File size: 29,137 Bytes
e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 06fc7a9 e6adc05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import requests\n",
"import zipfile\n",
"import io\n",
"import os\n",
"import shutil\n",
"from PIL import Image as PILImage, ImageFile\n",
"from tqdm import tqdm\n",
"from datasets import Dataset, Features, Value, Image, load_dataset\n",
"from huggingface_hub import login, HfApi\n",
"import cv2\n",
"import concurrent.futures\n",
"import csv"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Allow loading of truncated images\n",
"ImageFile.LOAD_TRUNCATED_IMAGES = True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def read_excel_and_get_urls(excel_file):\n",
" \"\"\"\n",
" Read Excel file and extract URLs, tilenames, and zones\n",
" \n",
" Args:\n",
" excel_file: Path to Excel file\n",
" \n",
" Returns:\n",
" DataFrame with TILENAME, ZONE, URL columns\n",
" \"\"\"\n",
" print(f\"Reading Excel file: {excel_file}\")\n",
" df = pd.read_excel(excel_file)\n",
" \n",
" # Ensure expected columns exist\n",
" required_columns = ['TILENAME', 'ZONE', 'URL']\n",
" for col in required_columns:\n",
" if col not in df.columns:\n",
" raise ValueError(f\"Required column '{col}' not found in Excel file.\")\n",
" \n",
" print(f\"Found {len(df)} entries in Excel file\")\n",
" return df\n",
"\n",
"def extract_filename_from_url(url):\n",
" \"\"\"\n",
" Extract the base filename from the URL\n",
" \n",
" Args:\n",
" url: URL of the zip file\n",
" \n",
" Returns:\n",
" Base filename without extension\n",
" \"\"\"\n",
" # Extract filename from URL\n",
" # This may need adjustment based on the URL format\n",
" filename = url.split('/')[-1]\n",
" # Remove .zip extension if present\n",
" if filename.lower().endswith('.zip'):\n",
" filename = os.path.splitext(filename)[0]\n",
" return filename\n",
"\n",
"\n",
"def download_and_extract_jp2(tilename, zone, url, jp2_dir):\n",
" \"\"\"\n",
" Download a zip file from the given URL and extract only the JP2 image file\n",
" \n",
" Args:\n",
" tilename: Name of the tile\n",
" zone: Zone identifier\n",
" url: URL to the zip file\n",
" jp2_dir: Directory to save JP2 images\n",
" \n",
" Returns:\n",
" Dictionary with image information (jp2_path, tilename, zone)\n",
" \"\"\"\n",
" try:\n",
" # Download the zip file\n",
" response = requests.get(url, stream=True)\n",
" \n",
" if response.status_code != 200:\n",
" print(f\"Failed to download {tilename}: {response.status_code}\")\n",
" return None\n",
" \n",
" # Ensure JP2 directory exists\n",
" os.makedirs(jp2_dir, exist_ok=True)\n",
" \n",
" # Extract image files\n",
" with zipfile.ZipFile(io.BytesIO(response.content)) as zip_ref:\n",
" # Get all files in the zip\n",
" all_files = zip_ref.namelist()\n",
" \n",
" # Filter for JP2 image files\n",
" jp2_files = [f for f in all_files if f.lower().endswith('.jp2')]\n",
" \n",
" if not jp2_files:\n",
" print(f\"No JP2 files found in {tilename} zip\")\n",
" return None\n",
" \n",
" # Get the first JP2 file (assuming one image per zip)\n",
" jp2_file = jp2_files[0]\n",
" jp2_filename = os.path.basename(jp2_file)\n",
" jp2_path = os.path.join(jp2_dir, jp2_filename)\n",
" \n",
" # Extract JP2 file\n",
" with zip_ref.open(jp2_file) as source, open(jp2_path, 'wb') as target:\n",
" shutil.copyfileobj(source, target)\n",
" \n",
" return {\n",
" \"jp2_path\": jp2_path,\n",
" \"tilename\": tilename,\n",
" \"zone\": zone\n",
" }\n",
" \n",
" except Exception as e:\n",
" print(f\"Error processing {tilename}: {e}\")\n",
" return None\n",
" \n",
"def process_file(jp2_path, jpeg_path):\n",
" try:\n",
" # Read JP2 image\n",
" img = cv2.imread(jp2_path)\n",
" \n",
" # Check if the image is read properly\n",
" if img is None:\n",
" print(f\"Error reading {jp2_path}, skipping.\")\n",
" return\n",
" \n",
" # Save as JPEG\n",
" cv2.imwrite(jpeg_path, img, [int(cv2.IMWRITE_JPEG_QUALITY), 95])\n",
" except Exception as e:\n",
" print(f\"Error converting {jp2_path}: {e}\")\n",
"\n",
"def convert_jp2_to_jpeg(jp2_dir, jpeg_dir, max_workers=4):\n",
" \"\"\"\n",
" Convert all JP2 files in a directory to JPEG using OpenCV with multithreading.\n",
" \n",
" Args:\n",
" jp2_dir: Directory containing JP2 files\n",
" jpeg_dir: Directory to save converted JPEG images\n",
" max_workers: Number of threads to use for processing\n",
" \"\"\"\n",
" # Ensure output directory exists\n",
" os.makedirs(jpeg_dir, exist_ok=True)\n",
" \n",
" # Get all JP2 files\n",
" input_files = [f for f in os.listdir(jp2_dir) if f.lower().endswith('.jp2') and f != '.DS_Store']\n",
" \n",
" print(f\"Found {len(input_files)} JP2 files to convert\")\n",
" \n",
" # Prepare task list\n",
" tasks = []\n",
" for f in input_files:\n",
" jp2_path = os.path.join(jp2_dir, f)\n",
" jpeg_filename = os.path.splitext(f)[0] + \".jpg\"\n",
" jpeg_path = os.path.join(jpeg_dir, jpeg_filename)\n",
" \n",
" # Skip if already processed\n",
" if os.path.isfile(jpeg_path):\n",
" print(f\"Already processed: {f}\")\n",
" continue\n",
" \n",
" tasks.append((jp2_path, jpeg_path))\n",
" \n",
" # Process files in parallel\n",
" with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:\n",
" list(tqdm(executor.map(lambda args: process_file(*args), tasks), total=len(tasks), desc=\"Converting JP2 to JPEG\"))\n",
"\n",
"def convert_jp2_to_jpeg(jp2_dir, jpeg_dir):\n",
" \"\"\"\n",
" Convert all JP2 files in a directory to JPEG using OpenCV.\n",
" \n",
" Args:\n",
" jp2_dir: Directory containing JP2 files\n",
" jpeg_dir: Directory to save converted JPEG images\n",
" \"\"\"\n",
" # Ensure output directory exists\n",
" os.makedirs(jpeg_dir, exist_ok=True)\n",
" \n",
" # Get all JP2 files\n",
" input_files = [f for f in os.listdir(jp2_dir) if f.lower().endswith('.jp2') and f != '.DS_Store']\n",
" \n",
" print(f\"Found {len(input_files)} JP2 files to convert\")\n",
" \n",
" # Process files\n",
" for f in tqdm(input_files, desc=\"Converting JP2 to JPEG\"):\n",
" try:\n",
" jp2_path = os.path.join(jp2_dir, f)\n",
" jpeg_filename = os.path.splitext(f)[0] + \".jpg\"\n",
" jpeg_path = os.path.join(jpeg_dir, jpeg_filename)\n",
" \n",
" # Skip if already processed\n",
" if os.path.isfile(jpeg_path):\n",
" print(f\"Already processed: {f}\")\n",
" continue\n",
" \n",
" # Read JP2 image\n",
" img = cv2.imread(jp2_path)\n",
" \n",
" # Check if the image is read properly\n",
" if img is None:\n",
" print(f\"Error reading {f}, skipping.\")\n",
" continue\n",
" \n",
" # Save as JPEG\n",
" cv2.imwrite(jpeg_path, img, [int(cv2.IMWRITE_JPEG_QUALITY), 95])\n",
" except Exception as e:\n",
" print(f\"Error converting {f}: {e}\")\n",
"\n",
"def convert_jp2_to_jpeg(jp2_dir, jpeg_dir):\n",
" \"\"\"\n",
" Convert all JP2 files in a directory to JPEG\n",
" \n",
" Args:\n",
" jp2_dir: Directory containing JP2 files\n",
" jpeg_dir: Directory to save converted JPEG images\n",
" \"\"\"\n",
" # Ensure directories exist\n",
" if not os.path.exists(jpeg_dir):\n",
" os.makedirs(jpeg_dir)\n",
" if not os.path.exists(jp2_dir):\n",
" os.makedirs(jp2_dir)\n",
" \n",
" # Get all JP2 files\n",
" input_files = os.listdir(jp2_dir)\n",
" input_files = [f for f in input_files if f.lower().endswith('.jp2') and f != '.DS_Store']\n",
" \n",
" print(f\"Found {len(input_files)} JP2 files to convert\")\n",
" \n",
" # Process files one by one\n",
" for f in tqdm(input_files, desc=\"Converting JP2 to JPEG\"):\n",
" try:\n",
" jp2_path = os.path.join(jp2_dir, f)\n",
" jpeg_filename = os.path.splitext(f)[0] + \".jpg\"\n",
" jpeg_path = os.path.join(jpeg_dir, jpeg_filename)\n",
" \n",
" # Skip if already processed\n",
" if os.path.isfile(jpeg_path):\n",
" print(f\"Already processed: {f}\")\n",
" continue\n",
" \n",
" # Open and convert the image\n",
" im = PILImage.open(jp2_path)\n",
" if im.mode != 'RGB':\n",
" im = im.convert('RGB')\n",
" \n",
" # Save as JPEG\n",
" im.save(jpeg_path, 'JPEG', quality=95)\n",
" im.close()\n",
" except Exception as e:\n",
" print(f\"Error converting {f}: {e}\")\n",
"\n",
"def recreate_image_info_list(excel_file, jpeg_dir):\n",
" \"\"\"\n",
" Recreate image_info_list by matching jpeg files with Excel entries\n",
" \n",
" Args:\n",
" excel_file: Path to Excel file\n",
" jpeg_dir: Directory containing JPEG files\n",
" \n",
" Returns:\n",
" List of dictionaries with image information\n",
" \"\"\"\n",
" # Read Excel file\n",
" df = read_excel_and_get_urls(excel_file)\n",
" \n",
" # Create mapping from filename to tilename and zone\n",
" filename_to_metadata = {}\n",
" \n",
" # Try different approaches to match filenames\n",
" for _, row in df.iterrows():\n",
" tilename = row['TILENAME']\n",
" zone = row['ZONE']\n",
" url = row['URL']\n",
" \n",
" # Extract filename from URL as a potential match criterion\n",
" extracted_filename = extract_filename_from_url(url)\n",
" filename_to_metadata[extracted_filename] = {'tilename': tilename, 'zone': zone}\n",
" \n",
" # Also map the tilename directly as another potential match\n",
" filename_to_metadata[tilename] = {'tilename': tilename, 'zone': zone}\n",
" \n",
" # Get all JPEG files\n",
" jpeg_files = [f for f in os.listdir(jpeg_dir) if f.lower().endswith('.jpg') or f.lower().endswith('.jpeg')]\n",
" print(f\"Found {len(jpeg_files)} JPEG files in the directory\")\n",
" \n",
" # Match JPEG files to metadata\n",
" image_info_list = []\n",
" unmatched_files = []\n",
" \n",
" for jpeg_file in tqdm(jpeg_files, desc=\"Matching JPEG files to metadata\"):\n",
" jpeg_path = os.path.join(jpeg_dir, jpeg_file)\n",
" base_name = os.path.splitext(jpeg_file)[0]\n",
" \n",
" # Try different matching strategies\n",
" metadata = None\n",
" \n",
" # Direct match with the extracted filename\n",
" if base_name in filename_to_metadata:\n",
" metadata = filename_to_metadata[base_name]\n",
" else:\n",
" # Try partial matches\n",
" matched_keys = [key for key in filename_to_metadata.keys() if key in base_name or base_name in key]\n",
" if matched_keys:\n",
" # Use the first match if multiple found\n",
" metadata = filename_to_metadata[matched_keys[0]]\n",
" \n",
" if metadata:\n",
" image_info_list.append({\n",
" \"path\": jpeg_path,\n",
" \"tilename\": metadata['tilename'],\n",
" \"zone\": metadata['zone']\n",
" })\n",
" else:\n",
" unmatched_files.append(jpeg_file)\n",
" \n",
" print(f\"Successfully matched {len(image_info_list)} JPEG files with metadata\")\n",
" \n",
" if unmatched_files:\n",
" print(f\"Warning: Could not match {len(unmatched_files)} files with metadata\")\n",
" if len(unmatched_files) < 10:\n",
" print(\"Unmatched files:\", unmatched_files)\n",
" else:\n",
" print(\"First 10 unmatched files:\", unmatched_files[:10])\n",
" \n",
" return image_info_list\n",
"\n",
"\n",
"def organize_images_for_imagefolder(excel_file, jpeg_dir, output_dir, rename_instead_of_copy=True):\n",
" \"\"\"\n",
" Organize images and create metadata for ImageFolder format\n",
" \n",
" Args:\n",
" excel_file: Path to Excel file with metadata\n",
" jpeg_dir: Directory containing JPEG files\n",
" output_dir: Directory to save organized images and metadata\n",
" rename_instead_of_copy: If True, rename/move files instead of copying them\n",
" \n",
" Returns:\n",
" Path to the organized dataset directory\n",
" \"\"\"\n",
" print(f\"Reading Excel file: {excel_file}\")\n",
" df = pd.read_excel(excel_file)\n",
" \n",
" # Ensure required columns exist\n",
" required_columns = ['TILENAME', 'ZONE', 'URL']\n",
" for col in required_columns:\n",
" if col not in df.columns:\n",
" raise ValueError(f\"Required column '{col}' not found in Excel file.\")\n",
" \n",
" # Use the JPEG directory as the train directory if we're renaming\n",
" if rename_instead_of_copy:\n",
" # Create parent directory if it doesn't exist\n",
" os.makedirs(output_dir, exist_ok=True)\n",
" \n",
" # Just rename the jpeg_dir to be inside the output_dir\n",
" train_dir = os.path.join(output_dir, \"train\")\n",
" \n",
" # If the train directory already exists but is different from jpeg_dir, handle it\n",
" if os.path.exists(train_dir) and os.path.abspath(train_dir) != os.path.abspath(jpeg_dir):\n",
" response = input(f\"Train directory {train_dir} already exists. Do you want to replace it? (yes/no): \")\n",
" if response.lower() == 'yes':\n",
" shutil.rmtree(train_dir)\n",
" else:\n",
" print(\"Using existing train directory.\")\n",
" \n",
" # If train_dir doesn't exist, rename jpeg_dir to train_dir\n",
" if not os.path.exists(train_dir):\n",
" print(f\"Renaming directory {jpeg_dir} to {train_dir}\")\n",
" shutil.move(jpeg_dir, train_dir)\n",
" # If jpeg_dir is already the train_dir, do nothing\n",
" elif os.path.abspath(train_dir) == os.path.abspath(jpeg_dir):\n",
" print(f\"JPEG directory is already {train_dir}, no renaming needed\")\n",
" else:\n",
" # Create the output directory structure for copying\n",
" os.makedirs(output_dir, exist_ok=True)\n",
" train_dir = os.path.join(output_dir, \"train\")\n",
" os.makedirs(train_dir, exist_ok=True)\n",
" \n",
" # Get all JPEG files\n",
" jpeg_files = [f for f in os.listdir(train_dir) if f.lower().endswith('.jpg') or f.lower().endswith('.jpeg')]\n",
" print(f\"Found {len(jpeg_files)} JPEG files\")\n",
" \n",
" # Create a mapping of filename to metadata\n",
" filename_to_metadata = {}\n",
" for _, row in df.iterrows():\n",
" tilename = row['TILENAME']\n",
" zone = row['ZONE']\n",
" # Use both the full tilename and the base name for matching\n",
" filename_to_metadata[tilename] = {'tilename': tilename, 'zone': zone}\n",
" filename_to_metadata[os.path.basename(tilename)] = {'tilename': tilename, 'zone': zone}\n",
" \n",
" # Create metadata.csv file\n",
" metadata_path = os.path.join(train_dir, \"metadata.csv\")\n",
" with open(metadata_path, 'w', newline='') as csvfile:\n",
" fieldnames = ['file_name', 'tilename', 'zone']\n",
" writer = csv.DictWriter(csvfile, fieldnames=fieldnames)\n",
" writer.writeheader()\n",
" \n",
" # Add files to metadata\n",
" successful_matches = 0\n",
" for jpeg_file in tqdm(jpeg_files, desc=\"Creating metadata for images\"):\n",
" # Try to match the image to metadata\n",
" base_name = os.path.splitext(jpeg_file)[0]\n",
" \n",
" # Find matching metadata using different strategies\n",
" metadata = None\n",
" if base_name in filename_to_metadata:\n",
" metadata = filename_to_metadata[base_name]\n",
" else:\n",
" # Try partial matches\n",
" matched_keys = [key for key in filename_to_metadata.keys() \n",
" if key in base_name or base_name in key]\n",
" if matched_keys:\n",
" metadata = filename_to_metadata[matched_keys[0]]\n",
" \n",
" if metadata:\n",
" # Add to metadata.csv\n",
" writer.writerow({\n",
" 'file_name': jpeg_file,\n",
" 'tilename': metadata['tilename'],\n",
" 'zone': metadata['zone']\n",
" })\n",
" successful_matches += 1\n",
" else:\n",
" print(f\"Could not find metadata for {jpeg_file}\")\n",
" \n",
" print(f\"Successfully matched {successful_matches} images with metadata\")\n",
" \n",
" return output_dir\n",
"\n",
"def upload_dataset_to_hub(dataset_dir, repo_name):\n",
" \"\"\"\n",
" Upload the dataset to the Hugging Face Hub\n",
" \n",
" Args:\n",
" dataset_dir: Directory containing the organized dataset\n",
" repo_name: Name of the repository on Hugging Face Hub\n",
" \"\"\"\n",
" # Load the dataset using ImageFolder\n",
" print(f\"Loading dataset from {dataset_dir}\")\n",
" dataset = load_dataset(\"imagefolder\", data_dir=dataset_dir)\n",
" \n",
" # Push to Hugging Face Hub\n",
" print(f\"Pushing dataset to Hugging Face Hub: {repo_name}\")\n",
" dataset.push_to_hub(repo_name)\n",
" print(\"Dataset uploaded successfully!\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Step 4: Creating image info list\n",
"Reading Excel file: /fsx/avijit/projects/datacommonsMA/massgis_2023_aerial_imagery/COQ2023INDEX_POLY.xlsx\n",
"Found 10218 entries in Excel file\n",
"Found 10218 JPEG files in the directory\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Matching JPEG files to metadata: 100%|βββββββββββββββββ| 10218/10218 [00:00<00:00, 616174.46it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Successfully matched 10218 JPEG files with metadata\n",
"Found 10218 matched JPEG files\n",
"Step 5: Deleting JP2 files...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"JP2 files deleted\n"
]
}
],
"source": [
"# Excel file path\n",
"excel_file = \"/fsx/avijit/projects/datacommonsMA/massgis_2023_aerial_imagery/COQ2023INDEX_POLY.xlsx\"\n",
"\n",
"# Define directories\n",
"base_dir = \"/fsx/avijit/projects/datacommonsMA/massgis_2023_aerial_imagery\"\n",
"output_dir = \"/fsx/avijit/projects/datacommonsMA/massgis_2023_aerial_imagery/imagefolder-dataset\"\n",
"\n",
"jp2_dir = os.path.join(base_dir, \"jp2-files\")\n",
"jpeg_dir = os.path.join(base_dir, \"jpeg-files\")\n",
"\n",
"# Ensure directories exist\n",
"os.makedirs(jp2_dir, exist_ok=True)\n",
"os.makedirs(jpeg_dir, exist_ok=True)\n",
"\n",
"Step 1: Read Excel file\n",
"print(\"Step 1: Reading Excel file\")\n",
"df = read_excel_and_get_urls(excel_file)\n",
"\n",
"# Step 2: Download and extract JP2 files\n",
"print(\"Step 2: Downloading and extracting JP2 files\")\n",
"jp2_info_list = []\n",
"\n",
"for idx, row in tqdm(df.iterrows(), total=len(df), desc=\"Downloading ZIP files\"):\n",
" tilename = row['TILENAME']\n",
" zone = row['ZONE']\n",
" url = row['URL']\n",
" \n",
" info = download_and_extract_jp2(tilename, zone, url, jp2_dir)\n",
" if info is not None:\n",
" jp2_info_list.append(info)\n",
"\n",
"print(f\"Successfully downloaded {len(jp2_info_list)} JP2 files\")\n",
"\n",
"# Step 3: Batch convert JP2 to JPEG\n",
"print(\"Step 3: Converting JP2 to JPEG\")\n",
"convert_jp2_to_jpeg(jp2_dir, jpeg_dir)\n",
"\n",
"#Step 4: Create image info list for dataset creation\n",
"print(\"Step 4: Creating image info list\")\n",
"image_info_list = recreate_image_info_list(excel_file, jpeg_dir)\n",
" \n",
"print(f\"Found {len(image_info_list)} matched JPEG files\")\n",
"\n",
"# Step 5: Delete JP2 files to save space\n",
"print(\"Step 5: Deleting JP2 files...\")\n",
"shutil.rmtree(jp2_dir)\n",
"print(\"JP2 files deleted\")\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Login to Hugging Face (use your API token)\n",
"api_token = input(\"Enter your Hugging Face API token: \")\n",
"login(token=api_token)\n",
"\n",
"\n",
"# Create and push Hugging Face dataset\n",
"hf_dataset_name = input(\"Enter the name for your Hugging Face dataset (username/dataset-name): \")\n",
"upload_dataset_to_hub(image_info_list, hf_dataset_name)\n",
"\n",
"print(\"Done!\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Reading metadata from /fsx/avijit/projects/datacommonsMA/massgis_2023_aerial_imagery/imagefolder-dataset/train/metadata.csv\n",
"Selected 50 samples\n",
"Loading and resizing images...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/fsx/avijit/anaconda3/envs/py312/lib/python3.12/site-packages/PIL/Image.py:3402: DecompressionBombWarning: Image size (100000000 pixels) exceeds limit of 89478485 pixels, could be decompression bomb DOS attack.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Resizing images...\n",
"Saving to /fsx/avijit/projects/datacommonsMA/massgis_2023_aerial_imagery/imagefolder-dataset/data/sample_dataset_256x256.parquet...\n",
"Saved sample dataset to /fsx/avijit/projects/datacommonsMA/massgis_2023_aerial_imagery/imagefolder-dataset/data/sample_dataset_256x256.parquet\n",
"File size: 6.28 MB\n",
"Verifying saved file...\n",
"Columns in saved file: ['image', 'tilename', 'zone']\n",
"Number of rows: 50\n"
]
}
],
"source": [
"import os\n",
"import pandas as pd\n",
"import pyarrow as pa\n",
"import pyarrow.parquet as pq\n",
"from PIL import Image as PILImage\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"import io\n",
"\n",
"# Import the pandas_image_methods library\n",
"from pandas_image_methods import PILMethods\n",
"\n",
"# Register the PIL methods accessor\n",
"pd.api.extensions.register_series_accessor(\"pil\")(PILMethods)\n",
"\n",
"base_dir = \"/fsx/avijit/projects/datacommonsMA/massgis_2023_aerial_imagery/imagefolder-dataset\"\n",
"train_dir = os.path.join(base_dir, \"train\")\n",
"output_dir = os.path.join(base_dir, \"data\")\n",
"output_path = os.path.join(output_dir, \"sample_dataset_256x256.parquet\")\n",
"\n",
"# Create the output directory if it doesn't exist\n",
"os.makedirs(output_dir, exist_ok=True)\n",
"\n",
"target_size = (256, 256)\n",
"num_samples = 50\n",
"\n",
"metadata_path = os.path.join(train_dir, \"metadata.csv\")\n",
"print(f\"Reading metadata from {metadata_path}\")\n",
"metadata_df = pd.read_csv(metadata_path)\n",
"\n",
"# Take a random sample of 50 rows\n",
"if len(metadata_df) > num_samples:\n",
" metadata_df = metadata_df.sample(n=num_samples, random_state=42)\n",
"\n",
"print(f\"Selected {len(metadata_df)} samples\")\n",
"\n",
"# Create DataFrame with just the paths first\n",
"df = pd.DataFrame({\n",
" 'file_path': [os.path.join(train_dir, row['file_name']) for _, row in metadata_df.iterrows()],\n",
" 'tilename': metadata_df['tilename'].tolist(),\n",
" 'zone': metadata_df['zone'].astype('int64').tolist()\n",
"})\n",
"\n",
"# Load images using the pil accessor\n",
"print(\"Loading and resizing images...\")\n",
"df['image'] = df['file_path'].pil.open()\n",
"\n",
"# Resize the images\n",
"print(\"Resizing images...\")\n",
"df['image'] = df['image'].pil.resize(target_size)\n",
"\n",
"# Keep only the required columns for the preview\n",
"df = df[['image', 'tilename', 'zone']]\n",
"\n",
"# Save to Parquet (the library will handle the PIL images correctly)\n",
"print(f\"Saving to {output_path}...\")\n",
"df.to_parquet(output_path)\n",
"\n",
"print(f\"Saved sample dataset to {output_path}\")\n",
"print(f\"File size: {os.path.getsize(output_path) / (1024 * 1024):.2f} MB\")\n",
"\n",
"# Verify the saved file\n",
"print(\"Verifying saved file...\")\n",
"df_check = pd.read_parquet(output_path)\n",
"print(\"Columns in saved file:\", df_check.columns.tolist())\n",
"print(\"Number of rows:\", len(df_check))"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<pyarrow._parquet.FileMetaData object at 0x7fa0fc694f90>\n",
" created_by: parquet-cpp-arrow version 19.0.0\n",
" num_columns: 4\n",
" num_rows: 50\n",
" num_row_groups: 1\n",
" format_version: 2.6\n",
" serialized_size: 2731\n"
]
}
],
"source": [
"parquet_file = pq.ParquetFile(output_path)\n",
"print(parquet_file.metadata)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "py312",
"language": "python",
"name": "py312"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|