : Optional[Any]=0.0 , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) a : Union[str, Any] = vocab_size a : List[Any] = hidden_size a : List[str] = num_hidden_layers a : Any = num_attention_heads a : Optional[Any] = hidden_act a : str = intermediate_size a : Dict = hidden_dropout_prob a : Any = attention_probs_dropout_prob a : Any = max_position_embeddings a : Dict = type_vocab_size a : List[str] = initializer_range a : int = layer_norm_eps a : Dict = pruning_method a : List[str] = mask_init a : Union[str, Any] = mask_scale
345
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : list , snake_case : int , snake_case : int = 0 , snake_case : int = 0 ) -> int: """simple docstring""" a : int = right or len(snake_case ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(snake_case , snake_case , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
345
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any): """simple docstring""" super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) a : str = {} def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int): """simple docstring""" a : Dict = super().add_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.') def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=1 , **UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Any = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) else: a : int = [] for i in range(UpperCAmelCase_): a : Union[str, Any] = placeholder_token + f"""_{i}""" self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""") a : Any = output def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=1.0): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): a : Any = [] for i in range(len(UpperCAmelCase_)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCAmelCase_)) return output for placeholder_token in self.token_map: if placeholder_token in text: a : List[Any] = self.token_map[placeholder_token] a : int = tokens[: 1 + int(len(UpperCAmelCase_) * prop_tokens_to_load)] if vector_shuffle: a : List[Any] = copy.copy(UpperCAmelCase_) random.shuffle(UpperCAmelCase_) a : List[str] = text.replace(UpperCAmelCase_ , ' '.join(UpperCAmelCase_)) return text def __call__( self : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[int]=1.0 , **UpperCAmelCase_ : str): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1.0 , **UpperCAmelCase_ : Dict): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , )
345
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
345
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[Any]: """simple docstring""" a : Union[str, Any] = SwinConfig() a : Optional[int] = swin_name.split('_' ) a : Union[str, Any] = name_split[1] a : Dict = int(name_split[4] ) a : Union[str, Any] = int(name_split[3][-1] ) if model_size == "tiny": a : Optional[Any] = 96 a : Any = (2, 2, 6, 2) a : List[str] = (3, 6, 12, 24) elif model_size == "small": a : int = 96 a : List[str] = (2, 2, 18, 2) a : int = (3, 6, 12, 24) elif model_size == "base": a : Tuple = 128 a : Optional[int] = (2, 2, 18, 2) a : List[Any] = (4, 8, 16, 32) else: a : Dict = 192 a : str = (2, 2, 18, 2) a : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: a : Any = 21_841 else: a : str = 1_000 a : str = 'huggingface/label-files' a : Optional[Any] = 'imagenet-1k-id2label.json' a : Dict = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) a : Tuple = {int(snake_case ): v for k, v in idalabel.items()} a : int = idalabel a : str = {v: k for k, v in idalabel.items()} a : Dict = img_size a : List[Any] = num_classes a : str = embed_dim a : Dict = depths a : Union[str, Any] = num_heads a : int = window_size return config def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[int]: """simple docstring""" if "patch_embed.proj" in name: a : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a : Tuple = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a : Optional[int] = 'encoder.' + name if "attn.proj" in name: a : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: a : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a : Any = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": a : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": a : List[str] = 'layernorm.bias' if "head" in name: a : Union[str, Any] = name.replace('head' , 'classifier' ) else: a : List[Any] = 'swin.' + name return name def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): a : Any = orig_state_dict.pop(snake_case ) if "mask" in key: continue elif "qkv" in key: a : Optional[Any] = key.split('.' ) a : Dict = int(key_split[1] ) a : Optional[int] = int(key_split[3] ) a : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a : Optional[Any] = val[:dim, :] a : List[Any] = val[ dim : dim * 2, : ] a : List[Any] = val[-dim:, :] else: a : Dict = val[ :dim ] a : Union[str, Any] = val[ dim : dim * 2 ] a : Union[str, Any] = val[ -dim: ] else: a : Dict = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Dict ) -> List[str]: """simple docstring""" a : Any = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() a : str = get_swin_config(snake_case ) a : Optional[int] = SwinForImageClassification(snake_case ) model.eval() a : Union[str, Any] = convert_state_dict(timm_model.state_dict() , snake_case ) model.load_state_dict(snake_case ) a : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) a : str = Image.open(requests.get(snake_case , stream=snake_case ).raw ) a : Union[str, Any] = image_processor(images=snake_case , return_tensors='pt' ) a : int = timm_model(inputs['pixel_values'] ) a : Optional[int] = model(**snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCamelCase : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
345
1
'''simple docstring''' import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase : int = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCamelCase : List[str] = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[Any] = "mask2former" A : str = ["swin"] A : List[Any] = {"hidden_size": "hidden_dim"} def __init__( self : Any , UpperCAmelCase_ : Optional[Dict] = None , UpperCAmelCase_ : int = 2_5_6 , UpperCAmelCase_ : int = 2_5_6 , UpperCAmelCase_ : int = 2_5_6 , UpperCAmelCase_ : int = 1_0_2_4 , UpperCAmelCase_ : str = "relu" , UpperCAmelCase_ : int = 6 , UpperCAmelCase_ : int = 1_0 , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : int = 2_0_4_8 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 4 , UpperCAmelCase_ : int = 2_5_5 , UpperCAmelCase_ : int = 1_0_0 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 2.0 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : int = 1_2_5_4_4 , UpperCAmelCase_ : float = 3.0 , UpperCAmelCase_ : float = 0.75 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : List[int] = [4, 8, 1_6, 3_2] , UpperCAmelCase_ : bool = None , **UpperCAmelCase_ : Tuple , ): """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.') a : Any = CONFIG_MAPPING['swin']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCAmelCase_ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_): a : Dict = backbone_config.pop('model_type') a : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] a : Union[str, Any] = config_class.from_dict(UpperCAmelCase_) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {','.join(self.backbones_supported)}""") a : Optional[int] = backbone_config a : Dict = feature_size a : Union[str, Any] = mask_feature_size a : Tuple = hidden_dim a : int = encoder_feedforward_dim a : List[Any] = activation_function a : Dict = encoder_layers a : int = decoder_layers a : Any = num_attention_heads a : Union[str, Any] = dropout a : Tuple = dim_feedforward a : List[Any] = pre_norm a : List[Any] = enforce_input_projection a : Tuple = common_stride a : Union[str, Any] = ignore_value a : Tuple = num_queries a : Any = no_object_weight a : int = class_weight a : Dict = mask_weight a : Union[str, Any] = dice_weight a : Tuple = train_num_points a : Any = oversample_ratio a : Union[str, Any] = importance_sample_ratio a : Dict = init_std a : List[str] = init_xavier_std a : str = use_auxiliary_loss a : str = feature_strides a : Optional[int] = output_auxiliary_logits a : Tuple = decoder_layers super().__init__(**UpperCAmelCase_) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , UpperCAmelCase_ : PretrainedConfig , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" return cls( backbone_config=UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Optional[int] = copy.deepcopy(self.__dict__) a : Optional[Any] = self.backbone_config.to_dict() a : Tuple = self.__class__.model_type return output
345
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class UpperCamelCase : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase_ : Tuple): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden a : Dict = deepcopy(UpperCAmelCase_) elif os.path.exists(UpperCAmelCase_): with io.open(UpperCAmelCase_ , 'r' , encoding='utf-8') as f: a : Union[str, Any] = json.load(UpperCAmelCase_) else: try: a : Union[str, Any] = baseaa.urlsafe_baadecode(UpperCAmelCase_).decode('utf-8') a : List[str] = json.loads(UpperCAmelCase_) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""") a : Optional[int] = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : str = self.get_value('zero_optimization.stage' , -1) # offload a : Any = False if self.is_zeroa() or self.is_zeroa(): a : Tuple = set(['cpu', 'nvme']) a : int = set( [ self.get_value('zero_optimization.offload_optimizer.device'), self.get_value('zero_optimization.offload_param.device'), ]) if len(offload_devices & offload_devices_valid) > 0: a : List[str] = True def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Dict): """simple docstring""" a : List[str] = self.config # find the config node of interest if it exists a : int = ds_key_long.split('.') a : Union[str, Any] = nodes.pop() for node in nodes: a : Union[str, Any] = config.get(UpperCAmelCase_) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=None): """simple docstring""" a , a : int = self.find_config_node(UpperCAmelCase_) if config is None: return default return config.get(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=False): """simple docstring""" a : Any = self.config # find the config node of interest if it exists a : Optional[Any] = ds_key_long.split('.') for node in nodes: a : List[str] = config a : int = config.get(UpperCAmelCase_) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""") else: return # if found remove it if parent_config is not None: parent_config.pop(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : str): """simple docstring""" a : List[str] = self.get_value(UpperCAmelCase_) return False if value is None else bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : List[Any] = self.get_value(UpperCAmelCase_) return False if value is None else not bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 3 def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return self._offload class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : int): """simple docstring""" a : Union[str, Any] = engine def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): """simple docstring""" self.engine.backward(UpperCAmelCase_ , **UpperCAmelCase_) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any): """simple docstring""" super().__init__(UpperCAmelCase_ , device_placement=UpperCAmelCase_ , scaler=UpperCAmelCase_) a : List[str] = hasattr(self.optimizer , 'overflow') def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Dict=None): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]=0.0_01 , UpperCAmelCase_ : List[Any]=0 , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : int = params a : str = lr a : Tuple = weight_decay a : Dict = kwargs class UpperCamelCase : """simple docstring""" def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=0 , **UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = optimizer a : Tuple = total_num_steps a : Optional[Any] = warmup_num_steps a : List[str] = kwargs
345
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Optional[int] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Dict = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[Any] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCamelCase : List[str] = logging.get_logger(__name__) @dataclass class UpperCamelCase : """simple docstring""" A : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) A : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) A : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A : bool = field( default=a_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Union[str, Any] = self.task_name.lower() class UpperCamelCase ( a_ ): """simple docstring""" A : int = "train" A : Tuple = "dev" A : List[Any] = "test" class UpperCamelCase ( a_ ): """simple docstring""" A : GlueDataTrainingArguments A : str A : List[InputFeatures] def __init__( self : Tuple , UpperCAmelCase_ : GlueDataTrainingArguments , UpperCAmelCase_ : PreTrainedTokenizerBase , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Union[str, Split] = Split.train , UpperCAmelCase_ : Optional[str] = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , UpperCAmelCase_ , ) a : Dict = args a : int = glue_processors[args.task_name]() a : int = glue_output_modes[args.task_name] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): try: a : str = Split[mode] except KeyError: raise KeyError('mode is not a valid split name') # Load data features from cache or dataset file a : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) a : Tuple = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) a , a : str = label_list[2], label_list[1] a : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a : Union[str, Any] = cached_features_file + '.lock' with FileLock(UpperCAmelCase_): if os.path.exists(UpperCAmelCase_) and not args.overwrite_cache: a : Optional[Any] = time.time() a : Optional[Any] = torch.load(UpperCAmelCase_) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""") if mode == Split.dev: a : List[Any] = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: a : Optional[Any] = self.processor.get_test_examples(args.data_dir) else: a : List[str] = self.processor.get_train_examples(args.data_dir) if limit_length is not None: a : Dict = examples[:limit_length] a : List[Any] = glue_convert_examples_to_features( UpperCAmelCase_ , UpperCAmelCase_ , max_length=args.max_seq_length , label_list=UpperCAmelCase_ , output_mode=self.output_mode , ) a : Dict = time.time() torch.save(self.features , UpperCAmelCase_) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""") def __len__( self : Tuple): """simple docstring""" return len(self.features) def __getitem__( self : Optional[int] , UpperCAmelCase_ : List[str]): """simple docstring""" return self.features[i] def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return self.label_list
345
1
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase : Tuple = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ UpperCamelCase : Tuple = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ UpperCamelCase : Union[str, Any] = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': {'id': datasets.Value('string'), 'prediction_text': datasets.Value('string')}, 'references': { 'id': datasets.Value('string'), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string'), 'answer_start': datasets.Value('int32'), }), }, }) , codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , ) def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : Optional[int] = {prediction['id']: prediction['prediction_text'] for prediction in predictions} a : List[str] = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] a : List[str] = evaluate(dataset=UpperCAmelCase_ , predictions=UpperCAmelCase_) return score
345
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : Dict = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Any = ["pixel_values"] def __init__( self : str , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : str = size if size is not None else {'shortest_edge': 2_5_6} a : Dict = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a : int = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Any = do_resize a : List[str] = size a : Union[str, Any] = resample a : int = do_center_crop a : Optional[int] = crop_size a : Tuple = do_rescale a : int = rescale_factor a : Optional[Any] = do_normalize a : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : Optional[int] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a : Union[str, Any] = get_resize_output_image_size(UpperCAmelCase_ , size=size['shortest_edge'] , default_to_square=UpperCAmelCase_) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : List[str] = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[str] , ): """simple docstring""" a : int = do_resize if do_resize is not None else self.do_resize a : int = size if size is not None else self.size a : Union[str, Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = resample if resample is not None else self.resample a : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop a : Union[str, Any] = crop_size if crop_size is not None else self.crop_size a : Dict = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : str = do_rescale if do_rescale is not None else self.do_rescale a : int = rescale_factor if rescale_factor is not None else self.rescale_factor a : str = do_normalize if do_normalize is not None else self.do_normalize a : List[str] = image_mean if image_mean is not None else self.image_mean a : Optional[int] = image_std if image_std is not None else self.image_std a : Dict = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a : List[Any] = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: a : Dict = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_) for image in images] if do_center_crop: a : Any = [self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_) for image in images] if do_rescale: a : Optional[int] = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_) for image in images] if do_normalize: a : Dict = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_) for image in images] a : List[Any] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : List[str] = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Tuple] = None): """simple docstring""" a : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_) != len(UpperCAmelCase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(UpperCAmelCase_): a : Optional[Any] = target_sizes.numpy() a : List[str] = [] for idx in range(len(UpperCAmelCase_)): a : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=UpperCAmelCase_) a : Union[str, Any] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(UpperCAmelCase_) else: a : Optional[int] = logits.argmax(dim=1) a : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
345
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : List[str] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class UpperCamelCase ( a_ ): """simple docstring""" A : Any = "luke" def __init__( self : Any , UpperCAmelCase_ : Tuple=5_0_2_6_7 , UpperCAmelCase_ : List[str]=5_0_0_0_0_0 , UpperCAmelCase_ : Optional[int]=7_6_8 , UpperCAmelCase_ : Any=2_5_6 , UpperCAmelCase_ : List[Any]=1_2 , UpperCAmelCase_ : Tuple=1_2 , UpperCAmelCase_ : Any=3_0_7_2 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=5_1_2 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : str=1e-12 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : List[Any]=2 , **UpperCAmelCase_ : Dict , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_) a : int = vocab_size a : Tuple = entity_vocab_size a : Optional[Any] = hidden_size a : Tuple = entity_emb_size a : Any = num_hidden_layers a : Dict = num_attention_heads a : Any = hidden_act a : Union[str, Any] = intermediate_size a : Union[str, Any] = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : Dict = max_position_embeddings a : Any = type_vocab_size a : int = initializer_range a : Tuple = layer_norm_eps a : int = use_entity_aware_attention a : Optional[Any] = classifier_dropout
345
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : int | float | str , snake_case : int | float | str ) -> list[str]: """simple docstring""" if nth_term == "": return [""] a : Dict = int(snake_case ) a : Optional[int] = int(snake_case ) a : list[str] = [] for temp in range(int(snake_case ) ): series.append(F"""1 / {pow(temp + 1 , int(snake_case ) )}""" if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : Optional[int] = int(input("""Enter the last number (nth term) of the P-Series""")) UpperCamelCase : List[Any] = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
345
1