File size: 138,774 Bytes
b1d4de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
# File: setfit-main/src/setfit/__init__.py
__version__ = '1.1.0.dev0'
import importlib
import os
import warnings
from .data import get_templated_dataset, sample_dataset
from .model_card import SetFitModelCardData
from .modeling import SetFitHead, SetFitModel
from .span import AbsaModel, AbsaTrainer, AspectExtractor, AspectModel, PolarityModel
from .trainer import SetFitTrainer, Trainer
from .trainer_distillation import DistillationSetFitTrainer, DistillationTrainer
from .training_args import TrainingArguments
warnings.filterwarnings('default', category=DeprecationWarning)
if importlib.util.find_spec('codecarbon') and 'CODECARBON_LOG_LEVEL' not in os.environ:
    os.environ['CODECARBON_LOG_LEVEL'] = 'error'

# File: setfit-main/src/setfit/data.py
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import pandas as pd
import torch
from datasets import Dataset, DatasetDict, load_dataset
from torch.utils.data import Dataset as TorchDataset
from . import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
if TYPE_CHECKING:
    from transformers import PreTrainedTokenizerBase
TokenizerOutput = Dict[str, List[int]]
SEEDS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
SAMPLE_SIZES = [2, 4, 8, 16, 32, 64]

def get_templated_dataset(dataset: Optional[Dataset]=None, candidate_labels: Optional[List[str]]=None, reference_dataset: Optional[str]=None, template: str='This sentence is {}', sample_size: int=2, text_column: str='text', label_column: str='label', multi_label: bool=False, label_names_column: str='label_text') -> Dataset:
    if dataset is None:
        dataset = Dataset.from_dict({})
    required_columns = {text_column, label_column}
    column_names = set(dataset.column_names)
    if column_names:
        missing_columns = required_columns.difference(column_names)
        if missing_columns:
            raise ValueError(f'The following columns are missing from the input dataset: {missing_columns}.')
    if bool(reference_dataset) == bool(candidate_labels):
        raise ValueError('Must supply exactly one of `reference_dataset` or `candidate_labels` to `get_templated_dataset()`!')
    if candidate_labels is None:
        candidate_labels = get_candidate_labels(reference_dataset, label_names_column)
    empty_label_vector = [0] * len(candidate_labels)
    for (label_id, label_name) in enumerate(candidate_labels):
        label_vector = empty_label_vector.copy()
        label_vector[label_id] = 1
        example = {text_column: template.format(label_name), label_column: label_vector if multi_label else label_id}
        for _ in range(sample_size):
            dataset = dataset.add_item(example)
    return dataset

def get_candidate_labels(dataset_name: str, label_names_column: str='label_text') -> List[str]:
    dataset = load_dataset(dataset_name, split='train')
    try:
        label_features = dataset.features['label']
        candidate_labels = label_features.names
    except AttributeError:
        label_names = dataset.unique(label_names_column)
        label_ids = dataset.unique('label')
        id2label = sorted(zip(label_ids, label_names), key=lambda x: x[0])
        candidate_labels = list(map(lambda x: x[1], id2label))
    return candidate_labels

def create_samples(df: pd.DataFrame, sample_size: int, seed: int) -> pd.DataFrame:
    examples = []
    for label in df['label'].unique():
        subset = df.query(f'label == {label}')
        if len(subset) > sample_size:
            examples.append(subset.sample(sample_size, random_state=seed, replace=False))
        else:
            examples.append(subset)
    return pd.concat(examples)

def sample_dataset(dataset: Dataset, label_column: str='label', num_samples: int=8, seed: int=42) -> Dataset:
    shuffled_dataset = dataset.shuffle(seed=seed)
    df = shuffled_dataset.to_pandas()
    df = df.groupby(label_column)
    df = df.apply(lambda x: x.sample(min(num_samples, len(x)), random_state=seed))
    df = df.reset_index(drop=True)
    all_samples = Dataset.from_pandas(df, features=dataset.features)
    return all_samples.shuffle(seed=seed)

def create_fewshot_splits(dataset: Dataset, sample_sizes: List[int], add_data_augmentation: bool=False, dataset_name: Optional[str]=None) -> DatasetDict:
    splits_ds = DatasetDict()
    df = dataset.to_pandas()
    if add_data_augmentation and dataset_name is None:
        raise ValueError('If `add_data_augmentation` is True, must supply a `dataset_name` to create_fewshot_splits()!')
    for sample_size in sample_sizes:
        if add_data_augmentation:
            augmented_df = get_templated_dataset(reference_dataset=dataset_name, sample_size=sample_size).to_pandas()
        for (idx, seed) in enumerate(SEEDS):
            split_df = create_samples(df, sample_size, seed)
            if add_data_augmentation:
                split_df = pd.concat([split_df, augmented_df], axis=0).sample(frac=1, random_state=seed)
            splits_ds[f'train-{sample_size}-{idx}'] = Dataset.from_pandas(split_df, preserve_index=False)
    return splits_ds

def create_samples_multilabel(df: pd.DataFrame, sample_size: int, seed: int) -> pd.DataFrame:
    examples = []
    column_labels = [_col for _col in df.columns.tolist() if _col != 'text']
    for label in column_labels:
        subset = df.query(f'{label} == 1')
        if len(subset) > sample_size:
            examples.append(subset.sample(sample_size, random_state=seed, replace=False))
        else:
            examples.append(subset)
    return pd.concat(examples).drop_duplicates()

def create_fewshot_splits_multilabel(dataset: Dataset, sample_sizes: List[int]) -> DatasetDict:
    splits_ds = DatasetDict()
    df = dataset.to_pandas()
    for sample_size in sample_sizes:
        for (idx, seed) in enumerate(SEEDS):
            split_df = create_samples_multilabel(df, sample_size, seed)
            splits_ds[f'train-{sample_size}-{idx}'] = Dataset.from_pandas(split_df, preserve_index=False)
    return splits_ds

class SetFitDataset(TorchDataset):

    def __init__(self, x: List[str], y: Union[List[int], List[List[int]]], tokenizer: 'PreTrainedTokenizerBase', max_length: int=32) -> None:
        assert len(x) == len(y)
        self.x = x
        self.y = y
        self.tokenizer = tokenizer
        self.max_length = max_length

    def __len__(self) -> int:
        return len(self.x)

    def __getitem__(self, idx: int) -> Tuple[TokenizerOutput, Union[int, List[int]]]:
        feature = self.tokenizer(self.x[idx], max_length=self.max_length, padding='max_length', truncation=True, return_attention_mask='attention_mask' in self.tokenizer.model_input_names, return_token_type_ids='token_type_ids' in self.tokenizer.model_input_names)
        label = self.y[idx]
        return (feature, label)

    def collate_fn(self, batch):
        features = {input_name: [] for input_name in self.tokenizer.model_input_names}
        labels = []
        for (feature, label) in batch:
            features['input_ids'].append(feature['input_ids'])
            if 'attention_mask' in features:
                features['attention_mask'].append(feature['attention_mask'])
            if 'token_type_ids' in features:
                features['token_type_ids'].append(feature['token_type_ids'])
            labels.append(label)
        features = {k: torch.Tensor(v).int() for (k, v) in features.items()}
        labels = torch.Tensor(labels)
        labels = labels.long() if len(labels.size()) == 1 else labels.float()
        return (features, labels)

# File: setfit-main/src/setfit/exporters/onnx.py
import copy
import warnings
from typing import Callable, Optional, Union
import numpy as np
import onnx
import torch
from sentence_transformers import SentenceTransformer, models
from sklearn.linear_model import LogisticRegression
from transformers.modeling_utils import PreTrainedModel
from setfit.exporters.utils import mean_pooling

class OnnxSetFitModel(torch.nn.Module):

    def __init__(self, model_body: PreTrainedModel, pooler: Optional[Union[torch.nn.Module, Callable[[torch.Tensor], torch.Tensor]]]=None, model_head: Optional[Union[torch.nn.Module, LogisticRegression]]=None):
        super().__init__()
        self.model_body = model_body
        if pooler is None:
            print('No pooler was set so defaulting to mean pooling.')
            self.pooler = mean_pooling
        else:
            self.pooler = pooler
        self.model_head = model_head

    def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, token_type_ids: torch.Tensor):
        hidden_states = self.model_body(input_ids, attention_mask, token_type_ids)
        hidden_states = {'token_embeddings': hidden_states[0], 'attention_mask': attention_mask}
        embeddings = self.pooler(hidden_states)
        if self.model_head is None:
            return embeddings
        out = self.model_head(embeddings)
        return out

def export_onnx_setfit_model(setfit_model: OnnxSetFitModel, inputs, output_path, opset: int=12):
    input_names = list(inputs.keys())
    output_names = ['logits']
    dynamic_axes_input = {}
    for input_name in input_names:
        dynamic_axes_input[input_name] = {0: 'batch_size', 1: 'sequence'}
    dynamic_axes_output = {}
    for output_name in output_names:
        dynamic_axes_output[output_name] = {0: 'batch_size'}
    target = setfit_model.model_body.device
    args = tuple((value.to(target) for value in inputs.values()))
    setfit_model.eval()
    with torch.no_grad():
        torch.onnx.export(setfit_model, args=args, f=output_path, opset_version=opset, input_names=['input_ids', 'attention_mask', 'token_type_ids'], output_names=output_names, dynamic_axes={**dynamic_axes_input, **dynamic_axes_output})

def export_sklearn_head_to_onnx(model_head: LogisticRegression, opset: int) -> onnx.onnx_ml_pb2.ModelProto:
    try:
        import onnxconverter_common
        from skl2onnx import convert_sklearn
        from skl2onnx.common.data_types import guess_data_type
        from skl2onnx.sklapi import CastTransformer
        from sklearn.pipeline import Pipeline
    except ImportError:
        msg = '\n        `skl2onnx` must be installed in order to convert a model with an sklearn head.\n        Please install with `pip install skl2onnx`.\n        '
        raise ImportError(msg)
    input_shape = (None, model_head.n_features_in_)
    if hasattr(model_head, 'coef_'):
        dtype = guess_data_type(model_head.coef_, shape=input_shape)[0][1]
    elif not hasattr(model_head, 'coef_') and hasattr(model_head, 'estimators_'):
        if any([not hasattr(e, 'coef_') for e in model_head.estimators_]):
            raise ValueError('The model_head is a meta-estimator but not all of the estimators have a coef_ attribute.')
        dtype = guess_data_type(model_head.estimators_[0].coef_, shape=input_shape)[0][1]
    else:
        raise ValueError('The model_head either does not have a coef_ attribute or some estimators in model_head.estimators_ do not have a coef_ attribute. Conversion to ONNX only supports these cases.')
    dtype.shape = input_shape
    if isinstance(dtype, onnxconverter_common.data_types.DoubleTensorType):
        sklearn_model = Pipeline([('castdouble', CastTransformer(dtype=np.double)), ('head', model_head)])
    else:
        sklearn_model = model_head
    onnx_model = convert_sklearn(sklearn_model, initial_types=[('model_head', dtype)], target_opset=opset, options={id(sklearn_model): {'zipmap': False}})
    return onnx_model

def hummingbird_export(model, data_sample):
    try:
        from hummingbird.ml import convert
    except ImportError:
        raise ImportError("Hummingbird-ML library is not installed.Run 'pip install hummingbird-ml' to use this type of export.")
    onnx_model = convert(model, 'onnx', data_sample)
    return onnx_model._model

def export_onnx(model_body: SentenceTransformer, model_head: Union[torch.nn.Module, LogisticRegression], opset: int, output_path: str='model.onnx', ignore_ir_version: bool=True, use_hummingbird: bool=False) -> None:
    model_body_module = model_body._modules['0']
    model_pooler = model_body._modules['1']
    tokenizer = model_body_module.tokenizer
    max_length = model_body_module.max_seq_length
    transformer = model_body_module.auto_model
    transformer.eval()
    tokenizer_kwargs = dict(max_length=max_length, padding='max_length', return_attention_mask=True, return_token_type_ids=True, return_tensors='pt')
    dummy_sample = "It's a test."
    dummy_inputs = tokenizer(dummy_sample, **tokenizer_kwargs)
    if issubclass(type(model_head), models.Dense):
        setfit_model = OnnxSetFitModel(transformer, lambda x: model_pooler(x)['sentence_embedding'], model_head).cpu()
        export_onnx_setfit_model(setfit_model, dummy_inputs, output_path, opset)
        onnx_setfit_model = onnx.load(output_path)
        meta = onnx_setfit_model.metadata_props.add()
        for (key, value) in tokenizer_kwargs.items():
            meta = onnx_setfit_model.metadata_props.add()
            meta.key = str(key)
            meta.value = str(value)
    else:
        if use_hummingbird:
            with torch.no_grad():
                test_input = copy.deepcopy(dummy_inputs)
                head_input = model_body(test_input)['sentence_embedding']
                onnx_head = hummingbird_export(model_head, head_input.detach().numpy())
        else:
            onnx_head = export_sklearn_head_to_onnx(model_head, opset)
        max_opset = max([x.version for x in onnx_head.opset_import])
        if max_opset != opset:
            warnings.warn(f'sklearn onnx max opset is {max_opset} requested opset {opset} using opset {max_opset} for compatibility.')
        export_onnx_setfit_model(OnnxSetFitModel(transformer, lambda x: model_pooler(x)['sentence_embedding']), dummy_inputs, output_path, max_opset)
        onnx_body = onnx.load(output_path)
        if ignore_ir_version:
            onnx_head.ir_version = onnx_body.ir_version
        elif onnx_head.ir_version != onnx_body.ir_version:
            msg = f'\n            IR Version mismatch between head={onnx_head.ir_version} and body={onnx_body.ir_version}\n            Make sure that the ONNX IR versions are aligned and supported between the chosen Sklearn model\n            and the transformer.  You can set ignore_ir_version=True to coerce them but this might cause errors.\n            '
            raise ValueError(msg)
        head_input_name = next(iter(onnx_head.graph.input)).name
        onnx_setfit_model = onnx.compose.merge_models(onnx_body, onnx_head, io_map=[('logits', head_input_name)])
    onnx.save(onnx_setfit_model, output_path)

# File: setfit-main/src/setfit/exporters/openvino.py
import os
import openvino.runtime as ov
from setfit import SetFitModel
from setfit.exporters.onnx import export_onnx

def export_to_openvino(model: SetFitModel, output_path: str='model.xml') -> None:
    OPENVINO_SUPPORTED_OPSET = 13
    model.model_body.cpu()
    onnx_path = output_path.replace('.xml', '.onnx')
    export_onnx(model.model_body, model.model_head, opset=OPENVINO_SUPPORTED_OPSET, output_path=onnx_path, ignore_ir_version=True, use_hummingbird=True)
    ov_model = ov.Core().read_model(onnx_path)
    ov.serialize(ov_model, output_path)
    os.remove(onnx_path)

# File: setfit-main/src/setfit/exporters/utils.py
import torch

def mean_pooling(token_embeddings: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-09)

# File: setfit-main/src/setfit/integrations.py
import importlib.util
from typing import TYPE_CHECKING
from .utils import BestRun
if TYPE_CHECKING:
    from .trainer import Trainer

def is_optuna_available() -> bool:
    return importlib.util.find_spec('optuna') is not None

def default_hp_search_backend():
    if is_optuna_available():
        return 'optuna'

def run_hp_search_optuna(trainer: 'Trainer', n_trials: int, direction: str, **kwargs) -> BestRun:
    import optuna

    def _objective(trial):
        trainer.objective = None
        trainer.train(trial=trial)
        if getattr(trainer, 'objective', None) is None:
            metrics = trainer.evaluate()
            trainer.objective = trainer.compute_objective(metrics)
        return trainer.objective
    timeout = kwargs.pop('timeout', None)
    n_jobs = kwargs.pop('n_jobs', 1)
    study = optuna.create_study(direction=direction, **kwargs)
    study.optimize(_objective, n_trials=n_trials, timeout=timeout, n_jobs=n_jobs)
    best_trial = study.best_trial
    return BestRun(str(best_trial.number), best_trial.value, best_trial.params, study)

# File: setfit-main/src/setfit/logging.py
""""""
import logging
import os
import sys
import threading
from logging import CRITICAL
from logging import DEBUG
from logging import ERROR
from logging import FATAL
from logging import INFO
from logging import NOTSET
from logging import WARN
from logging import WARNING
from typing import Optional
import huggingface_hub.utils as hf_hub_utils
from tqdm import auto as tqdm_lib
_lock = threading.Lock()
_default_handler: Optional[logging.Handler] = None
log_levels = {'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL}
_default_log_level = logging.WARNING
_tqdm_active = True

def _get_default_logging_level():
    env_level_str = os.getenv('TRANSFORMERS_VERBOSITY', None)
    if env_level_str:
        if env_level_str in log_levels:
            return log_levels[env_level_str]
        else:
            logging.getLogger().warning(f"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, has to be one of: {', '.join(log_levels.keys())}")
    return _default_log_level

def _get_library_name() -> str:
    return __name__.split('.')[0]

def _get_library_root_logger() -> logging.Logger:
    return logging.getLogger(_get_library_name())

def _configure_library_root_logger() -> None:
    global _default_handler
    with _lock:
        if _default_handler:
            return
        _default_handler = logging.StreamHandler()
        _default_handler.flush = sys.stderr.flush
        library_root_logger = _get_library_root_logger()
        library_root_logger.addHandler(_default_handler)
        library_root_logger.setLevel(_get_default_logging_level())
        library_root_logger.propagate = False

def _reset_library_root_logger() -> None:
    global _default_handler
    with _lock:
        if not _default_handler:
            return
        library_root_logger = _get_library_root_logger()
        library_root_logger.removeHandler(_default_handler)
        library_root_logger.setLevel(logging.NOTSET)
        _default_handler = None

def get_log_levels_dict():
    return log_levels

def get_logger(name: Optional[str]=None) -> logging.Logger:
    if name is None:
        name = _get_library_name()
    _configure_library_root_logger()
    return logging.getLogger(name)

def get_verbosity() -> int:
    _configure_library_root_logger()
    return _get_library_root_logger().getEffectiveLevel()

def set_verbosity(verbosity: int) -> None:
    _configure_library_root_logger()
    _get_library_root_logger().setLevel(verbosity)

def set_verbosity_info():
    return set_verbosity(INFO)

def set_verbosity_warning():
    return set_verbosity(WARNING)

def set_verbosity_debug():
    return set_verbosity(DEBUG)

def set_verbosity_error():
    return set_verbosity(ERROR)

def disable_default_handler() -> None:
    _configure_library_root_logger()
    assert _default_handler is not None
    _get_library_root_logger().removeHandler(_default_handler)

def enable_default_handler() -> None:
    _configure_library_root_logger()
    assert _default_handler is not None
    _get_library_root_logger().addHandler(_default_handler)

def add_handler(handler: logging.Handler) -> None:
    _configure_library_root_logger()
    assert handler is not None
    _get_library_root_logger().addHandler(handler)

def remove_handler(handler: logging.Handler) -> None:
    _configure_library_root_logger()
    assert handler is not None and handler not in _get_library_root_logger().handlers
    _get_library_root_logger().removeHandler(handler)

def disable_propagation() -> None:
    _configure_library_root_logger()
    _get_library_root_logger().propagate = False

def enable_propagation() -> None:
    _configure_library_root_logger()
    _get_library_root_logger().propagate = True

def enable_explicit_format() -> None:
    handlers = _get_library_root_logger().handlers
    for handler in handlers:
        formatter = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s')
        handler.setFormatter(formatter)

def reset_format() -> None:
    handlers = _get_library_root_logger().handlers
    for handler in handlers:
        handler.setFormatter(None)

def warning_advice(self, *args, **kwargs):
    no_advisory_warnings = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS', False)
    if no_advisory_warnings:
        return
    self.warning(*args, **kwargs)
logging.Logger.warning_advice = warning_advice

class EmptyTqdm:

    def __init__(self, *args, **kwargs):
        self._iterator = args[0] if args else None

    def __iter__(self):
        return iter(self._iterator)

    def __getattr__(self, _):

        def empty_fn(*args, **kwargs):
            return
        return empty_fn

    def __enter__(self):
        return self

    def __exit__(self, type_, value, traceback):
        return

class _tqdm_cls:

    def __call__(self, *args, **kwargs):
        if _tqdm_active:
            return tqdm_lib.tqdm(*args, **kwargs)
        else:
            return EmptyTqdm(*args, **kwargs)

    def set_lock(self, *args, **kwargs):
        self._lock = None
        if _tqdm_active:
            return tqdm_lib.tqdm.set_lock(*args, **kwargs)

    def get_lock(self):
        if _tqdm_active:
            return tqdm_lib.tqdm.get_lock()
tqdm = _tqdm_cls()

def is_progress_bar_enabled() -> bool:
    global _tqdm_active
    return bool(_tqdm_active)

def enable_progress_bar():
    global _tqdm_active
    _tqdm_active = True
    hf_hub_utils.enable_progress_bars()

def disable_progress_bar():
    global _tqdm_active
    _tqdm_active = False
    hf_hub_utils.disable_progress_bars()

# File: setfit-main/src/setfit/losses.py
import torch
from torch import nn

class SupConLoss(nn.Module):

    def __init__(self, model, temperature=0.07, contrast_mode='all', base_temperature=0.07):
        super(SupConLoss, self).__init__()
        self.model = model
        self.temperature = temperature
        self.contrast_mode = contrast_mode
        self.base_temperature = base_temperature

    def forward(self, sentence_features, labels=None, mask=None):
        features = self.model(sentence_features[0])['sentence_embedding']
        features = torch.nn.functional.normalize(features, p=2, dim=1)
        features = torch.unsqueeze(features, 1)
        device = features.device
        if len(features.shape) < 3:
            raise ValueError('`features` needs to be [bsz, n_views, ...],at least 3 dimensions are required')
        if len(features.shape) > 3:
            features = features.view(features.shape[0], features.shape[1], -1)
        batch_size = features.shape[0]
        if labels is not None and mask is not None:
            raise ValueError('Cannot define both `labels` and `mask`')
        elif labels is None and mask is None:
            mask = torch.eye(batch_size, dtype=torch.float32).to(device)
        elif labels is not None:
            labels = labels.contiguous().view(-1, 1)
            if labels.shape[0] != batch_size:
                raise ValueError('Num of labels does not match num of features')
            mask = torch.eq(labels, labels.T).float().to(device)
        else:
            mask = mask.float().to(device)
        contrast_count = features.shape[1]
        contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
        if self.contrast_mode == 'one':
            anchor_feature = features[:, 0]
            anchor_count = 1
        elif self.contrast_mode == 'all':
            anchor_feature = contrast_feature
            anchor_count = contrast_count
        else:
            raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
        anchor_dot_contrast = torch.div(torch.matmul(anchor_feature, contrast_feature.T), self.temperature)
        (logits_max, _) = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
        logits = anchor_dot_contrast - logits_max.detach()
        mask = mask.repeat(anchor_count, contrast_count)
        logits_mask = torch.scatter(torch.ones_like(mask), 1, torch.arange(batch_size * anchor_count).view(-1, 1).to(device), 0)
        mask = mask * logits_mask
        exp_logits = torch.exp(logits) * logits_mask
        log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
        mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
        loss = -(self.temperature / self.base_temperature) * mean_log_prob_pos
        loss = loss.view(anchor_count, batch_size).mean()
        return loss

# File: setfit-main/src/setfit/model_card.py
import collections
import random
from collections import Counter, defaultdict
from dataclasses import dataclass, field, fields
from pathlib import Path
from platform import python_version
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import datasets
import tokenizers
import torch
import transformers
from datasets import Dataset
from huggingface_hub import CardData, ModelCard, dataset_info, list_datasets, model_info
from huggingface_hub.repocard_data import EvalResult, eval_results_to_model_index
from huggingface_hub.utils import yaml_dump
from sentence_transformers import __version__ as sentence_transformers_version
from transformers import PretrainedConfig, TrainerCallback
from transformers.integrations import CodeCarbonCallback
from transformers.modelcard import make_markdown_table
from transformers.trainer_callback import TrainerControl, TrainerState
from transformers.training_args import TrainingArguments
from setfit import __version__ as setfit_version
from . import logging
logger = logging.get_logger(__name__)
if TYPE_CHECKING:
    from setfit.modeling import SetFitModel
    from setfit.trainer import Trainer

class ModelCardCallback(TrainerCallback):

    def __init__(self, trainer: 'Trainer') -> None:
        super().__init__()
        self.trainer = trainer
        callbacks = [callback for callback in self.trainer.callback_handler.callbacks if isinstance(callback, CodeCarbonCallback)]
        if callbacks:
            trainer.model.model_card_data.code_carbon_callback = callbacks[0]

    def on_init_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, model: 'SetFitModel', **kwargs):
        if not model.model_card_data.dataset_id:
            try:
                model.model_card_data.infer_dataset_id(self.trainer.train_dataset)
            except Exception:
                pass
        dataset = self.trainer.eval_dataset or self.trainer.train_dataset
        if dataset is not None:
            if not model.model_card_data.widget:
                model.model_card_data.set_widget_examples(dataset)
        if self.trainer.train_dataset:
            model.model_card_data.set_train_set_metrics(self.trainer.train_dataset)
            try:
                model.model_card_data.num_classes = len(set(self.trainer.train_dataset['label']))
                model.model_card_data.set_label_examples(self.trainer.train_dataset)
            except Exception:
                pass

    def on_train_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, model: 'SetFitModel', **kwargs) -> None:
        ignore_keys = {'output_dir', 'logging_dir', 'logging_strategy', 'logging_first_step', 'logging_steps', 'eval_strategy', 'eval_steps', 'eval_delay', 'save_strategy', 'save_steps', 'save_total_limit', 'metric_for_best_model', 'greater_is_better', 'report_to', 'samples_per_label', 'show_progress_bar'}
        get_name_keys = {'loss', 'distance_metric'}
        args_dict = args.to_dict()
        model.model_card_data.hyperparameters = {key: value.__name__ if key in get_name_keys else value for (key, value) in args_dict.items() if key not in ignore_keys and value is not None}

    def on_evaluate(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, model: 'SetFitModel', metrics: Dict[str, float], **kwargs) -> None:
        if model.model_card_data.eval_lines_list and model.model_card_data.eval_lines_list[-1]['Step'] == state.global_step:
            model.model_card_data.eval_lines_list[-1]['Validation Loss'] = metrics['eval_embedding_loss']
        else:
            model.model_card_data.eval_lines_list.append({'Epoch': state.epoch, 'Step': state.global_step, 'Training Loss': '-', 'Validation Loss': metrics['eval_embedding_loss']})

    def on_log(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, model: 'SetFitModel', logs: Dict[str, float], **kwargs):
        keys = {'embedding_loss', 'polarity_embedding_loss', 'aspect_embedding_loss'} & set(logs)
        if keys:
            if model.model_card_data.eval_lines_list and model.model_card_data.eval_lines_list[-1]['Step'] == state.global_step:
                model.model_card_data.eval_lines_list[-1]['Training Loss'] = logs[keys.pop()]
            else:
                model.model_card_data.eval_lines_list.append({'Epoch': state.epoch, 'Step': state.global_step, 'Training Loss': logs[keys.pop()], 'Validation Loss': '-'})
YAML_FIELDS = ['language', 'license', 'library_name', 'tags', 'datasets', 'metrics', 'pipeline_tag', 'widget', 'model-index', 'co2_eq_emissions', 'base_model', 'inference']
IGNORED_FIELDS = ['model']

@dataclass
class SetFitModelCardData(CardData):
    language: Optional[Union[str, List[str]]] = None
    license: Optional[str] = None
    tags: Optional[List[str]] = field(default_factory=lambda : ['setfit', 'sentence-transformers', 'text-classification', 'generated_from_setfit_trainer'])
    model_name: Optional[str] = None
    model_id: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_id: Optional[str] = None
    dataset_revision: Optional[str] = None
    task_name: Optional[str] = None
    st_id: Optional[str] = None
    hyperparameters: Dict[str, Any] = field(default_factory=dict, init=False)
    eval_results_dict: Optional[Dict[str, Any]] = field(default_factory=dict, init=False)
    eval_lines_list: List[Dict[str, float]] = field(default_factory=list, init=False)
    metric_lines: List[Dict[str, float]] = field(default_factory=list, init=False)
    widget: List[Dict[str, str]] = field(default_factory=list, init=False)
    predict_example: Optional[str] = field(default=None, init=False)
    label_example_list: List[Dict[str, str]] = field(default_factory=list, init=False)
    tokenizer_warning: bool = field(default=False, init=False)
    train_set_metrics_list: List[Dict[str, str]] = field(default_factory=list, init=False)
    train_set_sentences_per_label_list: List[Dict[str, str]] = field(default_factory=list, init=False)
    code_carbon_callback: Optional[CodeCarbonCallback] = field(default=None, init=False)
    num_classes: Optional[int] = field(default=None, init=False)
    best_model_step: Optional[int] = field(default=None, init=False)
    metrics: List[str] = field(default_factory=lambda : ['accuracy'], init=False)
    pipeline_tag: str = field(default='text-classification', init=False)
    library_name: str = field(default='setfit', init=False)
    version: Dict[str, str] = field(default_factory=lambda : {'python': python_version(), 'setfit': setfit_version, 'sentence_transformers': sentence_transformers_version, 'transformers': transformers.__version__, 'torch': torch.__version__, 'datasets': datasets.__version__, 'tokenizers': tokenizers.__version__}, init=False)
    absa: Dict[str, Any] = field(default=None, init=False, repr=False)
    model: Optional['SetFitModel'] = field(default=None, init=False, repr=False)
    head_class: Optional[str] = field(default=None, init=False, repr=False)
    inference: Optional[bool] = field(default=True, init=False, repr=False)

    def __post_init__(self):
        if self.dataset_id:
            if is_on_huggingface(self.dataset_id, is_model=False):
                if self.language is None:
                    try:
                        info = dataset_info(self.dataset_id)
                    except Exception:
                        pass
                    else:
                        if info.cardData:
                            self.language = info.cardData.get('language', self.language)
            else:
                logger.warning(f'The provided {self.dataset_id!r} dataset could not be found on the Hugging Face Hub. Setting `dataset_id` to None.')
                self.dataset_id = None
        if self.model_id and self.model_id.count('/') != 1:
            logger.warning(f'The provided {self.model_id!r} model ID should include the organization or user, such as "tomaarsen/setfit-bge-small-v1.5-sst2-8-shot". Setting `model_id` to None.')
            self.model_id = None

    def set_best_model_step(self, step: int) -> None:
        self.best_model_step = step

    def set_widget_examples(self, dataset: Dataset) -> None:
        samples = dataset.select(random.sample(range(len(dataset)), k=min(len(dataset), 5)))['text']
        self.widget = [{'text': sample} for sample in samples]
        samples.sort(key=len)
        if samples:
            self.predict_example = samples[0]

    def set_train_set_metrics(self, dataset: Dataset) -> None:

        def add_naive_word_count(sample: Dict[str, Any]) -> Dict[str, Any]:
            sample['word_count'] = len(sample['text'].split(' '))
            return sample
        dataset = dataset.map(add_naive_word_count)
        self.train_set_metrics_list = [{'Training set': 'Word count', 'Min': min(dataset['word_count']), 'Median': sum(dataset['word_count']) / len(dataset), 'Max': max(dataset['word_count'])}]
        if 'label' not in dataset.column_names:
            return
        sample_label = dataset[0]['label']
        if isinstance(sample_label, collections.abc.Sequence) and (not isinstance(sample_label, str)):
            return
        try:
            counter = Counter(dataset['label'])
            if self.model.labels:
                self.train_set_sentences_per_label_list = [{'Label': str_label, 'Training Sample Count': counter[str_label if isinstance(sample_label, str) else self.model.label2id[str_label]]} for str_label in self.model.labels]
            else:
                self.train_set_sentences_per_label_list = [{'Label': self.model.labels[label] if self.model.labels and isinstance(label, int) else str(label), 'Training Sample Count': count} for (label, count) in sorted(counter.items())]
        except Exception:
            pass

    def set_label_examples(self, dataset: Dataset) -> None:
        num_examples_per_label = 3
        examples = defaultdict(list)
        finished_labels = set()
        for sample in dataset:
            text = sample['text']
            label = sample['label']
            if label not in finished_labels:
                examples[label].append(f'<li>{repr(text)}</li>')
                if len(examples[label]) >= num_examples_per_label:
                    finished_labels.add(label)
            if len(finished_labels) == self.num_classes:
                break
        self.label_example_list = [{'Label': self.model.labels[label] if self.model.labels and isinstance(label, int) else label, 'Examples': '<ul>' + ''.join(example_set) + '</ul>'} for (label, example_set) in examples.items()]

    def infer_dataset_id(self, dataset: Dataset) -> None:

        def subtuple_finder(tuple: Tuple[str], subtuple: Tuple[str]) -> int:
            for (i, element) in enumerate(tuple):
                if element == subtuple[0] and tuple[i:i + len(subtuple)] == subtuple:
                    return i
            return -1

        def normalize(dataset_id: str) -> str:
            for token in '/\\_-':
                dataset_id = dataset_id.replace(token, '')
            return dataset_id.lower()
        cache_files = dataset.cache_files
        if cache_files and 'filename' in cache_files[0]:
            cache_path_parts = Path(cache_files[0]['filename']).parts
            subtuple = ('huggingface', 'datasets')
            index = subtuple_finder(cache_path_parts, subtuple)
            if index == -1:
                return
            cache_dataset_name = cache_path_parts[index + len(subtuple)]
            if '___' in cache_dataset_name:
                (author, dataset_name) = cache_dataset_name.split('___')
            else:
                author = None
                dataset_name = cache_dataset_name
            dataset_list = [dataset for dataset in list_datasets(author=author, dataset_name=dataset_name) if normalize(dataset.id) == normalize(cache_dataset_name)]
            if len(dataset_list) == 1:
                self.dataset_id = dataset_list[0].id

    def register_model(self, model: 'SetFitModel') -> None:
        self.model = model
        head_class = model.model_head.__class__.__name__
        self.head_class = {'LogisticRegression': '[LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html)', 'SetFitHead': '[SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead)'}.get(head_class, head_class)
        if not self.model_name:
            if self.st_id:
                self.model_name = f'SetFit with {self.st_id}'
                if self.dataset_name or self.dataset_id:
                    self.model_name += f' on {self.dataset_name or self.dataset_id}'
            else:
                self.model_name = 'SetFit'
        self.inference = self.model.multi_target_strategy is None

    def infer_st_id(self, setfit_model_id: str) -> None:
        (config_dict, _) = PretrainedConfig.get_config_dict(setfit_model_id)
        st_id = config_dict.get('_name_or_path')
        st_id_path = Path(st_id)
        candidate_model_ids = ['/'.join(st_id_path.parts[-2:])]
        splits = st_id_path.name.split('_')
        candidate_model_ids += ['_'.join(splits[:idx]) + '/' + '_'.join(splits[idx:]) for idx in range(1, len(splits))]
        for model_id in candidate_model_ids:
            if is_on_huggingface(model_id):
                self.st_id = model_id
                break

    def set_st_id(self, model_id: str) -> None:
        if is_on_huggingface(model_id):
            self.st_id = model_id

    def post_training_eval_results(self, results: Dict[str, float]) -> None:

        def try_to_pure_python(value: Any) -> Any:
            try:
                if hasattr(value, 'dtype'):
                    return value.item()
            except Exception:
                pass
            return value
        pure_python_results = {key: try_to_pure_python(value) for (key, value) in results.items()}
        results_without_split = {key.split('_', maxsplit=1)[1].title(): value for (key, value) in pure_python_results.items()}
        self.eval_results_dict = pure_python_results
        self.metric_lines = [{'Label': '**all**', **results_without_split}]

    def _maybe_round(self, v, decimals=4):
        if isinstance(v, float) and len(str(v).split('.')) > 1 and (len(str(v).split('.')[1]) > decimals):
            return f'{v:.{decimals}f}'
        return str(v)

    def to_dict(self) -> Dict[str, Any]:
        super_dict = {field.name: getattr(self, field.name) for field in fields(self)}
        if self.eval_results_dict:
            dataset_split = list(self.eval_results_dict.keys())[0].split('_')[0]
            dataset_id = self.dataset_id or 'unknown'
            dataset_name = self.dataset_name or self.dataset_id or 'Unknown'
            eval_results = [EvalResult(task_type='text-classification', dataset_type=dataset_id, dataset_name=dataset_name, dataset_split=dataset_split, dataset_revision=self.dataset_revision, metric_type=metric_key.split('_', maxsplit=1)[1], metric_value=metric_value, task_name='Text Classification', metric_name=metric_key.split('_', maxsplit=1)[1].title()) for (metric_key, metric_value) in self.eval_results_dict.items()]
            super_dict['metrics'] = [metric_key.split('_', maxsplit=1)[1] for metric_key in self.eval_results_dict]
            super_dict['model-index'] = eval_results_to_model_index(self.model_name, eval_results)
        eval_lines_list = [{key: f'**{self._maybe_round(value)}**' if line['Step'] == self.best_model_step else value for (key, value) in line.items()} for line in self.eval_lines_list]
        super_dict['eval_lines'] = make_markdown_table(eval_lines_list)
        super_dict['explain_bold_in_eval'] = '**' in super_dict['eval_lines']
        super_dict['label_examples'] = make_markdown_table(self.label_example_list).replace('-:|', '--|')
        super_dict['train_set_metrics'] = make_markdown_table(self.train_set_metrics_list).replace('-:|', '--|')
        super_dict['train_set_sentences_per_label_list'] = make_markdown_table(self.train_set_sentences_per_label_list).replace('-:|', '--|')
        super_dict['metrics_table'] = make_markdown_table(self.metric_lines).replace('-:|', '--|')
        if self.code_carbon_callback and self.code_carbon_callback.tracker:
            emissions_data = self.code_carbon_callback.tracker._prepare_emissions_data()
            super_dict['co2_eq_emissions'] = {'emissions': float(emissions_data.emissions) * 1000, 'source': 'codecarbon', 'training_type': 'fine-tuning', 'on_cloud': emissions_data.on_cloud == 'Y', 'cpu_model': emissions_data.cpu_model, 'ram_total_size': emissions_data.ram_total_size, 'hours_used': round(emissions_data.duration / 3600, 3)}
            if emissions_data.gpu_model:
                super_dict['co2_eq_emissions']['hardware_used'] = emissions_data.gpu_model
        if self.dataset_id:
            super_dict['datasets'] = [self.dataset_id]
        if self.st_id:
            super_dict['base_model'] = self.st_id
        super_dict['model_max_length'] = self.model.model_body.get_max_seq_length()
        if super_dict['num_classes'] is None:
            if self.model.labels:
                super_dict['num_classes'] = len(self.model.labels)
        if super_dict['absa']:
            super_dict.update(super_dict.pop('absa'))
        for key in IGNORED_FIELDS:
            super_dict.pop(key, None)
        return super_dict

    def to_yaml(self, line_break=None) -> str:
        return yaml_dump({key: value for (key, value) in self.to_dict().items() if key in YAML_FIELDS and value is not None}, sort_keys=False, line_break=line_break).strip()

def is_on_huggingface(repo_id: str, is_model: bool=True) -> bool:
    if len(repo_id.split('/')) > 2:
        return False
    try:
        if is_model:
            model_info(repo_id)
        else:
            dataset_info(repo_id)
        return True
    except Exception:
        return False

def generate_model_card(model: 'SetFitModel') -> str:
    template_path = Path(__file__).parent / 'model_card_template.md'
    model_card = ModelCard.from_template(card_data=model.model_card_data, template_path=template_path, hf_emoji='🤗')
    return model_card.content

# File: setfit-main/src/setfit/modeling.py
import json
import os
import tempfile
import warnings
from pathlib import Path
from typing import Dict, List, Literal, Optional, Set, Tuple, Union
import joblib
import numpy as np
import requests
import torch
from huggingface_hub import ModelHubMixin, hf_hub_download
from huggingface_hub.utils import validate_hf_hub_args
from packaging.version import Version, parse
from sentence_transformers import SentenceTransformer
from sentence_transformers import __version__ as sentence_transformers_version
from sentence_transformers import models
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier
from sklearn.multioutput import ClassifierChain, MultiOutputClassifier
from torch import nn
from torch.utils.data import DataLoader
from tqdm.auto import tqdm, trange
from transformers.utils import copy_func
from . import logging
from .data import SetFitDataset
from .model_card import SetFitModelCardData, generate_model_card
from .utils import set_docstring
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
MODEL_HEAD_NAME = 'model_head.pkl'
CONFIG_NAME = 'config_setfit.json'

class SetFitHead(models.Dense):

    def __init__(self, in_features: Optional[int]=None, out_features: int=2, temperature: float=1.0, eps: float=1e-05, bias: bool=True, device: Optional[Union[torch.device, str]]=None, multitarget: bool=False) -> None:
        super(models.Dense, self).__init__()
        if out_features == 1:
            logger.warning('Change `out_features` from 1 to 2 since we use `CrossEntropyLoss` for binary classification.')
            out_features = 2
        if in_features is not None:
            self.linear = nn.Linear(in_features, out_features, bias=bias)
        else:
            self.linear = nn.LazyLinear(out_features, bias=bias)
        self.in_features = in_features
        self.out_features = out_features
        self.temperature = temperature
        self.eps = eps
        self.bias = bias
        self._device = device or 'cuda' if torch.cuda.is_available() else 'cpu'
        self.multitarget = multitarget
        self.to(self._device)
        self.apply(self._init_weight)

    def forward(self, features: Union[Dict[str, torch.Tensor], torch.Tensor], temperature: Optional[float]=None) -> Union[Dict[str, torch.Tensor], Tuple[torch.Tensor]]:
        temperature = temperature or self.temperature
        is_features_dict = False
        if isinstance(features, dict):
            assert 'sentence_embedding' in features
            is_features_dict = True
        x = features['sentence_embedding'] if is_features_dict else features
        logits = self.linear(x)
        logits = logits / (temperature + self.eps)
        if self.multitarget:
            probs = torch.sigmoid(logits)
        else:
            probs = nn.functional.softmax(logits, dim=-1)
        if is_features_dict:
            features.update({'logits': logits, 'probs': probs})
            return features
        return (logits, probs)

    def predict_proba(self, x_test: torch.Tensor) -> torch.Tensor:
        self.eval()
        return self(x_test)[1]

    def predict(self, x_test: torch.Tensor) -> torch.Tensor:
        probs = self.predict_proba(x_test)
        if self.multitarget:
            return torch.where(probs >= 0.5, 1, 0)
        return torch.argmax(probs, dim=-1)

    def get_loss_fn(self) -> nn.Module:
        if self.multitarget:
            return torch.nn.BCEWithLogitsLoss()
        return torch.nn.CrossEntropyLoss()

    @property
    def device(self) -> torch.device:
        return next(self.parameters()).device

    def get_config_dict(self) -> Dict[str, Optional[Union[int, float, bool]]]:
        return {'in_features': self.in_features, 'out_features': self.out_features, 'temperature': self.temperature, 'bias': self.bias, 'device': self.device.type}

    @staticmethod
    def _init_weight(module) -> None:
        if isinstance(module, nn.Linear):
            nn.init.xavier_uniform_(module.weight)
            if module.bias is not None:
                nn.init.constant_(module.bias, 0.01)

    def __repr__(self) -> str:
        return 'SetFitHead({})'.format(self.get_config_dict())

class SetFitModel(ModelHubMixin):

    def __init__(self, model_body: Optional[SentenceTransformer]=None, model_head: Optional[Union[SetFitHead, LogisticRegression]]=None, multi_target_strategy: Optional[str]=None, normalize_embeddings: bool=False, labels: Optional[List[str]]=None, model_card_data: Optional[SetFitModelCardData]=None, sentence_transformers_kwargs: Optional[Dict]=None, **kwargs) -> None:
        super(SetFitModel, self).__init__()
        self.model_body = model_body
        self.model_head = model_head
        self.multi_target_strategy = multi_target_strategy
        self.normalize_embeddings = normalize_embeddings
        self.labels = labels
        self.model_card_data = model_card_data or SetFitModelCardData()
        self.sentence_transformers_kwargs = sentence_transformers_kwargs or {}
        self.attributes_to_save: Set[str] = {'normalize_embeddings', 'labels'}
        self.model_card_data.register_model(self)

    @property
    def has_differentiable_head(self) -> bool:
        return isinstance(self.model_head, nn.Module)

    @property
    def id2label(self) -> Dict[int, str]:
        if self.labels is None:
            return {}
        return dict(enumerate(self.labels))

    @property
    def label2id(self) -> Dict[str, int]:
        if self.labels is None:
            return {}
        return {label: idx for (idx, label) in enumerate(self.labels)}

    def fit(self, x_train: List[str], y_train: Union[List[int], List[List[int]]], num_epochs: int, batch_size: Optional[int]=None, body_learning_rate: Optional[float]=None, head_learning_rate: Optional[float]=None, end_to_end: bool=False, l2_weight: Optional[float]=None, max_length: Optional[int]=None, show_progress_bar: bool=True) -> None:
        if self.has_differentiable_head:
            self.model_body.train()
            self.model_head.train()
            if not end_to_end:
                self.freeze('body')
            dataloader = self._prepare_dataloader(x_train, y_train, batch_size, max_length)
            criterion = self.model_head.get_loss_fn()
            optimizer = self._prepare_optimizer(head_learning_rate, body_learning_rate, l2_weight)
            scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)
            for epoch_idx in trange(num_epochs, desc='Epoch', disable=not show_progress_bar):
                for batch in tqdm(dataloader, desc='Iteration', disable=not show_progress_bar, leave=False):
                    (features, labels) = batch
                    optimizer.zero_grad()
                    features = {k: v.to(self.device) for (k, v) in features.items()}
                    labels = labels.to(self.device)
                    outputs = self.model_body(features)
                    if self.normalize_embeddings:
                        outputs['sentence_embedding'] = nn.functional.normalize(outputs['sentence_embedding'], p=2, dim=1)
                    outputs = self.model_head(outputs)
                    logits = outputs['logits']
                    loss: torch.Tensor = criterion(logits, labels)
                    loss.backward()
                    optimizer.step()
                scheduler.step()
            if not end_to_end:
                self.unfreeze('body')
        else:
            embeddings = self.model_body.encode(x_train, normalize_embeddings=self.normalize_embeddings)
            self.model_head.fit(embeddings, y_train)
            if self.labels is None and self.multi_target_strategy is None:
                try:
                    classes = self.model_head.classes_
                    if classes.dtype.char == 'U':
                        self.labels = classes.tolist()
                except Exception:
                    pass

    def _prepare_dataloader(self, x_train: List[str], y_train: Union[List[int], List[List[int]]], batch_size: Optional[int]=None, max_length: Optional[int]=None, shuffle: bool=True) -> DataLoader:
        max_acceptable_length = self.model_body.get_max_seq_length()
        if max_length is None:
            max_length = max_acceptable_length
            logger.warning(f'The `max_length` is `None`. Using the maximum acceptable length according to the current model body: {max_length}.')
        if max_length > max_acceptable_length:
            logger.warning(f'The specified `max_length`: {max_length} is greater than the maximum length of the current model body: {max_acceptable_length}. Using {max_acceptable_length} instead.')
            max_length = max_acceptable_length
        dataset = SetFitDataset(x_train, y_train, tokenizer=self.model_body.tokenizer, max_length=max_length)
        dataloader = DataLoader(dataset, batch_size=batch_size, collate_fn=dataset.collate_fn, shuffle=shuffle, pin_memory=True)
        return dataloader

    def _prepare_optimizer(self, head_learning_rate: float, body_learning_rate: Optional[float], l2_weight: float) -> torch.optim.Optimizer:
        body_learning_rate = body_learning_rate or head_learning_rate
        l2_weight = l2_weight or 0.01
        optimizer = torch.optim.AdamW([{'params': self.model_body.parameters(), 'lr': body_learning_rate, 'weight_decay': l2_weight}, {'params': self.model_head.parameters(), 'lr': head_learning_rate, 'weight_decay': l2_weight}])
        return optimizer

    def freeze(self, component: Optional[Literal['body', 'head']]=None) -> None:
        if component is None or component == 'body':
            self._freeze_or_not(self.model_body, to_freeze=True)
        if (component is None or component == 'head') and self.has_differentiable_head:
            self._freeze_or_not(self.model_head, to_freeze=True)

    def unfreeze(self, component: Optional[Literal['body', 'head']]=None, keep_body_frozen: Optional[bool]=None) -> None:
        if keep_body_frozen is not None:
            warnings.warn('`keep_body_frozen` is deprecated and will be removed in v2.0.0 of SetFit. Please either pass "head", "body" or no arguments to unfreeze both.', DeprecationWarning, stacklevel=2)
            if keep_body_frozen and (not component):
                component = 'head'
        if component is None or component == 'body':
            self._freeze_or_not(self.model_body, to_freeze=False)
        if (component is None or component == 'head') and self.has_differentiable_head:
            self._freeze_or_not(self.model_head, to_freeze=False)

    def _freeze_or_not(self, model: nn.Module, to_freeze: bool) -> None:
        for param in model.parameters():
            param.requires_grad = not to_freeze

    def encode(self, inputs: List[str], batch_size: int=32, show_progress_bar: Optional[bool]=None) -> Union[torch.Tensor, np.ndarray]:
        return self.model_body.encode(inputs, batch_size=batch_size, normalize_embeddings=self.normalize_embeddings, convert_to_tensor=self.has_differentiable_head, show_progress_bar=show_progress_bar)

    def _output_type_conversion(self, outputs: Union[torch.Tensor, np.ndarray], as_numpy: bool=False) -> Union[torch.Tensor, np.ndarray]:
        if as_numpy and self.has_differentiable_head:
            outputs = outputs.detach().cpu().numpy()
        elif not as_numpy and (not self.has_differentiable_head) and (outputs.dtype.char != 'U'):
            outputs = torch.from_numpy(outputs)
        return outputs

    def predict_proba(self, inputs: Union[str, List[str]], batch_size: int=32, as_numpy: bool=False, show_progress_bar: Optional[bool]=None) -> Union[torch.Tensor, np.ndarray]:
        is_singular = isinstance(inputs, str)
        if is_singular:
            inputs = [inputs]
        embeddings = self.encode(inputs, batch_size=batch_size, show_progress_bar=show_progress_bar)
        probs = self.model_head.predict_proba(embeddings)
        if isinstance(probs, list):
            if self.has_differentiable_head:
                probs = torch.stack(probs, axis=1)
            else:
                probs = np.stack(probs, axis=1)
        outputs = self._output_type_conversion(probs, as_numpy=as_numpy)
        return outputs[0] if is_singular else outputs

    def predict(self, inputs: Union[str, List[str]], batch_size: int=32, as_numpy: bool=False, use_labels: bool=True, show_progress_bar: Optional[bool]=None) -> Union[torch.Tensor, np.ndarray, List[str], int, str]:
        is_singular = isinstance(inputs, str)
        if is_singular:
            inputs = [inputs]
        embeddings = self.encode(inputs, batch_size=batch_size, show_progress_bar=show_progress_bar)
        preds = self.model_head.predict(embeddings)
        if use_labels and self.labels and (preds.ndim == 1) and (self.has_differentiable_head or preds.dtype.char != 'U'):
            outputs = [self.labels[int(pred)] for pred in preds]
        else:
            outputs = self._output_type_conversion(preds, as_numpy=as_numpy)
        return outputs[0] if is_singular else outputs

    def __call__(self, inputs: Union[str, List[str]], batch_size: int=32, as_numpy: bool=False, use_labels: bool=True, show_progress_bar: Optional[bool]=None) -> Union[torch.Tensor, np.ndarray, List[str], int, str]:
        return self.predict(inputs, batch_size=batch_size, as_numpy=as_numpy, use_labels=use_labels, show_progress_bar=show_progress_bar)

    @property
    def device(self) -> torch.device:
        if parse(sentence_transformers_version) >= Version('2.3.0'):
            return self.model_body.device
        return self.model_body._target_device

    def to(self, device: Union[str, torch.device]) -> 'SetFitModel':
        if parse(sentence_transformers_version) < Version('2.3.0'):
            self.model_body._target_device = device if isinstance(device, torch.device) else torch.device(device)
        self.model_body = self.model_body.to(device)
        if self.has_differentiable_head:
            self.model_head = self.model_head.to(device)
        return self

    def create_model_card(self, path: str, model_name: Optional[str]='SetFit Model') -> None:
        if not os.path.exists(path):
            os.makedirs(path)
        model_path = Path(model_name)
        if self.model_card_data.model_id is None and model_path.exists() and (Path(tempfile.gettempdir()) in model_path.resolve().parents):
            self.model_card_data.model_id = '/'.join(model_path.parts[-2:])
        with open(os.path.join(path, 'README.md'), 'w', encoding='utf-8') as f:
            f.write(self.generate_model_card())

    def generate_model_card(self) -> str:
        return generate_model_card(self)

    def _save_pretrained(self, save_directory: Union[Path, str]) -> None:
        save_directory = str(save_directory)
        config_path = os.path.join(save_directory, CONFIG_NAME)
        with open(config_path, 'w') as f:
            json.dump({attr_name: getattr(self, attr_name) for attr_name in self.attributes_to_save if hasattr(self, attr_name)}, f, indent=2)
        self.model_body.save(path=save_directory, create_model_card=False)
        self.create_model_card(path=save_directory, model_name=save_directory)
        if self.has_differentiable_head:
            self.model_head.to('cpu')
        joblib.dump(self.model_head, str(Path(save_directory) / MODEL_HEAD_NAME))
        if self.has_differentiable_head:
            self.model_head.to(self.device)

    @classmethod
    @validate_hf_hub_args
    def _from_pretrained(cls, model_id: str, revision: Optional[str]=None, cache_dir: Optional[str]=None, force_download: Optional[bool]=None, proxies: Optional[Dict]=None, resume_download: Optional[bool]=None, local_files_only: Optional[bool]=None, token: Optional[Union[bool, str]]=None, multi_target_strategy: Optional[str]=None, use_differentiable_head: bool=False, device: Optional[Union[torch.device, str]]=None, trust_remote_code: bool=False, **model_kwargs) -> 'SetFitModel':
        sentence_transformers_kwargs = {'cache_folder': cache_dir, 'use_auth_token': token, 'device': device, 'trust_remote_code': trust_remote_code}
        if parse(sentence_transformers_version) >= Version('2.3.0'):
            sentence_transformers_kwargs = {'cache_folder': cache_dir, 'token': token, 'device': device, 'trust_remote_code': trust_remote_code}
        else:
            if trust_remote_code:
                raise ValueError('The `trust_remote_code` argument is only supported for `sentence-transformers` >= 2.3.0.')
            sentence_transformers_kwargs = {'cache_folder': cache_dir, 'use_auth_token': token, 'device': device}
        model_body = SentenceTransformer(model_id, **sentence_transformers_kwargs)
        if parse(sentence_transformers_version) >= Version('2.3.0'):
            device = model_body.device
        else:
            device = model_body._target_device
        model_body.to(device)
        config_file: Optional[str] = None
        if os.path.isdir(model_id):
            if CONFIG_NAME in os.listdir(model_id):
                config_file = os.path.join(model_id, CONFIG_NAME)
        else:
            try:
                config_file = hf_hub_download(repo_id=model_id, filename=CONFIG_NAME, revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, token=token, local_files_only=local_files_only)
            except requests.exceptions.RequestException:
                pass
        model_kwargs = {key: value for (key, value) in model_kwargs.items() if value is not None}
        if config_file is not None:
            with open(config_file, 'r', encoding='utf-8') as f:
                config = json.load(f)
            for (setting, value) in config.items():
                if setting in model_kwargs:
                    if model_kwargs[setting] != value:
                        logger.warning(f'Overriding {setting} in model configuration from {value} to {model_kwargs[setting]}.')
                else:
                    model_kwargs[setting] = value
        if os.path.isdir(model_id):
            if MODEL_HEAD_NAME in os.listdir(model_id):
                model_head_file = os.path.join(model_id, MODEL_HEAD_NAME)
            else:
                logger.info(f'{MODEL_HEAD_NAME} not found in {Path(model_id).resolve()}, initialising classification head with random weights. You should TRAIN this model on a downstream task to use it for predictions and inference.')
                model_head_file = None
        else:
            try:
                model_head_file = hf_hub_download(repo_id=model_id, filename=MODEL_HEAD_NAME, revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, token=token, local_files_only=local_files_only)
            except requests.exceptions.RequestException:
                logger.info(f'{MODEL_HEAD_NAME} not found on HuggingFace Hub, initialising classification head with random weights. You should TRAIN this model on a downstream task to use it for predictions and inference.')
                model_head_file = None
        model_card_data: SetFitModelCardData = model_kwargs.pop('model_card_data', SetFitModelCardData())
        if model_head_file is not None:
            model_head = joblib.load(model_head_file)
            if isinstance(model_head, torch.nn.Module):
                model_head.to(device)
            model_card_data.infer_st_id(model_id)
        else:
            head_params = model_kwargs.pop('head_params', {})
            if use_differentiable_head:
                if multi_target_strategy is None:
                    use_multitarget = False
                elif multi_target_strategy in ['one-vs-rest', 'multi-output']:
                    use_multitarget = True
                else:
                    raise ValueError(f"multi_target_strategy '{multi_target_strategy}' is not supported for differentiable head")
                base_head_params = {'in_features': model_body.get_sentence_embedding_dimension(), 'device': device, 'multitarget': use_multitarget}
                model_head = SetFitHead(**{**head_params, **base_head_params})
            else:
                clf = LogisticRegression(**head_params)
                if multi_target_strategy is not None:
                    if multi_target_strategy == 'one-vs-rest':
                        multilabel_classifier = OneVsRestClassifier(clf)
                    elif multi_target_strategy == 'multi-output':
                        multilabel_classifier = MultiOutputClassifier(clf)
                    elif multi_target_strategy == 'classifier-chain':
                        multilabel_classifier = ClassifierChain(clf)
                    else:
                        raise ValueError(f'multi_target_strategy {multi_target_strategy} is not supported.')
                    model_head = multilabel_classifier
                else:
                    model_head = clf
            model_card_data.set_st_id(model_id if '/' in model_id else f'sentence-transformers/{model_id}')
        model_kwargs.pop('config', None)
        return cls(model_body=model_body, model_head=model_head, multi_target_strategy=multi_target_strategy, model_card_data=model_card_data, sentence_transformers_kwargs=sentence_transformers_kwargs, **model_kwargs)
docstring = SetFitModel.from_pretrained.__doc__
cut_index = docstring.find('model_kwargs')
if cut_index != -1:
    docstring = docstring[:cut_index] + 'labels (`List[str]`, *optional*):\n                If the labels are integers ranging from `0` to `num_classes-1`, then these labels indicate\n                    the corresponding labels.\n            model_card_data (`SetFitModelCardData`, *optional*):\n                A `SetFitModelCardData` instance storing data such as model language, license, dataset name,\n                    etc. to be used in the automatically generated model cards.\n            multi_target_strategy (`str`, *optional*):\n                The strategy to use with multi-label classification. One of "one-vs-rest", "multi-output",\n                    or "classifier-chain".\n            use_differentiable_head (`bool`, *optional*):\n                Whether to load SetFit using a differentiable (i.e., Torch) head instead of Logistic Regression.\n            normalize_embeddings (`bool`, *optional*):\n                Whether to apply normalization on the embeddings produced by the Sentence Transformer body.\n            device (`Union[torch.device, str]`, *optional*):\n                The device on which to load the SetFit model, e.g. `"cuda:0"`, `"mps"` or `torch.device("cuda")`.\n            trust_remote_code (`bool`, defaults to `False`): Whether or not to allow for custom Sentence Transformers\n                models defined on the Hub in their own modeling files. This option should only be set to True for\n                repositories you trust and in which you have read the code, as it will execute code present on\n                the Hub on your local machine. Defaults to False.\n\n        Example::\n\n            >>> from setfit import SetFitModel\n            >>> model = SetFitModel.from_pretrained(\n            ...     "sentence-transformers/paraphrase-mpnet-base-v2",\n            ...     labels=["positive", "negative"],\n            ... )\n        '
    SetFitModel.from_pretrained = set_docstring(SetFitModel.from_pretrained, docstring)
SetFitModel.save_pretrained = copy_func(SetFitModel.save_pretrained)
SetFitModel.save_pretrained.__doc__ = SetFitModel.save_pretrained.__doc__.replace('~ModelHubMixin._from_pretrained', 'SetFitModel.push_to_hub')

# File: setfit-main/src/setfit/sampler.py
from itertools import zip_longest
from typing import Generator, Iterable, List, Optional
import numpy as np
import torch
from sentence_transformers import InputExample
from torch.utils.data import IterableDataset
from . import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)

def shuffle_combinations(iterable: Iterable, replacement: bool=True) -> Generator:
    n = len(iterable)
    k = 1 if not replacement else 0
    idxs = np.stack(np.triu_indices(n, k), axis=-1)
    for i in np.random.RandomState(seed=42).permutation(len(idxs)):
        (_idx, idx) = idxs[i, :]
        yield (iterable[_idx], iterable[idx])

class ContrastiveDataset(IterableDataset):

    def __init__(self, examples: List[InputExample], multilabel: bool, num_iterations: Optional[None]=None, sampling_strategy: str='oversampling', max_pairs: int=-1) -> None:
        super().__init__()
        self.pos_index = 0
        self.neg_index = 0
        self.pos_pairs = []
        self.neg_pairs = []
        self.sentences = np.array([s.texts[0] for s in examples])
        self.labels = np.array([s.label for s in examples])
        self.sentence_labels = list(zip(self.sentences, self.labels))
        self.max_pairs = max_pairs
        if multilabel:
            self.generate_multilabel_pairs()
        else:
            self.generate_pairs()
        if num_iterations is not None and num_iterations > 0:
            self.len_pos_pairs = num_iterations * len(self.sentences)
            self.len_neg_pairs = num_iterations * len(self.sentences)
        elif sampling_strategy == 'unique':
            self.len_pos_pairs = len(self.pos_pairs)
            self.len_neg_pairs = len(self.neg_pairs)
        elif sampling_strategy == 'undersampling':
            self.len_pos_pairs = min(len(self.pos_pairs), len(self.neg_pairs))
            self.len_neg_pairs = min(len(self.pos_pairs), len(self.neg_pairs))
        elif sampling_strategy == 'oversampling':
            self.len_pos_pairs = max(len(self.pos_pairs), len(self.neg_pairs))
            self.len_neg_pairs = max(len(self.pos_pairs), len(self.neg_pairs))
        else:
            raise ValueError("Invalid sampling strategy. Must be one of 'unique', 'oversampling', or 'undersampling'.")

    def generate_pairs(self) -> None:
        for ((_text, _label), (text, label)) in shuffle_combinations(self.sentence_labels):
            if _label == label:
                self.pos_pairs.append(InputExample(texts=[_text, text], label=1.0))
            else:
                self.neg_pairs.append(InputExample(texts=[_text, text], label=0.0))
            if self.max_pairs != -1 and len(self.pos_pairs) > self.max_pairs and (len(self.neg_pairs) > self.max_pairs):
                break

    def generate_multilabel_pairs(self) -> None:
        for ((_text, _label), (text, label)) in shuffle_combinations(self.sentence_labels):
            if any(np.logical_and(_label, label)):
                self.pos_pairs.append(InputExample(texts=[_text, text], label=1.0))
            else:
                self.neg_pairs.append(InputExample(texts=[_text, text], label=0.0))
            if self.max_pairs != -1 and len(self.pos_pairs) > self.max_pairs and (len(self.neg_pairs) > self.max_pairs):
                break

    def get_positive_pairs(self) -> List[InputExample]:
        pairs = []
        for _ in range(self.len_pos_pairs):
            if self.pos_index >= len(self.pos_pairs):
                self.pos_index = 0
            pairs.append(self.pos_pairs[self.pos_index])
            self.pos_index += 1
        return pairs

    def get_negative_pairs(self) -> List[InputExample]:
        pairs = []
        for _ in range(self.len_neg_pairs):
            if self.neg_index >= len(self.neg_pairs):
                self.neg_index = 0
            pairs.append(self.neg_pairs[self.neg_index])
            self.neg_index += 1
        return pairs

    def __iter__(self):
        for (pos_pair, neg_pair) in zip_longest(self.get_positive_pairs(), self.get_negative_pairs()):
            if pos_pair is not None:
                yield pos_pair
            if neg_pair is not None:
                yield neg_pair

    def __len__(self) -> int:
        return self.len_pos_pairs + self.len_neg_pairs

class ContrastiveDistillationDataset(ContrastiveDataset):

    def __init__(self, examples: List[InputExample], cos_sim_matrix: torch.Tensor, num_iterations: Optional[None]=None, sampling_strategy: str='oversampling', max_pairs: int=-1) -> None:
        self.cos_sim_matrix = cos_sim_matrix
        super().__init__(examples, multilabel=False, num_iterations=num_iterations, sampling_strategy=sampling_strategy, max_pairs=max_pairs)
        self.sentence_labels = list(enumerate(self.sentences))
        self.len_neg_pairs = 0
        if num_iterations is not None and num_iterations > 0:
            self.len_pos_pairs = num_iterations * len(self.sentences)
        else:
            self.len_pos_pairs = len(self.pos_pairs)

    def generate_pairs(self) -> None:
        for ((text_one, id_one), (text_two, id_two)) in shuffle_combinations(self.sentence_labels):
            self.pos_pairs.append(InputExample(texts=[text_one, text_two], label=self.cos_sim_matrix[id_one][id_two]))
            if self.max_pairs != -1 and len(self.pos_pairs) > self.max_pairs:
                break

# File: setfit-main/src/setfit/span/aspect_extractor.py
from typing import TYPE_CHECKING, List, Tuple
if TYPE_CHECKING:
    from spacy.tokens import Doc

class AspectExtractor:

    def __init__(self, spacy_model: str) -> None:
        super().__init__()
        import spacy
        self.nlp = spacy.load(spacy_model)

    def find_groups(self, aspect_mask: List[bool]):
        start = None
        for (idx, flag) in enumerate(aspect_mask):
            if flag:
                if start is None:
                    start = idx
            elif start is not None:
                yield slice(start, idx)
                start = None
        if start is not None:
            yield slice(start, idx + 1)

    def __call__(self, texts: List[str]) -> Tuple[List['Doc'], List[slice]]:
        aspects_list = []
        docs = list(self.nlp.pipe(texts))
        for doc in docs:
            aspect_mask = [token.pos_ in ('NOUN', 'PROPN') for token in doc]
            aspects_list.append(list(self.find_groups(aspect_mask)))
        return (docs, aspects_list)

# File: setfit-main/src/setfit/span/modeling.py
import copy
import os
import re
import tempfile
import types
from collections import defaultdict
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Union
import torch
from datasets import Dataset
from huggingface_hub.utils import SoftTemporaryDirectory
from setfit.utils import set_docstring
from .. import logging
from ..modeling import SetFitModel
from .aspect_extractor import AspectExtractor
if TYPE_CHECKING:
    from spacy.tokens import Doc
logger = logging.get_logger(__name__)

class SpanSetFitModel(SetFitModel):

    def __init__(self, spacy_model: str='en_core_web_lg', span_context: int=0, **kwargs):
        super().__init__(**kwargs)
        self.spacy_model = spacy_model
        self.span_context = span_context
        self.attributes_to_save = {'normalize_embeddings', 'labels', 'span_context', 'spacy_model'}

    def prepend_aspects(self, docs: List['Doc'], aspects_list: List[List[slice]]) -> Iterable[str]:
        for (doc, aspects) in zip(docs, aspects_list):
            for aspect_slice in aspects:
                aspect = doc[max(aspect_slice.start - self.span_context, 0):aspect_slice.stop + self.span_context]
                yield (aspect.text + ':' + doc.text)

    def __call__(self, docs: List['Doc'], aspects_list: List[List[slice]]) -> List[bool]:
        inputs_list = list(self.prepend_aspects(docs, aspects_list))
        preds = self.predict(inputs_list, as_numpy=True)
        iter_preds = iter(preds)
        return [[next(iter_preds) for _ in aspects] for aspects in aspects_list]

    def create_model_card(self, path: str, model_name: Optional[str]=None) -> None:
        if not os.path.exists(path):
            os.makedirs(path)
        model_path = Path(model_name)
        if model_path.exists() and Path(tempfile.gettempdir()) in model_path.resolve().parents:
            model_name = '/'.join(model_path.parts[-2:])
        is_aspect = isinstance(self, AspectModel)
        aspect_model = 'setfit-absa-aspect'
        polarity_model = 'setfit-absa-polarity'
        if model_name is not None:
            if is_aspect:
                aspect_model = model_name
                if model_name.endswith('-aspect'):
                    polarity_model = model_name[:-len('-aspect')] + '-polarity'
            else:
                polarity_model = model_name
                if model_name.endswith('-polarity'):
                    aspect_model = model_name[:-len('-polarity')] + '-aspect'
        if self.model_card_data.absa is None and self.model_card_data.model_name:
            from spacy import __version__ as spacy_version
            self.model_card_data.model_name = self.model_card_data.model_name.replace('SetFit', 'SetFit Aspect Model' if is_aspect else 'SetFit Polarity Model', 1)
            self.model_card_data.tags.insert(1, 'absa')
            self.model_card_data.version['spacy'] = spacy_version
        self.model_card_data.absa = {'is_absa': True, 'is_aspect': is_aspect, 'spacy_model': self.spacy_model, 'aspect_model': aspect_model, 'polarity_model': polarity_model}
        if self.model_card_data.task_name is None:
            self.model_card_data.task_name = 'Aspect Based Sentiment Analysis (ABSA)'
        self.model_card_data.inference = False
        with open(os.path.join(path, 'README.md'), 'w', encoding='utf-8') as f:
            f.write(self.generate_model_card())
docstring = SpanSetFitModel.from_pretrained.__doc__
cut_index = docstring.find('multi_target_strategy')
if cut_index != -1:
    docstring = docstring[:cut_index] + 'model_card_data (`SetFitModelCardData`, *optional*):\n                A `SetFitModelCardData` instance storing data such as model language, license, dataset name,\n                    etc. to be used in the automatically generated model cards.\n            use_differentiable_head (`bool`, *optional*):\n                Whether to load SetFit using a differentiable (i.e., Torch) head instead of Logistic Regression.\n            normalize_embeddings (`bool`, *optional*):\n                Whether to apply normalization on the embeddings produced by the Sentence Transformer body.\n            span_context (`int`, defaults to `0`):\n                The number of words before and after the span candidate that should be prepended to the full sentence.\n                By default, 0 for Aspect models and 3 for Polarity models.\n            device (`Union[torch.device, str]`, *optional*):\n                The device on which to load the SetFit model, e.g. `"cuda:0"`, `"mps"` or `torch.device("cuda")`.'
    SpanSetFitModel.from_pretrained = set_docstring(SpanSetFitModel.from_pretrained, docstring, cls=SpanSetFitModel)

class AspectModel(SpanSetFitModel):

    def __call__(self, docs: List['Doc'], aspects_list: List[List[slice]]) -> List[bool]:
        sentence_preds = super().__call__(docs, aspects_list)
        return [[aspect for (aspect, pred) in zip(aspects, preds) if pred == 'aspect'] for (aspects, preds) in zip(aspects_list, sentence_preds)]
AspectModel.from_pretrained = types.MethodType(AspectModel.from_pretrained.__func__, AspectModel)

class PolarityModel(SpanSetFitModel):

    def __init__(self, span_context: int=3, **kwargs):
        super().__init__(**kwargs)
        self.span_context = span_context
PolarityModel.from_pretrained = types.MethodType(PolarityModel.from_pretrained.__func__, PolarityModel)

@dataclass
class AbsaModel:
    aspect_extractor: AspectExtractor
    aspect_model: AspectModel
    polarity_model: PolarityModel

    def gold_aspect_spans_to_aspects_list(self, inputs: Dataset) -> List[List[slice]]:
        grouped_data = defaultdict(list)
        for sample in inputs:
            text = sample.pop('text')
            grouped_data[text].append(sample)
        (docs, _) = self.aspect_extractor(grouped_data.keys())
        aspects_list = []
        index = -1
        skipped_indices = []
        for (doc, samples) in zip(docs, grouped_data.values()):
            aspects_list.append([])
            for sample in samples:
                index += 1
                match_objects = re.finditer(re.escape(sample['span']), doc.text)
                for (i, match) in enumerate(match_objects):
                    if i == sample['ordinal']:
                        char_idx_start = match.start()
                        char_idx_end = match.end()
                        span = doc.char_span(char_idx_start, char_idx_end)
                        if span is None:
                            logger.warning(f"Aspect term {sample['span']!r} with ordinal {sample['ordinal']}, isn't a token in {doc.text!r} according to spaCy. Skipping this sample.")
                            skipped_indices.append(index)
                            continue
                        aspects_list[-1].append(slice(span.start, span.end))
        return (docs, aspects_list, skipped_indices)

    def predict_dataset(self, inputs: Dataset) -> Dataset:
        if set(inputs.column_names) >= {'text', 'span', 'ordinal'}:
            pass
        elif set(inputs.column_names) >= {'text', 'span'}:
            inputs = inputs.add_column('ordinal', [0] * len(inputs))
        else:
            raise ValueError(f'`inputs` must be either a `str`, a `List[str]`, or a `datasets.Dataset` with columns `text` and `span` and optionally `ordinal`. Found a dataset with these columns: {inputs.column_names}.')
        if 'pred_polarity' in inputs.column_names:
            raise ValueError('`predict_dataset` wants to add a `pred_polarity` column, but the input dataset already contains that column.')
        (docs, aspects_list, skipped_indices) = self.gold_aspect_spans_to_aspects_list(inputs)
        polarity_list = sum(self.polarity_model(docs, aspects_list), [])
        for index in skipped_indices:
            polarity_list.insert(index, None)
        return inputs.add_column('pred_polarity', polarity_list)

    def predict(self, inputs: Union[str, List[str], Dataset]) -> Union[List[Dict[str, Any]], Dataset]:
        if isinstance(inputs, Dataset):
            return self.predict_dataset(inputs)
        is_str = isinstance(inputs, str)
        inputs_list = [inputs] if is_str else inputs
        (docs, aspects_list) = self.aspect_extractor(inputs_list)
        if sum(aspects_list, []) == []:
            return aspects_list
        aspects_list = self.aspect_model(docs, aspects_list)
        if sum(aspects_list, []) == []:
            return aspects_list
        polarity_list = self.polarity_model(docs, aspects_list)
        outputs = []
        for (docs, aspects, polarities) in zip(docs, aspects_list, polarity_list):
            outputs.append([{'span': docs[aspect_slice].text, 'polarity': polarity} for (aspect_slice, polarity) in zip(aspects, polarities)])
        return outputs if not is_str else outputs[0]

    @property
    def device(self) -> torch.device:
        return self.aspect_model.device

    def to(self, device: Union[str, torch.device]) -> 'AbsaModel':
        self.aspect_model.to(device)
        self.polarity_model.to(device)

    def __call__(self, inputs: Union[str, List[str]]) -> List[Dict[str, Any]]:
        return self.predict(inputs)

    def save_pretrained(self, save_directory: Union[str, Path], polarity_save_directory: Optional[Union[str, Path]]=None, push_to_hub: bool=False, **kwargs) -> None:
        if polarity_save_directory is None:
            base_save_directory = Path(save_directory)
            save_directory = base_save_directory.parent / (base_save_directory.name + '-aspect')
            polarity_save_directory = base_save_directory.parent / (base_save_directory.name + '-polarity')
        self.aspect_model.save_pretrained(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs)
        self.polarity_model.save_pretrained(save_directory=polarity_save_directory, push_to_hub=push_to_hub, **kwargs)

    @classmethod
    def from_pretrained(cls, model_id: str, polarity_model_id: Optional[str]=None, spacy_model: Optional[str]=None, span_contexts: Tuple[Optional[int], Optional[int]]=(None, None), force_download: bool=None, resume_download: bool=None, proxies: Optional[Dict]=None, token: Optional[Union[str, bool]]=None, cache_dir: Optional[str]=None, local_files_only: bool=None, use_differentiable_head: bool=None, normalize_embeddings: bool=None, **model_kwargs) -> 'AbsaModel':
        revision = None
        if len(model_id.split('@')) == 2:
            (model_id, revision) = model_id.split('@')
        if spacy_model:
            model_kwargs['spacy_model'] = spacy_model
        aspect_model = AspectModel.from_pretrained(model_id, span_context=span_contexts[0], revision=revision, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, cache_dir=cache_dir, local_files_only=local_files_only, use_differentiable_head=use_differentiable_head, normalize_embeddings=normalize_embeddings, labels=['no aspect', 'aspect'], **model_kwargs)
        if polarity_model_id:
            model_id = polarity_model_id
            revision = None
            if len(model_id.split('@')) == 2:
                (model_id, revision) = model_id.split('@')
        model_card_data = model_kwargs.pop('model_card_data', None)
        if model_card_data:
            model_kwargs['model_card_data'] = copy.deepcopy(model_card_data)
        polarity_model = PolarityModel.from_pretrained(model_id, span_context=span_contexts[1], revision=revision, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, cache_dir=cache_dir, local_files_only=local_files_only, use_differentiable_head=use_differentiable_head, normalize_embeddings=normalize_embeddings, **model_kwargs)
        if aspect_model.spacy_model != polarity_model.spacy_model:
            logger.warning(f'The Aspect and Polarity models are configured to use different spaCy models:\n* {repr(aspect_model.spacy_model)} for the aspect model, and\n* {repr(polarity_model.spacy_model)} for the polarity model.\nThis model will use {repr(aspect_model.spacy_model)}.')
        aspect_extractor = AspectExtractor(spacy_model=aspect_model.spacy_model)
        return cls(aspect_extractor, aspect_model, polarity_model)

    def push_to_hub(self, repo_id: str, polarity_repo_id: Optional[str]=None, **kwargs) -> None:
        if '/' not in repo_id:
            raise ValueError('`repo_id` must be a full repository ID, including organisation, e.g. "tomaarsen/setfit-absa-restaurant".')
        if polarity_repo_id is not None and '/' not in polarity_repo_id:
            raise ValueError('`polarity_repo_id` must be a full repository ID, including organisation, e.g. "tomaarsen/setfit-absa-restaurant".')
        commit_message = kwargs.pop('commit_message', 'Add SetFit ABSA model')
        with SoftTemporaryDirectory() as tmp_dir:
            save_directory = Path(tmp_dir) / repo_id
            polarity_save_directory = None if polarity_repo_id is None else Path(tmp_dir) / polarity_repo_id
            self.save_pretrained(save_directory=save_directory, polarity_save_directory=polarity_save_directory, push_to_hub=True, commit_message=commit_message, **kwargs)

# File: setfit-main/src/setfit/span/trainer.py
from collections import defaultdict
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
from datasets import Dataset
from transformers.trainer_callback import TrainerCallback
from setfit.span.modeling import AbsaModel, AspectModel, PolarityModel
from setfit.training_args import TrainingArguments
from .. import logging
from ..trainer import ColumnMappingMixin, Trainer
if TYPE_CHECKING:
    import optuna
logger = logging.get_logger(__name__)

class AbsaTrainer(ColumnMappingMixin):
    _REQUIRED_COLUMNS = {'text', 'span', 'label', 'ordinal'}

    def __init__(self, model: AbsaModel, args: Optional[TrainingArguments]=None, polarity_args: Optional[TrainingArguments]=None, train_dataset: Optional['Dataset']=None, eval_dataset: Optional['Dataset']=None, metric: Union[str, Callable[['Dataset', 'Dataset'], Dict[str, float]]]='accuracy', metric_kwargs: Optional[Dict[str, Any]]=None, callbacks: Optional[List[TrainerCallback]]=None, column_mapping: Optional[Dict[str, str]]=None) -> None:
        self.model = model
        self.aspect_extractor = model.aspect_extractor
        if train_dataset is not None and column_mapping:
            train_dataset = self._apply_column_mapping(train_dataset, column_mapping)
        (aspect_train_dataset, polarity_train_dataset) = self.preprocess_dataset(model.aspect_model, model.polarity_model, train_dataset)
        if eval_dataset is not None and column_mapping:
            eval_dataset = self._apply_column_mapping(eval_dataset, column_mapping)
        (aspect_eval_dataset, polarity_eval_dataset) = self.preprocess_dataset(model.aspect_model, model.polarity_model, eval_dataset)
        self.aspect_trainer = Trainer(model.aspect_model, args=args, train_dataset=aspect_train_dataset, eval_dataset=aspect_eval_dataset, metric=metric, metric_kwargs=metric_kwargs, callbacks=callbacks)
        self.aspect_trainer._set_logs_mapper({'eval_embedding_loss': 'eval_aspect_embedding_loss', 'embedding_loss': 'aspect_embedding_loss'})
        self.polarity_trainer = Trainer(model.polarity_model, args=polarity_args or args, train_dataset=polarity_train_dataset, eval_dataset=polarity_eval_dataset, metric=metric, metric_kwargs=metric_kwargs, callbacks=callbacks)
        self.polarity_trainer._set_logs_mapper({'eval_embedding_loss': 'eval_polarity_embedding_loss', 'embedding_loss': 'polarity_embedding_loss'})

    def preprocess_dataset(self, aspect_model: AspectModel, polarity_model: PolarityModel, dataset: Dataset) -> Dataset:
        if dataset is None:
            return (dataset, dataset)
        grouped_data = defaultdict(list)
        for sample in dataset:
            text = sample.pop('text')
            grouped_data[text].append(sample)

        def index_ordinal(text: str, target: str, ordinal: int) -> Tuple[int, int]:
            find_from = 0
            for _ in range(ordinal + 1):
                start_idx = text.index(target, find_from)
                find_from = start_idx + 1
            return (start_idx, start_idx + len(target))

        def overlaps(aspect: slice, aspects: List[slice]) -> bool:
            for test_aspect in aspects:
                overlapping_indices = set(range(aspect.start, aspect.stop + 1)) & set(range(test_aspect.start, test_aspect.stop + 1))
                if overlapping_indices:
                    return True
            return False
        (docs, aspects_list) = self.aspect_extractor(grouped_data.keys())
        aspect_aspect_list = []
        aspect_labels = []
        polarity_aspect_list = []
        polarity_labels = []
        for (doc, aspects, text) in zip(docs, aspects_list, grouped_data):
            gold_aspects = []
            gold_polarity_labels = []
            for annotation in grouped_data[text]:
                try:
                    (start, end) = index_ordinal(text, annotation['span'], annotation['ordinal'])
                except ValueError:
                    logger.info(f"The ordinal of {annotation['ordinal']} for span {annotation['span']!r} in {text!r} is too high. Skipping this sample.")
                    continue
                gold_aspect_span = doc.char_span(start, end)
                if gold_aspect_span is None:
                    continue
                gold_aspects.append(slice(gold_aspect_span.start, gold_aspect_span.end))
                gold_polarity_labels.append(annotation['label'])
            aspect_labels.extend([True] * len(gold_aspects))
            aspect_aspect_list.append(gold_aspects[:])
            for aspect in aspects:
                if not overlaps(aspect, gold_aspects):
                    aspect_labels.append(False)
                    aspect_aspect_list[-1].append(aspect)
            polarity_labels.extend(gold_polarity_labels)
            polarity_aspect_list.append(gold_aspects)
        aspect_texts = list(aspect_model.prepend_aspects(docs, aspect_aspect_list))
        polarity_texts = list(polarity_model.prepend_aspects(docs, polarity_aspect_list))
        return (Dataset.from_dict({'text': aspect_texts, 'label': aspect_labels}), Dataset.from_dict({'text': polarity_texts, 'label': polarity_labels}))

    def train(self, args: Optional[TrainingArguments]=None, polarity_args: Optional[TrainingArguments]=None, trial: Optional[Union['optuna.Trial', Dict[str, Any]]]=None, **kwargs) -> None:
        self.train_aspect(args=args, trial=trial, **kwargs)
        self.train_polarity(args=polarity_args, trial=trial, **kwargs)

    def train_aspect(self, args: Optional[TrainingArguments]=None, trial: Optional[Union['optuna.Trial', Dict[str, Any]]]=None, **kwargs) -> None:
        self.aspect_trainer.train(args=args, trial=trial, **kwargs)

    def train_polarity(self, args: Optional[TrainingArguments]=None, trial: Optional[Union['optuna.Trial', Dict[str, Any]]]=None, **kwargs) -> None:
        self.polarity_trainer.train(args=args, trial=trial, **kwargs)

    def add_callback(self, callback: Union[type, TrainerCallback]) -> None:
        self.aspect_trainer.add_callback(callback)
        self.polarity_trainer.add_callback(callback)

    def pop_callback(self, callback: Union[type, TrainerCallback]) -> Tuple[TrainerCallback, TrainerCallback]:
        return (self.aspect_trainer.pop_callback(callback), self.polarity_trainer.pop_callback(callback))

    def remove_callback(self, callback: Union[type, TrainerCallback]) -> None:
        self.aspect_trainer.remove_callback(callback)
        self.polarity_trainer.remove_callback(callback)

    def push_to_hub(self, repo_id: str, polarity_repo_id: Optional[str]=None, **kwargs) -> None:
        return self.model.push_to_hub(repo_id=repo_id, polarity_repo_id=polarity_repo_id, **kwargs)

    def evaluate(self, dataset: Optional[Dataset]=None) -> Dict[str, Dict[str, float]]:
        aspect_eval_dataset = polarity_eval_dataset = None
        if dataset:
            (aspect_eval_dataset, polarity_eval_dataset) = self.preprocess_dataset(self.model.aspect_model, self.model.polarity_model, dataset)
        return {'aspect': self.aspect_trainer.evaluate(aspect_eval_dataset), 'polarity': self.polarity_trainer.evaluate(polarity_eval_dataset)}

# File: setfit-main/src/setfit/trainer.py
import math
import os
import shutil
import time
import warnings
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Literal, Optional, Tuple, Union
import evaluate
import torch
from datasets import Dataset, DatasetDict
from sentence_transformers import InputExample, SentenceTransformer, losses
from sentence_transformers.datasets import SentenceLabelDataset
from sentence_transformers.losses.BatchHardTripletLoss import BatchHardTripletLossDistanceFunction
from sentence_transformers.util import batch_to_device
from sklearn.preprocessing import LabelEncoder
from torch import nn
from torch.cuda.amp import autocast
from torch.utils.data import DataLoader
from tqdm.autonotebook import tqdm
from transformers.integrations import WandbCallback, get_reporting_integration_callbacks
from transformers.trainer_callback import CallbackHandler, DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, TrainerCallback, TrainerControl, TrainerState
from transformers.trainer_utils import HPSearchBackend, default_compute_objective, number_of_arguments, set_seed, speed_metrics
from transformers.utils.import_utils import is_in_notebook
from setfit.model_card import ModelCardCallback
from . import logging
from .integrations import default_hp_search_backend, is_optuna_available, run_hp_search_optuna
from .losses import SupConLoss
from .sampler import ContrastiveDataset
from .training_args import TrainingArguments
from .utils import BestRun, default_hp_space_optuna
if TYPE_CHECKING:
    import optuna
    from .modeling import SetFitModel
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
DEFAULT_CALLBACKS = [DefaultFlowCallback]
DEFAULT_PROGRESS_CALLBACK = ProgressCallback
if is_in_notebook():
    from transformers.utils.notebook import NotebookProgressCallback
    DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback

class ColumnMappingMixin:
    _REQUIRED_COLUMNS = {'text', 'label'}

    def _validate_column_mapping(self, dataset: 'Dataset') -> None:
        column_names = set(dataset.column_names)
        if self.column_mapping is None and (not self._REQUIRED_COLUMNS.issubset(column_names)):
            if column_names == {'train'} and isinstance(dataset, DatasetDict):
                raise ValueError("SetFit expected a Dataset, but it got a DatasetDict with the split ['train']. Did you mean to select the training split with dataset['train']?")
            elif isinstance(dataset, DatasetDict):
                raise ValueError(f'SetFit expected a Dataset, but it got a DatasetDict with the splits {sorted(column_names)}. Did you mean to select one of these splits from the dataset?')
            else:
                raise ValueError(f'SetFit expected the dataset to have the columns {sorted(self._REQUIRED_COLUMNS)}, but only the columns {sorted(column_names)} were found. Either make sure these columns are present, or specify which columns to use with column_mapping in Trainer.')
        if self.column_mapping is not None:
            missing_columns = set(self._REQUIRED_COLUMNS)
            missing_columns -= set(self.column_mapping.values())
            missing_columns -= set(dataset.column_names) - set(self.column_mapping.keys())
            if missing_columns:
                raise ValueError(f'The following columns are missing from the column mapping: {missing_columns}. Please provide a mapping for all required columns.')
            if not set(self.column_mapping.keys()).issubset(column_names):
                raise ValueError(f'The column mapping expected the columns {sorted(self.column_mapping.keys())} in the dataset, but the dataset had the columns {sorted(column_names)}.')

    def _apply_column_mapping(self, dataset: 'Dataset', column_mapping: Dict[str, str]) -> 'Dataset':
        dataset = dataset.rename_columns({**column_mapping, **{col: f'feat_{col}' for col in dataset.column_names if col not in column_mapping and col not in self._REQUIRED_COLUMNS}})
        dset_format = dataset.format
        dataset = dataset.with_format(type=dset_format['type'], columns=dataset.column_names, output_all_columns=dset_format['output_all_columns'], **dset_format['format_kwargs'])
        return dataset

class Trainer(ColumnMappingMixin):

    def __init__(self, model: Optional['SetFitModel']=None, args: Optional[TrainingArguments]=None, train_dataset: Optional['Dataset']=None, eval_dataset: Optional['Dataset']=None, model_init: Optional[Callable[[], 'SetFitModel']]=None, metric: Union[str, Callable[['Dataset', 'Dataset'], Dict[str, float]]]='accuracy', metric_kwargs: Optional[Dict[str, Any]]=None, callbacks: Optional[List[TrainerCallback]]=None, column_mapping: Optional[Dict[str, str]]=None) -> None:
        if args is not None and (not isinstance(args, TrainingArguments)):
            raise ValueError('`args` must be a `TrainingArguments` instance imported from `setfit`.')
        self.args = args or TrainingArguments()
        self.column_mapping = column_mapping
        if train_dataset:
            self._validate_column_mapping(train_dataset)
            if self.column_mapping is not None:
                logger.info('Applying column mapping to the training dataset')
                train_dataset = self._apply_column_mapping(train_dataset, self.column_mapping)
        self.train_dataset = train_dataset
        if eval_dataset:
            self._validate_column_mapping(eval_dataset)
            if self.column_mapping is not None:
                logger.info('Applying column mapping to the evaluation dataset')
                eval_dataset = self._apply_column_mapping(eval_dataset, self.column_mapping)
        self.eval_dataset = eval_dataset
        self.model_init = model_init
        self.metric = metric
        self.metric_kwargs = metric_kwargs
        self.logs_mapper = {}
        set_seed(12)
        if model is None:
            if model_init is not None:
                model = self.call_model_init()
            else:
                raise RuntimeError('`Trainer` requires either a `model` or `model_init` argument.')
        elif model_init is not None:
            raise RuntimeError('`Trainer` requires either a `model` or `model_init` argument, but not both.')
        self.model = model
        self.hp_search_backend = None
        default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
        callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
        if WandbCallback in callbacks:
            os.environ.setdefault('WANDB_PROJECT', 'setfit')
        self.callback_handler = CallbackHandler(callbacks, self.model, self.model.model_body.tokenizer, None, None)
        self.state = TrainerState()
        self.control = TrainerControl()
        self.add_callback(DEFAULT_PROGRESS_CALLBACK if self.args.show_progress_bar else PrinterCallback)
        self.control = self.callback_handler.on_init_end(self.args, self.state, self.control)
        self.add_callback(ModelCardCallback(self))
        self.callback_handler.on_init_end(args, self.state, self.control)

    def add_callback(self, callback: Union[type, TrainerCallback]) -> None:
        self.callback_handler.add_callback(callback)

    def pop_callback(self, callback: Union[type, TrainerCallback]) -> TrainerCallback:
        return self.callback_handler.pop_callback(callback)

    def remove_callback(self, callback: Union[type, TrainerCallback]) -> None:
        self.callback_handler.remove_callback(callback)

    def apply_hyperparameters(self, params: Dict[str, Any], final_model: bool=False) -> None:
        if self.args is not None:
            self.args = self.args.update(params, ignore_extra=True)
        else:
            self.args = TrainingArguments.from_dict(params, ignore_extra=True)
        set_seed(self.args.seed)
        self.model = self.model_init(params)
        if final_model:
            self.model_init = None

    def _hp_search_setup(self, trial: Union['optuna.Trial', Dict[str, Any]]) -> None:
        if self.hp_search_backend is None or trial is None:
            return
        if isinstance(trial, Dict):
            params = trial
        elif self.hp_search_backend == HPSearchBackend.OPTUNA:
            params = self.hp_space(trial)
        else:
            raise ValueError('Invalid trial parameter')
        logger.info(f'Trial: {params}')
        self.apply_hyperparameters(params, final_model=False)

    def call_model_init(self, params: Optional[Dict[str, Any]]=None) -> 'SetFitModel':
        model_init_argcount = number_of_arguments(self.model_init)
        if model_init_argcount == 0:
            model = self.model_init()
        elif model_init_argcount == 1:
            model = self.model_init(params)
        else:
            raise RuntimeError('`model_init` should have 0 or 1 argument.')
        if model is None:
            raise RuntimeError('`model_init` should not return None.')
        return model

    def freeze(self, component: Optional[Literal['body', 'head']]=None) -> None:
        warnings.warn(f'`{self.__class__.__name__}.freeze` is deprecated and will be removed in v2.0.0 of SetFit. Please use `SetFitModel.freeze` directly instead.', DeprecationWarning, stacklevel=2)
        return self.model.freeze(component)

    def unfreeze(self, component: Optional[Literal['body', 'head']]=None, keep_body_frozen: Optional[bool]=None) -> None:
        warnings.warn(f'`{self.__class__.__name__}.unfreeze` is deprecated and will be removed in v2.0.0 of SetFit. Please use `SetFitModel.unfreeze` directly instead.', DeprecationWarning, stacklevel=2)
        return self.model.unfreeze(component, keep_body_frozen=keep_body_frozen)

    def train(self, args: Optional[TrainingArguments]=None, trial: Optional[Union['optuna.Trial', Dict[str, Any]]]=None, **kwargs) -> None:
        if len(kwargs):
            warnings.warn(f'`{self.__class__.__name__}.train` does not accept keyword arguments anymore. Please provide training arguments via a `TrainingArguments` instance to the `{self.__class__.__name__}` initialisation or the `{self.__class__.__name__}.train` method.', DeprecationWarning, stacklevel=2)
        if trial:
            self._hp_search_setup(trial)
        args = args or self.args or TrainingArguments()
        if self.train_dataset is None:
            raise ValueError(f'Training requires a `train_dataset` given to the `{self.__class__.__name__}` initialization.')
        train_parameters = self.dataset_to_parameters(self.train_dataset)
        full_parameters = train_parameters + self.dataset_to_parameters(self.eval_dataset) if self.eval_dataset else train_parameters
        self.train_embeddings(*full_parameters, args=args)
        self.train_classifier(*train_parameters, args=args)

    def dataset_to_parameters(self, dataset: Dataset) -> List[Iterable]:
        return [dataset['text'], dataset['label']]

    def train_embeddings(self, x_train: List[str], y_train: Optional[Union[List[int], List[List[int]]]]=None, x_eval: Optional[List[str]]=None, y_eval: Optional[Union[List[int], List[List[int]]]]=None, args: Optional[TrainingArguments]=None) -> None:
        args = args or self.args or TrainingArguments()
        self.state.logging_steps = args.logging_steps
        self.state.eval_steps = args.eval_steps
        self.state.save_steps = args.save_steps
        self.state.global_step = 0
        self.state.total_flos = 0
        train_max_pairs = -1 if args.max_steps == -1 else args.max_steps * args.embedding_batch_size
        (train_dataloader, loss_func, batch_size, num_unique_pairs) = self.get_dataloader(x_train, y_train, args=args, max_pairs=train_max_pairs)
        if x_eval is not None and args.eval_strategy != IntervalStrategy.NO:
            eval_max_pairs = -1 if args.eval_max_steps == -1 else args.eval_max_steps * args.embedding_batch_size
            (eval_dataloader, _, _, _) = self.get_dataloader(x_eval, y_eval, args=args, max_pairs=eval_max_pairs)
        else:
            eval_dataloader = None
        total_train_steps = len(train_dataloader) * args.embedding_num_epochs
        if args.max_steps > 0:
            total_train_steps = min(args.max_steps, total_train_steps)
        logger.info('***** Running training *****')
        logger.info(f'  Num unique pairs = {num_unique_pairs}')
        logger.info(f'  Batch size = {batch_size}')
        logger.info(f'  Num epochs = {args.embedding_num_epochs}')
        logger.info(f'  Total optimization steps = {total_train_steps}')
        warmup_steps = math.ceil(total_train_steps * args.warmup_proportion)
        self._train_sentence_transformer(self.model.model_body, train_dataloader=train_dataloader, eval_dataloader=eval_dataloader, args=args, loss_func=loss_func, warmup_steps=warmup_steps)

    def get_dataloader(self, x: List[str], y: Union[List[int], List[List[int]]], args: TrainingArguments, max_pairs: int=-1) -> Tuple[DataLoader, nn.Module, int, int]:
        input_data = [InputExample(texts=[text], label=label) for (text, label) in zip(x, y)]
        if args.loss in [losses.BatchAllTripletLoss, losses.BatchHardTripletLoss, losses.BatchSemiHardTripletLoss, losses.BatchHardSoftMarginTripletLoss, SupConLoss]:
            data_sampler = SentenceLabelDataset(input_data, samples_per_label=args.samples_per_label)
            batch_size = min(args.embedding_batch_size, len(data_sampler))
            dataloader = DataLoader(data_sampler, batch_size=batch_size, drop_last=True)
            if args.loss is losses.BatchHardSoftMarginTripletLoss:
                loss = args.loss(model=self.model.model_body, distance_metric=args.distance_metric)
            elif args.loss is SupConLoss:
                loss = args.loss(model=self.model.model_body)
            else:
                loss = args.loss(model=self.model.model_body, distance_metric=args.distance_metric, margin=args.margin)
        else:
            data_sampler = ContrastiveDataset(input_data, self.model.multi_target_strategy, args.num_iterations, args.sampling_strategy, max_pairs=max_pairs)
            batch_size = min(args.embedding_batch_size, len(data_sampler))
            dataloader = DataLoader(data_sampler, batch_size=batch_size, drop_last=False)
            loss = args.loss(self.model.model_body)
        return (dataloader, loss, batch_size, len(data_sampler))

    def log(self, args: TrainingArguments, logs: Dict[str, float]) -> None:
        logs = {self.logs_mapper.get(key, key): value for (key, value) in logs.items()}
        if self.state.epoch is not None:
            logs['epoch'] = round(self.state.epoch, 2)
        output = {**logs, **{'step': self.state.global_step}}
        self.state.log_history.append(output)
        return self.callback_handler.on_log(args, self.state, self.control, logs)

    def _set_logs_mapper(self, logs_mapper: Dict[str, str]) -> None:
        self.logs_mapper = logs_mapper

    def _train_sentence_transformer(self, model_body: SentenceTransformer, train_dataloader: DataLoader, eval_dataloader: Optional[DataLoader], args: TrainingArguments, loss_func: nn.Module, warmup_steps: int=10000) -> None:
        max_grad_norm = 1
        weight_decay = 0.01
        self.state.epoch = 0
        start_time = time.time()
        if args.max_steps > 0:
            self.state.max_steps = args.max_steps
        else:
            self.state.max_steps = len(train_dataloader) * args.embedding_num_epochs
        self.control = self.callback_handler.on_train_begin(args, self.state, self.control)
        steps_per_epoch = len(train_dataloader)
        if args.use_amp:
            scaler = torch.cuda.amp.GradScaler()
        model_body.to(self.model.device)
        loss_func.to(self.model.device)
        train_dataloader.collate_fn = model_body.smart_batching_collate
        if eval_dataloader:
            eval_dataloader.collate_fn = model_body.smart_batching_collate
        param_optimizer = list(loss_func.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{'params': [p for (n, p) in param_optimizer if not any((nd in n for nd in no_decay))], 'weight_decay': weight_decay}, {'params': [p for (n, p) in param_optimizer if any((nd in n for nd in no_decay))], 'weight_decay': 0.0}]
        optimizer = torch.optim.AdamW(optimizer_grouped_parameters, **{'lr': args.body_embedding_learning_rate})
        scheduler_obj = model_body._get_scheduler(optimizer, scheduler='WarmupLinear', warmup_steps=warmup_steps, t_total=self.state.max_steps)
        self.callback_handler.optimizer = optimizer
        self.callback_handler.lr_scheduler = scheduler_obj
        self.callback_handler.train_dataloader = train_dataloader
        self.callback_handler.eval_dataloader = eval_dataloader
        self.callback_handler.on_train_begin(args, self.state, self.control)
        data_iterator = iter(train_dataloader)
        skip_scheduler = False
        for epoch in range(args.embedding_num_epochs):
            self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control)
            loss_func.zero_grad()
            loss_func.train()
            for step in range(steps_per_epoch):
                self.control = self.callback_handler.on_step_begin(args, self.state, self.control)
                try:
                    data = next(data_iterator)
                except StopIteration:
                    data_iterator = iter(train_dataloader)
                    data = next(data_iterator)
                (features, labels) = data
                labels = labels.to(self.model.device)
                features = list(map(lambda batch: batch_to_device(batch, self.model.device), features))
                if args.use_amp:
                    with autocast():
                        loss_value = loss_func(features, labels)
                    scale_before_step = scaler.get_scale()
                    scaler.scale(loss_value).backward()
                    scaler.unscale_(optimizer)
                    torch.nn.utils.clip_grad_norm_(loss_func.parameters(), max_grad_norm)
                    scaler.step(optimizer)
                    scaler.update()
                    skip_scheduler = scaler.get_scale() != scale_before_step
                else:
                    loss_value = loss_func(features, labels)
                    loss_value.backward()
                    torch.nn.utils.clip_grad_norm_(loss_func.parameters(), max_grad_norm)
                    optimizer.step()
                optimizer.zero_grad()
                if not skip_scheduler:
                    scheduler_obj.step()
                self.state.global_step += 1
                self.state.epoch = epoch + (step + 1) / steps_per_epoch
                self.control = self.callback_handler.on_step_end(args, self.state, self.control)
                self.maybe_log_eval_save(model_body, eval_dataloader, args, scheduler_obj, loss_func, loss_value)
                if self.control.should_epoch_stop or self.control.should_training_stop:
                    break
            self.control = self.callback_handler.on_epoch_end(args, self.state, self.control)
            self.maybe_log_eval_save(model_body, eval_dataloader, args, scheduler_obj, loss_func, loss_value)
            if self.control.should_training_stop:
                break
        if self.args.load_best_model_at_end and self.state.best_model_checkpoint:
            dir_name = Path(self.state.best_model_checkpoint).name
            if dir_name.startswith('step_'):
                step_to_load = dir_name[5:]
                logger.info(f'Loading best SentenceTransformer model from step {step_to_load}.')
                self.model.model_card_data.set_best_model_step(int(step_to_load))
            sentence_transformer_kwargs = self.model.sentence_transformers_kwargs
            sentence_transformer_kwargs['device'] = self.model.device
            self.model.model_body = SentenceTransformer(self.state.best_model_checkpoint, **sentence_transformer_kwargs)
            self.model.model_body.to(self.model.device)
        num_train_samples = self.state.max_steps * args.embedding_batch_size
        metrics = speed_metrics('train', start_time, num_samples=num_train_samples, num_steps=self.state.max_steps)
        self.control.should_log = True
        self.log(args, metrics)
        self.control = self.callback_handler.on_train_end(args, self.state, self.control)

    def maybe_log_eval_save(self, model_body: SentenceTransformer, eval_dataloader: Optional[DataLoader], args: TrainingArguments, scheduler_obj, loss_func, loss_value: torch.Tensor) -> None:
        if self.control.should_log:
            learning_rate = scheduler_obj.get_last_lr()[0]
            metrics = {'embedding_loss': round(loss_value.item(), 4), 'learning_rate': learning_rate}
            self.control = self.log(args, metrics)
        eval_loss = None
        if self.control.should_evaluate and eval_dataloader is not None:
            eval_loss = self._evaluate_with_loss(model_body, eval_dataloader, args, loss_func)
            learning_rate = scheduler_obj.get_last_lr()[0]
            metrics = {'eval_embedding_loss': round(eval_loss, 4), 'learning_rate': learning_rate}
            self.control = self.log(args, metrics)
            self.control = self.callback_handler.on_evaluate(args, self.state, self.control, metrics)
            loss_func.zero_grad()
            loss_func.train()
        if self.control.should_save:
            checkpoint_dir = self._checkpoint(self.args.output_dir, args.save_total_limit, self.state.global_step)
            self.control = self.callback_handler.on_save(self.args, self.state, self.control)
            if eval_loss is not None and (self.state.best_metric is None or eval_loss < self.state.best_metric):
                self.state.best_metric = eval_loss
                self.state.best_model_checkpoint = checkpoint_dir

    def _evaluate_with_loss(self, model_body: SentenceTransformer, eval_dataloader: DataLoader, args: TrainingArguments, loss_func: nn.Module) -> float:
        model_body.eval()
        losses = []
        eval_steps = min(len(eval_dataloader), args.eval_max_steps) if args.eval_max_steps != -1 else len(eval_dataloader)
        for (step, data) in enumerate(tqdm(iter(eval_dataloader), total=eval_steps, leave=False, disable=not args.show_progress_bar), start=1):
            (features, labels) = data
            labels = labels.to(self.model.device)
            features = list(map(lambda batch: batch_to_device(batch, self.model.device), features))
            if args.use_amp:
                with autocast():
                    loss_value = loss_func(features, labels)
                losses.append(loss_value.item())
            else:
                losses.append(loss_func(features, labels).item())
            if step >= eval_steps:
                break
        model_body.train()
        return sum(losses) / len(losses)

    def _checkpoint(self, checkpoint_path: str, checkpoint_save_total_limit: int, step: int) -> None:
        if checkpoint_save_total_limit is not None and checkpoint_save_total_limit > 0:
            old_checkpoints = []
            for subdir in Path(checkpoint_path).glob('step_*'):
                if subdir.name[5:].isdigit() and (self.state.best_model_checkpoint is None or subdir != Path(self.state.best_model_checkpoint)):
                    old_checkpoints.append({'step': int(subdir.name[5:]), 'path': str(subdir)})
            if len(old_checkpoints) > checkpoint_save_total_limit - 1:
                old_checkpoints = sorted(old_checkpoints, key=lambda x: x['step'])
                shutil.rmtree(old_checkpoints[0]['path'])
        checkpoint_file_path = str(Path(checkpoint_path) / f'step_{step}')
        self.model.save_pretrained(checkpoint_file_path)
        return checkpoint_file_path

    def train_classifier(self, x_train: List[str], y_train: Union[List[int], List[List[int]]], args: Optional[TrainingArguments]=None) -> None:
        args = args or self.args or TrainingArguments()
        self.model.fit(x_train, y_train, num_epochs=args.classifier_num_epochs, batch_size=args.classifier_batch_size, body_learning_rate=args.body_classifier_learning_rate, head_learning_rate=args.head_learning_rate, l2_weight=args.l2_weight, max_length=args.max_length, show_progress_bar=args.show_progress_bar, end_to_end=args.end_to_end)

    def evaluate(self, dataset: Optional[Dataset]=None, metric_key_prefix: str='test') -> Dict[str, float]:
        if dataset is not None:
            self._validate_column_mapping(dataset)
            if self.column_mapping is not None:
                logger.info('Applying column mapping to the evaluation dataset')
                eval_dataset = self._apply_column_mapping(dataset, self.column_mapping)
            else:
                eval_dataset = dataset
        else:
            eval_dataset = self.eval_dataset
        if eval_dataset is None:
            raise ValueError('No evaluation dataset provided to `Trainer.evaluate` nor the `Trainer` initialzation.')
        x_test = eval_dataset['text']
        y_test = eval_dataset['label']
        logger.info('***** Running evaluation *****')
        y_pred = self.model.predict(x_test, use_labels=False)
        if isinstance(y_pred, torch.Tensor):
            y_pred = y_pred.cpu()
        if y_test and isinstance(y_test[0], str):
            encoder = LabelEncoder()
            encoder.fit(list(y_test) + list(y_pred))
            y_test = encoder.transform(y_test)
            y_pred = encoder.transform(y_pred)
        metric_kwargs = self.metric_kwargs or {}
        if isinstance(self.metric, str):
            metric_config = 'multilabel' if self.model.multi_target_strategy is not None else None
            metric_fn = evaluate.load(self.metric, config_name=metric_config)
            results = metric_fn.compute(predictions=y_pred, references=y_test, **metric_kwargs)
        elif callable(self.metric):
            results = self.metric(y_pred, y_test, **metric_kwargs)
        else:
            raise ValueError('metric must be a string or a callable')
        if not isinstance(results, dict):
            results = {'metric': results}
        self.model.model_card_data.post_training_eval_results({f'{metric_key_prefix}_{key}': value for (key, value) in results.items()})
        return results

    def hyperparameter_search(self, hp_space: Optional[Callable[['optuna.Trial'], Dict[str, float]]]=None, compute_objective: Optional[Callable[[Dict[str, float]], float]]=None, n_trials: int=10, direction: str='maximize', backend: Optional[Union['str', HPSearchBackend]]=None, hp_name: Optional[Callable[['optuna.Trial'], str]]=None, **kwargs) -> BestRun:
        if backend is None:
            backend = default_hp_search_backend()
            if backend is None:
                raise RuntimeError('optuna should be installed. To install optuna run `pip install optuna`.')
        backend = HPSearchBackend(backend)
        if backend == HPSearchBackend.OPTUNA and (not is_optuna_available()):
            raise RuntimeError('You picked the optuna backend, but it is not installed. Use `pip install optuna`.')
        elif backend != HPSearchBackend.OPTUNA:
            raise RuntimeError('Only optuna backend is supported for hyperparameter search.')
        self.hp_search_backend = backend
        if self.model_init is None:
            raise RuntimeError('To use hyperparameter search, you need to pass your model through a model_init function.')
        self.hp_space = default_hp_space_optuna if hp_space is None else hp_space
        self.hp_name = hp_name
        self.compute_objective = default_compute_objective if compute_objective is None else compute_objective
        backend_dict = {HPSearchBackend.OPTUNA: run_hp_search_optuna}
        best_run = backend_dict[backend](self, n_trials, direction, **kwargs)
        self.hp_search_backend = None
        return best_run

    def push_to_hub(self, repo_id: str, **kwargs) -> str:
        if '/' not in repo_id:
            raise ValueError('`repo_id` must be a full repository ID, including organisation, e.g. "tomaarsen/setfit-sst2".')
        commit_message = kwargs.pop('commit_message', 'Add SetFit model')
        return self.model.push_to_hub(repo_id, commit_message=commit_message, **kwargs)

class SetFitTrainer(Trainer):

    def __init__(self, model: Optional['SetFitModel']=None, train_dataset: Optional['Dataset']=None, eval_dataset: Optional['Dataset']=None, model_init: Optional[Callable[[], 'SetFitModel']]=None, metric: Union[str, Callable[['Dataset', 'Dataset'], Dict[str, float]]]='accuracy', metric_kwargs: Optional[Dict[str, Any]]=None, loss_class=losses.CosineSimilarityLoss, num_iterations: int=20, num_epochs: int=1, learning_rate: float=2e-05, batch_size: int=16, seed: int=42, column_mapping: Optional[Dict[str, str]]=None, use_amp: bool=False, warmup_proportion: float=0.1, distance_metric: Callable=BatchHardTripletLossDistanceFunction.cosine_distance, margin: float=0.25, samples_per_label: int=2):
        warnings.warn('`SetFitTrainer` has been deprecated and will be removed in v2.0.0 of SetFit. Please use `Trainer` instead.', DeprecationWarning, stacklevel=2)
        args = TrainingArguments(num_iterations=num_iterations, num_epochs=num_epochs, body_learning_rate=learning_rate, head_learning_rate=learning_rate, batch_size=batch_size, seed=seed, use_amp=use_amp, warmup_proportion=warmup_proportion, distance_metric=distance_metric, margin=margin, samples_per_label=samples_per_label, loss=loss_class)
        super().__init__(model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, model_init=model_init, metric=metric, metric_kwargs=metric_kwargs, column_mapping=column_mapping)

# File: setfit-main/src/setfit/trainer_distillation.py
import warnings
from typing import TYPE_CHECKING, Callable, Dict, Iterable, List, Optional, Tuple, Union
import torch
from datasets import Dataset
from sentence_transformers import InputExample, losses, util
from torch import nn
from torch.utils.data import DataLoader
from . import logging
from .sampler import ContrastiveDistillationDataset
from .trainer import Trainer
from .training_args import TrainingArguments
if TYPE_CHECKING:
    from .modeling import SetFitModel
logging.set_verbosity_info()
logger = logging.get_logger(__name__)

class DistillationTrainer(Trainer):
    _REQUIRED_COLUMNS = {'text'}

    def __init__(self, teacher_model: 'SetFitModel', student_model: Optional['SetFitModel']=None, args: TrainingArguments=None, train_dataset: Optional['Dataset']=None, eval_dataset: Optional['Dataset']=None, model_init: Optional[Callable[[], 'SetFitModel']]=None, metric: Union[str, Callable[['Dataset', 'Dataset'], Dict[str, float]]]='accuracy', column_mapping: Optional[Dict[str, str]]=None) -> None:
        super().__init__(model=student_model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, model_init=model_init, metric=metric, column_mapping=column_mapping)
        self.teacher_model = teacher_model
        self.student_model = self.model

    def dataset_to_parameters(self, dataset: Dataset) -> List[Iterable]:
        return [dataset['text']]

    def get_dataloader(self, x: List[str], y: Optional[Union[List[int], List[List[int]]]], args: TrainingArguments, max_pairs: int=-1) -> Tuple[DataLoader, nn.Module, int, int]:
        x_embd_student = self.teacher_model.model_body.encode(x, convert_to_tensor=self.teacher_model.has_differentiable_head)
        cos_sim_matrix = util.cos_sim(x_embd_student, x_embd_student)
        input_data = [InputExample(texts=[text]) for text in x]
        data_sampler = ContrastiveDistillationDataset(input_data, cos_sim_matrix, args.num_iterations, args.sampling_strategy, max_pairs=max_pairs)
        batch_size = min(args.embedding_batch_size, len(data_sampler))
        dataloader = DataLoader(data_sampler, batch_size=batch_size, drop_last=False)
        loss = args.loss(self.model.model_body)
        return (dataloader, loss, batch_size, len(data_sampler))

    def train_classifier(self, x_train: List[str], args: Optional[TrainingArguments]=None) -> None:
        y_train = self.teacher_model.predict(x_train, as_numpy=not self.student_model.has_differentiable_head)
        return super().train_classifier(x_train, y_train, args)

class DistillationSetFitTrainer(DistillationTrainer):

    def __init__(self, teacher_model: 'SetFitModel', student_model: Optional['SetFitModel']=None, train_dataset: Optional['Dataset']=None, eval_dataset: Optional['Dataset']=None, model_init: Optional[Callable[[], 'SetFitModel']]=None, metric: Union[str, Callable[['Dataset', 'Dataset'], Dict[str, float]]]='accuracy', loss_class: torch.nn.Module=losses.CosineSimilarityLoss, num_iterations: int=20, num_epochs: int=1, learning_rate: float=2e-05, batch_size: int=16, seed: int=42, column_mapping: Optional[Dict[str, str]]=None, use_amp: bool=False, warmup_proportion: float=0.1) -> None:
        warnings.warn('`DistillationSetFitTrainer` has been deprecated and will be removed in v2.0.0 of SetFit. Please use `DistillationTrainer` instead.', DeprecationWarning, stacklevel=2)
        args = TrainingArguments(num_iterations=num_iterations, num_epochs=num_epochs, body_learning_rate=learning_rate, head_learning_rate=learning_rate, batch_size=batch_size, seed=seed, use_amp=use_amp, warmup_proportion=warmup_proportion, loss=loss_class)
        super().__init__(teacher_model=teacher_model, student_model=student_model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, model_init=model_init, metric=metric, column_mapping=column_mapping)

# File: setfit-main/src/setfit/training_args.py
from __future__ import annotations
import inspect
import json
from copy import copy
from dataclasses import dataclass, field, fields
from typing import Any, Callable, Dict, Optional, Tuple, Union
import torch
from sentence_transformers import losses
from transformers import IntervalStrategy
from transformers.integrations import get_available_reporting_integrations
from transformers.training_args import default_logdir
from transformers.utils import is_torch_available
from . import logging
logger = logging.get_logger(__name__)

@dataclass
class TrainingArguments:
    output_dir: str = 'checkpoints'
    batch_size: Union[int, Tuple[int, int]] = field(default=(16, 2), repr=False)
    num_epochs: Union[int, Tuple[int, int]] = field(default=(1, 16), repr=False)
    max_steps: int = -1
    sampling_strategy: str = 'oversampling'
    num_iterations: Optional[int] = None
    body_learning_rate: Union[float, Tuple[float, float]] = field(default=(2e-05, 1e-05), repr=False)
    head_learning_rate: float = 0.01
    loss: Callable = losses.CosineSimilarityLoss
    distance_metric: Callable = losses.BatchHardTripletLossDistanceFunction.cosine_distance
    margin: float = 0.25
    end_to_end: bool = field(default=False)
    use_amp: bool = False
    warmup_proportion: float = 0.1
    l2_weight: Optional[float] = None
    max_length: Optional[int] = None
    samples_per_label: int = 2
    show_progress_bar: bool = True
    seed: int = 42
    report_to: str = 'all'
    run_name: Optional[str] = None
    logging_dir: Optional[str] = None
    logging_strategy: str = 'steps'
    logging_first_step: bool = True
    logging_steps: int = 50
    eval_strategy: str = 'no'
    evaluation_strategy: Optional[str] = field(default=None, repr=False)
    eval_steps: Optional[int] = None
    eval_delay: int = 0
    eval_max_steps: int = -1
    save_strategy: str = 'steps'
    save_steps: int = 500
    save_total_limit: Optional[int] = 1
    load_best_model_at_end: bool = False
    metric_for_best_model: str = field(default='embedding_loss', repr=False)
    greater_is_better: bool = field(default=False, repr=False)

    def __post_init__(self) -> None:
        if isinstance(self.batch_size, int):
            self.batch_size = (self.batch_size, self.batch_size)
        if isinstance(self.num_epochs, int):
            self.num_epochs = (self.num_epochs, self.num_epochs)
        if isinstance(self.body_learning_rate, float):
            self.body_learning_rate = (self.body_learning_rate, self.body_learning_rate)
        if self.warmup_proportion < 0.0 or self.warmup_proportion > 1.0:
            raise ValueError(f'warmup_proportion must be greater than or equal to 0.0 and less than or equal to 1.0! But it was: {self.warmup_proportion}')
        if self.report_to in (None, 'all', ['all']):
            self.report_to = get_available_reporting_integrations()
        elif self.report_to in ('none', ['none']):
            self.report_to = []
        elif not isinstance(self.report_to, list):
            self.report_to = [self.report_to]
        if self.logging_dir is None:
            self.logging_dir = default_logdir()
        self.logging_strategy = IntervalStrategy(self.logging_strategy)
        if self.evaluation_strategy is not None:
            logger.warning('The `evaluation_strategy` argument is deprecated and will be removed in a future version. Please use `eval_strategy` instead.')
            self.eval_strategy = self.evaluation_strategy
        self.eval_strategy = IntervalStrategy(self.eval_strategy)
        if self.eval_steps is not None and self.eval_strategy == IntervalStrategy.NO:
            logger.info('Using `eval_strategy="steps"` as `eval_steps` is defined.')
            self.eval_strategy = IntervalStrategy.STEPS
        if self.eval_strategy == IntervalStrategy.STEPS and (self.eval_steps is None or self.eval_steps == 0):
            if self.logging_steps > 0:
                self.eval_steps = self.logging_steps
            else:
                raise ValueError(f'evaluation strategy {self.eval_strategy} requires either non-zero `eval_steps` or `logging_steps`')
        if self.load_best_model_at_end:
            if self.eval_strategy != self.save_strategy:
                raise ValueError(f'`load_best_model_at_end` requires the save and eval strategy to match, but found\n- Evaluation strategy: {self.eval_strategy}\n- Save strategy: {self.save_strategy}')
            if self.eval_strategy == IntervalStrategy.STEPS and self.save_steps % self.eval_steps != 0:
                raise ValueError(f'`load_best_model_at_end` requires the saving steps to be a round multiple of the evaluation steps, but found {self.save_steps}, which is not a round multiple of {self.eval_steps}.')
        if self.logging_strategy == IntervalStrategy.STEPS and self.logging_steps == 0:
            raise ValueError(f'Logging strategy {self.logging_strategy} requires non-zero `logging_steps`')

    @property
    def embedding_batch_size(self) -> int:
        return self.batch_size[0]

    @property
    def classifier_batch_size(self) -> int:
        return self.batch_size[1]

    @property
    def embedding_num_epochs(self) -> int:
        return self.num_epochs[0]

    @property
    def classifier_num_epochs(self) -> int:
        return self.num_epochs[1]

    @property
    def body_embedding_learning_rate(self) -> float:
        return self.body_learning_rate[0]

    @property
    def body_classifier_learning_rate(self) -> float:
        return self.body_learning_rate[1]

    def to_dict(self) -> Dict[str, Any]:
        return {field.name: getattr(self, field.name) for field in fields(self) if field.init}

    @classmethod
    def from_dict(cls, arguments: Dict[str, Any], ignore_extra: bool=False) -> TrainingArguments:
        if ignore_extra:
            return cls(**{key: value for (key, value) in arguments.items() if key in inspect.signature(cls).parameters})
        return cls(**arguments)

    def copy(self) -> TrainingArguments:
        return copy(self)

    def update(self, arguments: Dict[str, Any], ignore_extra: bool=False) -> TrainingArguments:
        return TrainingArguments.from_dict({**self.to_dict(), **arguments}, ignore_extra=ignore_extra)

    def to_json_string(self):
        return json.dumps({key: str(value) for (key, value) in self.to_dict().items()}, indent=2)

    def to_sanitized_dict(self) -> Dict[str, Any]:
        d = self.to_dict()
        d = {**d, **{'train_batch_size': self.embedding_batch_size, 'eval_batch_size': self.embedding_batch_size}}
        valid_types = [bool, int, float, str]
        if is_torch_available():
            valid_types.append(torch.Tensor)
        return {k: v if type(v) in valid_types else str(v) for (k, v) in d.items()}

# File: setfit-main/src/setfit/utils.py
import types
from contextlib import contextmanager
from dataclasses import dataclass, field
from time import monotonic_ns
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
from datasets import Dataset, DatasetDict, load_dataset
from sentence_transformers import losses
from transformers.utils import copy_func
from .data import create_fewshot_splits, create_fewshot_splits_multilabel
from .losses import SupConLoss
SEC_TO_NS_SCALE = 1000000000
DEV_DATASET_TO_METRIC = {'sst2': 'accuracy', 'imdb': 'accuracy', 'subj': 'accuracy', 'bbc-news': 'accuracy', 'enron_spam': 'accuracy', 'student-question-categories': 'accuracy', 'TREC-QC': 'accuracy', 'toxic_conversations': 'matthews_correlation'}
TEST_DATASET_TO_METRIC = {'emotion': 'accuracy', 'SentEval-CR': 'accuracy', 'sst5': 'accuracy', 'ag_news': 'accuracy', 'enron_spam': 'accuracy', 'amazon_counterfactual_en': 'matthews_correlation'}
MULTILINGUAL_DATASET_TO_METRIC = {f'amazon_reviews_multi_{lang}': 'mae' for lang in ['en', 'de', 'es', 'fr', 'ja', 'zh']}
LOSS_NAME_TO_CLASS = {'CosineSimilarityLoss': losses.CosineSimilarityLoss, 'ContrastiveLoss': losses.ContrastiveLoss, 'OnlineContrastiveLoss': losses.OnlineContrastiveLoss, 'BatchSemiHardTripletLoss': losses.BatchSemiHardTripletLoss, 'BatchAllTripletLoss': losses.BatchAllTripletLoss, 'BatchHardTripletLoss': losses.BatchHardTripletLoss, 'BatchHardSoftMarginTripletLoss': losses.BatchHardSoftMarginTripletLoss, 'SupConLoss': SupConLoss}

def default_hp_space_optuna(trial) -> Dict[str, Any]:
    from transformers.integrations import is_optuna_available
    assert is_optuna_available(), 'This function needs Optuna installed: `pip install optuna`'
    return {'learning_rate': trial.suggest_float('learning_rate', 1e-06, 0.0001, log=True), 'num_epochs': trial.suggest_int('num_epochs', 1, 5), 'num_iterations': trial.suggest_categorical('num_iterations', [5, 10, 20]), 'seed': trial.suggest_int('seed', 1, 40), 'batch_size': trial.suggest_categorical('batch_size', [4, 8, 16, 32, 64])}

def load_data_splits(dataset: str, sample_sizes: List[int], add_data_augmentation: bool=False) -> Tuple[DatasetDict, Dataset]:
    print(f'\n\n\n============== {dataset} ============')
    train_split = load_dataset(f'SetFit/{dataset}', split='train')
    train_splits = create_fewshot_splits(train_split, sample_sizes, add_data_augmentation, f'SetFit/{dataset}')
    test_split = load_dataset(f'SetFit/{dataset}', split='test')
    print(f'Test set: {len(test_split)}')
    return (train_splits, test_split)

def load_data_splits_multilabel(dataset: str, sample_sizes: List[int]) -> Tuple[DatasetDict, Dataset]:
    print(f'\n\n\n============== {dataset} ============')
    train_split = load_dataset(f'SetFit/{dataset}', 'multilabel', split='train')
    train_splits = create_fewshot_splits_multilabel(train_split, sample_sizes)
    test_split = load_dataset(f'SetFit/{dataset}', 'multilabel', split='test')
    print(f'Test set: {len(test_split)}')
    return (train_splits, test_split)

@dataclass
class Benchmark:
    out_path: Optional[str] = None
    summary_msg: str = field(default_factory=str)

    def print(self, msg: str) -> None:
        print(msg)
        if self.out_path is not None:
            with open(self.out_path, 'a+') as f:
                f.write(msg + '\n')

    @contextmanager
    def track(self, step):
        start = monotonic_ns()
        yield
        ns = monotonic_ns() - start
        msg = f"\n{'*' * 70}\n'{step}' took {ns / SEC_TO_NS_SCALE:.3f}s ({ns:,}ns)\n{'*' * 70}\n"
        print(msg)
        self.summary_msg += msg + '\n'

    def summary(self) -> None:
        self.print(f"\n{'#' * 30}\nBenchmark Summary:\n{'#' * 30}\n\n{self.summary_msg}")

class BestRun(NamedTuple):
    run_id: str
    objective: float
    hyperparameters: Dict[str, Any]
    backend: Any = None

def set_docstring(method, docstring, cls=None):
    copied_function = copy_func(method)
    copied_function.__doc__ = docstring
    return types.MethodType(copied_function, cls or method.__self__)