Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,662 Bytes
592509a
 
 
 
 
 
 
 
 
 
 
354147a
 
592509a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354147a
 
 
 
592509a
 
 
 
354147a
 
 
6fad96c
354147a
6fad96c
 
592509a
 
 
 
 
 
 
43ff8d5
cafd40b
43ff8d5
01b8500
 
592509a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd1dc5
592509a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc4b541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592509a
 
 
 
d983a4f
592509a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: apache-2.0
configs:
- config_name: corpus
  data_files:
  - split: train
    path: corpus/train-*
- config_name: question_answers
  data_files:
  - split: train
    path: question_answers/train-*
  - split: test
    path: question_answers/test-*
dataset_info:
- config_name: corpus
  features:
  - name: doc_id
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: document
    dtype: string
  - name: md_document
    dtype: string
  splits:
  - name: train
    num_bytes: 10625185
    num_examples: 1144
  download_size: 3327056
  dataset_size: 10625185
- config_name: question_answers
  features:
  - name: question_id
    dtype: string
  - name: question
    dtype: string
  - name: correct_answer
    dtype: string
  - name: correct_answer_document_ids
    dtype: string
  - name: ground_truths_contexts
    dtype: string
  splits:
  - name: train
    num_bytes: 60268
    num_examples: 45
  - name: test
    num_bytes: 33340
    num_examples: 30
  download_size: 58074
  dataset_size: 93608
---
---

# watsonxDocsQA Dataset

## Overview

**watsonxDocsQA**  is a new open-source dataset and benchmark contributed by IBM. The dataset is derived from enterprise product documentation and is designed specifically for end-to-end Retrieval-Augmented Generation (RAG) evaluation. The dataset consists of two components:
- **Documents**: A corpus of 1,144 text and markdown files generated by crawling enterprise documentation ([main page - crawl March 2024](https://dataplatform.cloud.ibm.com/docs/content/wsj/getting-started/welcome-main.html)).
- **Benchmark**: A set of 75 question-answer (QA) pairs with gold document labels and answers. The QA pairs are crafted as follows:
  - **25 questions**: Human-generated by two subject matter experts.
  - **50 questions**: Synthetically generated using the `tiiuae/falcon-180b` model, then manually filtered and reviewed for quality. The methodology is detailed in [Yehudai et al. 2024](https://arxiv.org/pdf/2401.14367).

---

## Data Description

### Corpus Dataset
The corpus dataset contains the following fields:

| Field            | Description                              |
|------------------|------------------------------------------|
| `doc_id`         | Unique identifier for the document       |
| `title`          | Document title as it appears on the HTML page |
| `document`       | Textual representation of the content    |
| `md_document`    | Markdown representation of the content   |
| `url`            | Origin URL of the document               |

### Question-Answers Dataset
The QA dataset includes these fields:

| Field                        | Description                                      |
|------------------------------|-------------------------------------------------|
| `question_id`                | Unique identifier for the question              |
| `question`                   | Text of the question                            |
| `correct_answer`             | Ground-truth answer                             |
| `ground_truths_contexts_ids` | List of ground-truth document IDs               |
| `ground_truths_contexts`            | List of grounding texts on which the answer is based |

---

## Samples


Below is an example from the `question_answers` dataset:

- **question_id**: watsonx_q_2
- **question**: What foundation models have been built by IBM?
- **correct_answer**:  
  "Foundation models built by IBM include:  
  - granite-13b-chat-v2  
  - granite-13b-chat-v1  
  - granite-13b-instruct-v1"
- **ground_truths_contexts_ids**: B2593108FA446C4B4B0EF5ADC2CD5D9585B0B63C
- **ground_truths_contexts**: Foundation models built by IBM \n\nIn IBM watsonx.ai, ...

---
## Citation

If you decide to use this dataset, please consider citing our preprint

```bibtex
@misc{orbach2025analysishyperparameteroptimizationmethods,
      title={An Analysis of Hyper-Parameter Optimization Methods for Retrieval Augmented Generation}, 
      author={Matan Orbach and Ohad Eytan and Benjamin Sznajder and Ariel Gera and Odellia Boni and Yoav Kantor and Gal Bloch and Omri Levy and Hadas Abraham and Nitzan Barzilay and Eyal Shnarch and Michael E. Factor and Shila Ofek-Koifman and Paula Ta-Shma and Assaf Toledo},
      year={2025},
      eprint={2505.03452},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2505.03452}, 
}
```
---
## Contact

For questions or feedback, please:
- Email: [[email protected]](mailto:[email protected])
- Or, open an [pull request/discussion](https://huggingface.co/datasets/ibm-research/watsonxDocsQA/discussions/new) in this repository.

---