RefRef_test / RefRef_test.py
eztao's picture
Update RefRef_test.py
7d72899 verified
import json
import os
import datasets
_CITATION = """\
@InProceedings{...},
title = {Your Dataset Title},
author={Your Name},
year={2023}
}
"""
_DESCRIPTION = """\
Dataset containing multi-view images with camera poses, depth maps, and masks for NeRF training.
"""
_LICENSE = "MIT"
class RefRef_test(datasets.GeneratorBasedBuilder):
"""A dataset loader for NeRF-style data with camera poses, depth maps, and masks."""
VERSION = datasets.Version("1.0.0")
# No multiple configs needed - using single configuration
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="ball",
version=VERSION,
description="Default configuration for NeRF dataset"
),
datasets.BuilderConfig(
name="ampoule",
version=VERSION,
description="Default configuration for NeRF dataset"
)
]
def _info(self):
features = datasets.Features({
"image": datasets.Image(),
"depth": datasets.Image(),
"mask": datasets.Image(),
"transform_matrix": datasets.Sequence(
datasets.Sequence(datasets.Value("float64"), length=4),
length=4
),
"rotation": datasets.Value("float32")
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage="",
license=_LICENSE,
citation=_CITATION
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=split,
gen_kwargs={
"filepaths": os.path.join(f"https://huggingface.co/datasets/eztao/RefRef_test/resolve/main/{self.config.name}/", f"transforms_{split}.json"),
"split": split
},
) for split in ["train", "val", "test"]
]
# def _generate_examples(self, filepaths, split):
# # Iterate through all JSON files for this split
# for scene_idx, filepath in enumerate(filepaths):
# print(filepath)
# with open(filepath, "r", encoding="utf-8") as f:
# data = json.load(f)
# scene_name = os.path.basename(os.path.dirname(filepath))
# for frame_idx, frame in enumerate(data["frames"]):
# # Build absolute paths relative to JSON file location
# base_dir = os.path.dirname(filepath)
# # Generate unique key using scene and frame indices
# unique_key = f"{scene_name}_{split}_{scene_idx}_{frame_idx}"
# yield unique_key, {
# "image": os.path.join(base_dir, frame["file_path"]),
# "depth": os.path.join(base_dir, frame["depth_file_path"]),
# "mask": os.path.join(base_dir, frame["mask_file_path"]),
# "transform_matrix": frame["transform_matrix"],
# "rotation": frame.get("rotation", 0.0)
# }
def _generate_examples(self, filepaths, split):
# for filepath in filepaths:
# print(filepaths)
# Add validation for JSON files
# if not filepaths.endswith(".json") or os.path.isdir(filepaths):
# continue
with open(filepaths, "r", encoding="utf-8") as f:
try:
data = json.load(f)
except json.JSONDecodeError:
print("error")
scene_name = os.path.basename(os.path.dirname(filepaths))
for frame_idx, frame in enumerate(data.get("frames", [])):
base_dir = os.path.dirname(filepaths)
print(os.path.join(base_dir, frame["file_path"]+".png"))
yield f"{scene_name}_{frame_idx}", {
"image": os.path.join(base_dir, frame["file_path"]+".png"),
"depth": os.path.join(base_dir, frame["depth_file_path"]),
"mask": os.path.join(base_dir, frame["mask_file_path"]),
"transform_matrix": frame["transform_matrix"],
"rotation": frame.get("rotation", 0.0)
}