import json import os import datasets _CITATION = """\ @InProceedings{...}, title = {Your Dataset Title}, author={Your Name}, year={2023} } """ _DESCRIPTION = """\ Dataset containing multi-view images with camera poses, depth maps, and masks for NeRF training. """ _LICENSE = "MIT" class RefRef_test(datasets.GeneratorBasedBuilder): """A dataset loader for NeRF-style data with camera poses, depth maps, and masks.""" VERSION = datasets.Version("1.0.0") # No multiple configs needed - using single configuration BUILDER_CONFIGS = [ datasets.BuilderConfig( name="ball", version=VERSION, description="Default configuration for NeRF dataset" ), datasets.BuilderConfig( name="ampoule", version=VERSION, description="Default configuration for NeRF dataset" ) ] def _info(self): features = datasets.Features({ "image": datasets.Image(), "depth": datasets.Image(), "mask": datasets.Image(), "transform_matrix": datasets.Sequence( datasets.Sequence(datasets.Value("float64"), length=4), length=4 ), "rotation": datasets.Value("float32") }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage="", license=_LICENSE, citation=_CITATION ) def _split_generators(self, dl_manager): return [ datasets.SplitGenerator( name=split, gen_kwargs={ "filepaths": os.path.join(f"https://huggingface.co/datasets/eztao/RefRef_test/resolve/main/{self.config.name}/", f"transforms_{split}.json"), "split": split }, ) for split in ["train", "val", "test"] ] # def _generate_examples(self, filepaths, split): # # Iterate through all JSON files for this split # for scene_idx, filepath in enumerate(filepaths): # print(filepath) # with open(filepath, "r", encoding="utf-8") as f: # data = json.load(f) # scene_name = os.path.basename(os.path.dirname(filepath)) # for frame_idx, frame in enumerate(data["frames"]): # # Build absolute paths relative to JSON file location # base_dir = os.path.dirname(filepath) # # Generate unique key using scene and frame indices # unique_key = f"{scene_name}_{split}_{scene_idx}_{frame_idx}" # yield unique_key, { # "image": os.path.join(base_dir, frame["file_path"]), # "depth": os.path.join(base_dir, frame["depth_file_path"]), # "mask": os.path.join(base_dir, frame["mask_file_path"]), # "transform_matrix": frame["transform_matrix"], # "rotation": frame.get("rotation", 0.0) # } def _generate_examples(self, filepaths, split): # for filepath in filepaths: # print(filepaths) # Add validation for JSON files # if not filepaths.endswith(".json") or os.path.isdir(filepaths): # continue with open(filepaths, "r", encoding="utf-8") as f: try: data = json.load(f) except json.JSONDecodeError: print("error") scene_name = os.path.basename(os.path.dirname(filepaths)) for frame_idx, frame in enumerate(data.get("frames", [])): base_dir = os.path.dirname(filepaths) print(os.path.join(base_dir, frame["file_path"]+".png")) yield f"{scene_name}_{frame_idx}", { "image": os.path.join(base_dir, frame["file_path"]+".png"), "depth": os.path.join(base_dir, frame["depth_file_path"]), "mask": os.path.join(base_dir, frame["mask_file_path"]), "transform_matrix": frame["transform_matrix"], "rotation": frame.get("rotation", 0.0) }