import mlcroissant as mlc import pandas as pd import os # These values are used by mlcroissant # to perform the necessary auth to fetch the data # Provide your Kaggle username and API key os.environ['CROISSANT_BASIC_AUTH_USERNAME'] = 'enzetao' os.environ['CROISSANT_BASIC_AUTH_PASSWORD'] = "a97ddf556baf4db4723d78aab014b599" # Fetch the Croissant JSON-LD # croissant_dataset = mlc.Dataset('https://www.kaggle.com/datasets/yueyin27/refref/croissant/download') # croissant_dataset = mlc.Dataset('https://www.kaggle.com/datasets/nguyenhung1903/nerf-synthetic-dataset/croissant/download') # croissant_dataset = mlc.Dataset('https://www.kaggle.com/datasets/enzetao/refref/croissant/download') # croissant_dataset = mlc.Dataset('https://www.kaggle.com/datasets/muratkokludataset/rice-image-dataset/croissant/download') url = 'https://huggingface.co/api/datasets/fashion_mnist/croissant' print(mlc.Dataset(url).metadata.to_json()) import tensorflow_datasets as tfds builder = tfds.core.dataset_builders.CroissantBuilder( jsonld=url, record_set_ids=["fashion_mnist"], file_format='array_record', ) builder.download_and_prepare() # # Check what record sets are in the dataset # record_sets = croissant_dataset.metadata.record_sets # print(record_sets) # # Fetch the records and put them in a DataFrame # record_set_df = pd.DataFrame(croissant_dataset.records(record_set=record_sets[0].uuid)) # record_set_df.head()