File size: 138,774 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 |
# File: setfit-main/src/setfit/__init__.py __version__ = '1.1.0.dev0' import importlib import os import warnings from .data import get_templated_dataset, sample_dataset from .model_card import SetFitModelCardData from .modeling import SetFitHead, SetFitModel from .span import AbsaModel, AbsaTrainer, AspectExtractor, AspectModel, PolarityModel from .trainer import SetFitTrainer, Trainer from .trainer_distillation import DistillationSetFitTrainer, DistillationTrainer from .training_args import TrainingArguments warnings.filterwarnings('default', category=DeprecationWarning) if importlib.util.find_spec('codecarbon') and 'CODECARBON_LOG_LEVEL' not in os.environ: os.environ['CODECARBON_LOG_LEVEL'] = 'error' # File: setfit-main/src/setfit/data.py from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import pandas as pd import torch from datasets import Dataset, DatasetDict, load_dataset from torch.utils.data import Dataset as TorchDataset from . import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) if TYPE_CHECKING: from transformers import PreTrainedTokenizerBase TokenizerOutput = Dict[str, List[int]] SEEDS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] SAMPLE_SIZES = [2, 4, 8, 16, 32, 64] def get_templated_dataset(dataset: Optional[Dataset]=None, candidate_labels: Optional[List[str]]=None, reference_dataset: Optional[str]=None, template: str='This sentence is {}', sample_size: int=2, text_column: str='text', label_column: str='label', multi_label: bool=False, label_names_column: str='label_text') -> Dataset: if dataset is None: dataset = Dataset.from_dict({}) required_columns = {text_column, label_column} column_names = set(dataset.column_names) if column_names: missing_columns = required_columns.difference(column_names) if missing_columns: raise ValueError(f'The following columns are missing from the input dataset: {missing_columns}.') if bool(reference_dataset) == bool(candidate_labels): raise ValueError('Must supply exactly one of `reference_dataset` or `candidate_labels` to `get_templated_dataset()`!') if candidate_labels is None: candidate_labels = get_candidate_labels(reference_dataset, label_names_column) empty_label_vector = [0] * len(candidate_labels) for (label_id, label_name) in enumerate(candidate_labels): label_vector = empty_label_vector.copy() label_vector[label_id] = 1 example = {text_column: template.format(label_name), label_column: label_vector if multi_label else label_id} for _ in range(sample_size): dataset = dataset.add_item(example) return dataset def get_candidate_labels(dataset_name: str, label_names_column: str='label_text') -> List[str]: dataset = load_dataset(dataset_name, split='train') try: label_features = dataset.features['label'] candidate_labels = label_features.names except AttributeError: label_names = dataset.unique(label_names_column) label_ids = dataset.unique('label') id2label = sorted(zip(label_ids, label_names), key=lambda x: x[0]) candidate_labels = list(map(lambda x: x[1], id2label)) return candidate_labels def create_samples(df: pd.DataFrame, sample_size: int, seed: int) -> pd.DataFrame: examples = [] for label in df['label'].unique(): subset = df.query(f'label == {label}') if len(subset) > sample_size: examples.append(subset.sample(sample_size, random_state=seed, replace=False)) else: examples.append(subset) return pd.concat(examples) def sample_dataset(dataset: Dataset, label_column: str='label', num_samples: int=8, seed: int=42) -> Dataset: shuffled_dataset = dataset.shuffle(seed=seed) df = shuffled_dataset.to_pandas() df = df.groupby(label_column) df = df.apply(lambda x: x.sample(min(num_samples, len(x)), random_state=seed)) df = df.reset_index(drop=True) all_samples = Dataset.from_pandas(df, features=dataset.features) return all_samples.shuffle(seed=seed) def create_fewshot_splits(dataset: Dataset, sample_sizes: List[int], add_data_augmentation: bool=False, dataset_name: Optional[str]=None) -> DatasetDict: splits_ds = DatasetDict() df = dataset.to_pandas() if add_data_augmentation and dataset_name is None: raise ValueError('If `add_data_augmentation` is True, must supply a `dataset_name` to create_fewshot_splits()!') for sample_size in sample_sizes: if add_data_augmentation: augmented_df = get_templated_dataset(reference_dataset=dataset_name, sample_size=sample_size).to_pandas() for (idx, seed) in enumerate(SEEDS): split_df = create_samples(df, sample_size, seed) if add_data_augmentation: split_df = pd.concat([split_df, augmented_df], axis=0).sample(frac=1, random_state=seed) splits_ds[f'train-{sample_size}-{idx}'] = Dataset.from_pandas(split_df, preserve_index=False) return splits_ds def create_samples_multilabel(df: pd.DataFrame, sample_size: int, seed: int) -> pd.DataFrame: examples = [] column_labels = [_col for _col in df.columns.tolist() if _col != 'text'] for label in column_labels: subset = df.query(f'{label} == 1') if len(subset) > sample_size: examples.append(subset.sample(sample_size, random_state=seed, replace=False)) else: examples.append(subset) return pd.concat(examples).drop_duplicates() def create_fewshot_splits_multilabel(dataset: Dataset, sample_sizes: List[int]) -> DatasetDict: splits_ds = DatasetDict() df = dataset.to_pandas() for sample_size in sample_sizes: for (idx, seed) in enumerate(SEEDS): split_df = create_samples_multilabel(df, sample_size, seed) splits_ds[f'train-{sample_size}-{idx}'] = Dataset.from_pandas(split_df, preserve_index=False) return splits_ds class SetFitDataset(TorchDataset): def __init__(self, x: List[str], y: Union[List[int], List[List[int]]], tokenizer: 'PreTrainedTokenizerBase', max_length: int=32) -> None: assert len(x) == len(y) self.x = x self.y = y self.tokenizer = tokenizer self.max_length = max_length def __len__(self) -> int: return len(self.x) def __getitem__(self, idx: int) -> Tuple[TokenizerOutput, Union[int, List[int]]]: feature = self.tokenizer(self.x[idx], max_length=self.max_length, padding='max_length', truncation=True, return_attention_mask='attention_mask' in self.tokenizer.model_input_names, return_token_type_ids='token_type_ids' in self.tokenizer.model_input_names) label = self.y[idx] return (feature, label) def collate_fn(self, batch): features = {input_name: [] for input_name in self.tokenizer.model_input_names} labels = [] for (feature, label) in batch: features['input_ids'].append(feature['input_ids']) if 'attention_mask' in features: features['attention_mask'].append(feature['attention_mask']) if 'token_type_ids' in features: features['token_type_ids'].append(feature['token_type_ids']) labels.append(label) features = {k: torch.Tensor(v).int() for (k, v) in features.items()} labels = torch.Tensor(labels) labels = labels.long() if len(labels.size()) == 1 else labels.float() return (features, labels) # File: setfit-main/src/setfit/exporters/onnx.py import copy import warnings from typing import Callable, Optional, Union import numpy as np import onnx import torch from sentence_transformers import SentenceTransformer, models from sklearn.linear_model import LogisticRegression from transformers.modeling_utils import PreTrainedModel from setfit.exporters.utils import mean_pooling class OnnxSetFitModel(torch.nn.Module): def __init__(self, model_body: PreTrainedModel, pooler: Optional[Union[torch.nn.Module, Callable[[torch.Tensor], torch.Tensor]]]=None, model_head: Optional[Union[torch.nn.Module, LogisticRegression]]=None): super().__init__() self.model_body = model_body if pooler is None: print('No pooler was set so defaulting to mean pooling.') self.pooler = mean_pooling else: self.pooler = pooler self.model_head = model_head def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, token_type_ids: torch.Tensor): hidden_states = self.model_body(input_ids, attention_mask, token_type_ids) hidden_states = {'token_embeddings': hidden_states[0], 'attention_mask': attention_mask} embeddings = self.pooler(hidden_states) if self.model_head is None: return embeddings out = self.model_head(embeddings) return out def export_onnx_setfit_model(setfit_model: OnnxSetFitModel, inputs, output_path, opset: int=12): input_names = list(inputs.keys()) output_names = ['logits'] dynamic_axes_input = {} for input_name in input_names: dynamic_axes_input[input_name] = {0: 'batch_size', 1: 'sequence'} dynamic_axes_output = {} for output_name in output_names: dynamic_axes_output[output_name] = {0: 'batch_size'} target = setfit_model.model_body.device args = tuple((value.to(target) for value in inputs.values())) setfit_model.eval() with torch.no_grad(): torch.onnx.export(setfit_model, args=args, f=output_path, opset_version=opset, input_names=['input_ids', 'attention_mask', 'token_type_ids'], output_names=output_names, dynamic_axes={**dynamic_axes_input, **dynamic_axes_output}) def export_sklearn_head_to_onnx(model_head: LogisticRegression, opset: int) -> onnx.onnx_ml_pb2.ModelProto: try: import onnxconverter_common from skl2onnx import convert_sklearn from skl2onnx.common.data_types import guess_data_type from skl2onnx.sklapi import CastTransformer from sklearn.pipeline import Pipeline except ImportError: msg = '\n `skl2onnx` must be installed in order to convert a model with an sklearn head.\n Please install with `pip install skl2onnx`.\n ' raise ImportError(msg) input_shape = (None, model_head.n_features_in_) if hasattr(model_head, 'coef_'): dtype = guess_data_type(model_head.coef_, shape=input_shape)[0][1] elif not hasattr(model_head, 'coef_') and hasattr(model_head, 'estimators_'): if any([not hasattr(e, 'coef_') for e in model_head.estimators_]): raise ValueError('The model_head is a meta-estimator but not all of the estimators have a coef_ attribute.') dtype = guess_data_type(model_head.estimators_[0].coef_, shape=input_shape)[0][1] else: raise ValueError('The model_head either does not have a coef_ attribute or some estimators in model_head.estimators_ do not have a coef_ attribute. Conversion to ONNX only supports these cases.') dtype.shape = input_shape if isinstance(dtype, onnxconverter_common.data_types.DoubleTensorType): sklearn_model = Pipeline([('castdouble', CastTransformer(dtype=np.double)), ('head', model_head)]) else: sklearn_model = model_head onnx_model = convert_sklearn(sklearn_model, initial_types=[('model_head', dtype)], target_opset=opset, options={id(sklearn_model): {'zipmap': False}}) return onnx_model def hummingbird_export(model, data_sample): try: from hummingbird.ml import convert except ImportError: raise ImportError("Hummingbird-ML library is not installed.Run 'pip install hummingbird-ml' to use this type of export.") onnx_model = convert(model, 'onnx', data_sample) return onnx_model._model def export_onnx(model_body: SentenceTransformer, model_head: Union[torch.nn.Module, LogisticRegression], opset: int, output_path: str='model.onnx', ignore_ir_version: bool=True, use_hummingbird: bool=False) -> None: model_body_module = model_body._modules['0'] model_pooler = model_body._modules['1'] tokenizer = model_body_module.tokenizer max_length = model_body_module.max_seq_length transformer = model_body_module.auto_model transformer.eval() tokenizer_kwargs = dict(max_length=max_length, padding='max_length', return_attention_mask=True, return_token_type_ids=True, return_tensors='pt') dummy_sample = "It's a test." dummy_inputs = tokenizer(dummy_sample, **tokenizer_kwargs) if issubclass(type(model_head), models.Dense): setfit_model = OnnxSetFitModel(transformer, lambda x: model_pooler(x)['sentence_embedding'], model_head).cpu() export_onnx_setfit_model(setfit_model, dummy_inputs, output_path, opset) onnx_setfit_model = onnx.load(output_path) meta = onnx_setfit_model.metadata_props.add() for (key, value) in tokenizer_kwargs.items(): meta = onnx_setfit_model.metadata_props.add() meta.key = str(key) meta.value = str(value) else: if use_hummingbird: with torch.no_grad(): test_input = copy.deepcopy(dummy_inputs) head_input = model_body(test_input)['sentence_embedding'] onnx_head = hummingbird_export(model_head, head_input.detach().numpy()) else: onnx_head = export_sklearn_head_to_onnx(model_head, opset) max_opset = max([x.version for x in onnx_head.opset_import]) if max_opset != opset: warnings.warn(f'sklearn onnx max opset is {max_opset} requested opset {opset} using opset {max_opset} for compatibility.') export_onnx_setfit_model(OnnxSetFitModel(transformer, lambda x: model_pooler(x)['sentence_embedding']), dummy_inputs, output_path, max_opset) onnx_body = onnx.load(output_path) if ignore_ir_version: onnx_head.ir_version = onnx_body.ir_version elif onnx_head.ir_version != onnx_body.ir_version: msg = f'\n IR Version mismatch between head={onnx_head.ir_version} and body={onnx_body.ir_version}\n Make sure that the ONNX IR versions are aligned and supported between the chosen Sklearn model\n and the transformer. You can set ignore_ir_version=True to coerce them but this might cause errors.\n ' raise ValueError(msg) head_input_name = next(iter(onnx_head.graph.input)).name onnx_setfit_model = onnx.compose.merge_models(onnx_body, onnx_head, io_map=[('logits', head_input_name)]) onnx.save(onnx_setfit_model, output_path) # File: setfit-main/src/setfit/exporters/openvino.py import os import openvino.runtime as ov from setfit import SetFitModel from setfit.exporters.onnx import export_onnx def export_to_openvino(model: SetFitModel, output_path: str='model.xml') -> None: OPENVINO_SUPPORTED_OPSET = 13 model.model_body.cpu() onnx_path = output_path.replace('.xml', '.onnx') export_onnx(model.model_body, model.model_head, opset=OPENVINO_SUPPORTED_OPSET, output_path=onnx_path, ignore_ir_version=True, use_hummingbird=True) ov_model = ov.Core().read_model(onnx_path) ov.serialize(ov_model, output_path) os.remove(onnx_path) # File: setfit-main/src/setfit/exporters/utils.py import torch def mean_pooling(token_embeddings: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor: input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-09) # File: setfit-main/src/setfit/integrations.py import importlib.util from typing import TYPE_CHECKING from .utils import BestRun if TYPE_CHECKING: from .trainer import Trainer def is_optuna_available() -> bool: return importlib.util.find_spec('optuna') is not None def default_hp_search_backend(): if is_optuna_available(): return 'optuna' def run_hp_search_optuna(trainer: 'Trainer', n_trials: int, direction: str, **kwargs) -> BestRun: import optuna def _objective(trial): trainer.objective = None trainer.train(trial=trial) if getattr(trainer, 'objective', None) is None: metrics = trainer.evaluate() trainer.objective = trainer.compute_objective(metrics) return trainer.objective timeout = kwargs.pop('timeout', None) n_jobs = kwargs.pop('n_jobs', 1) study = optuna.create_study(direction=direction, **kwargs) study.optimize(_objective, n_trials=n_trials, timeout=timeout, n_jobs=n_jobs) best_trial = study.best_trial return BestRun(str(best_trial.number), best_trial.value, best_trial.params, study) # File: setfit-main/src/setfit/logging.py """""" import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib _lock = threading.Lock() _default_handler: Optional[logging.Handler] = None log_levels = {'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL} _default_log_level = logging.WARNING _tqdm_active = True def _get_default_logging_level(): env_level_str = os.getenv('TRANSFORMERS_VERBOSITY', None) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning(f"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, has to be one of: {', '.join(log_levels.keys())}") return _default_log_level def _get_library_name() -> str: return __name__.split('.')[0] def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: return _default_handler = logging.StreamHandler() _default_handler.flush = sys.stderr.flush library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) library_root_logger.propagate = False def _reset_library_root_logger() -> None: global _default_handler with _lock: if not _default_handler: return library_root_logger = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) _default_handler = None def get_log_levels_dict(): return log_levels def get_logger(name: Optional[str]=None) -> logging.Logger: if name is None: name = _get_library_name() _configure_library_root_logger() return logging.getLogger(name) def get_verbosity() -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def set_verbosity(verbosity: int) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(verbosity) def set_verbosity_info(): return set_verbosity(INFO) def set_verbosity_warning(): return set_verbosity(WARNING) def set_verbosity_debug(): return set_verbosity(DEBUG) def set_verbosity_error(): return set_verbosity(ERROR) def disable_default_handler() -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def enable_default_handler() -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def add_handler(handler: logging.Handler) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(handler) def remove_handler(handler: logging.Handler) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(handler) def disable_propagation() -> None: _configure_library_root_logger() _get_library_root_logger().propagate = False def enable_propagation() -> None: _configure_library_root_logger() _get_library_root_logger().propagate = True def enable_explicit_format() -> None: handlers = _get_library_root_logger().handlers for handler in handlers: formatter = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s') handler.setFormatter(formatter) def reset_format() -> None: handlers = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(None) def warning_advice(self, *args, **kwargs): no_advisory_warnings = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS', False) if no_advisory_warnings: return self.warning(*args, **kwargs) logging.Logger.warning_advice = warning_advice class EmptyTqdm: def __init__(self, *args, **kwargs): self._iterator = args[0] if args else None def __iter__(self): return iter(self._iterator) def __getattr__(self, _): def empty_fn(*args, **kwargs): return return empty_fn def __enter__(self): return self def __exit__(self, type_, value, traceback): return class _tqdm_cls: def __call__(self, *args, **kwargs): if _tqdm_active: return tqdm_lib.tqdm(*args, **kwargs) else: return EmptyTqdm(*args, **kwargs) def set_lock(self, *args, **kwargs): self._lock = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*args, **kwargs) def get_lock(self): if _tqdm_active: return tqdm_lib.tqdm.get_lock() tqdm = _tqdm_cls() def is_progress_bar_enabled() -> bool: global _tqdm_active return bool(_tqdm_active) def enable_progress_bar(): global _tqdm_active _tqdm_active = True hf_hub_utils.enable_progress_bars() def disable_progress_bar(): global _tqdm_active _tqdm_active = False hf_hub_utils.disable_progress_bars() # File: setfit-main/src/setfit/losses.py import torch from torch import nn class SupConLoss(nn.Module): def __init__(self, model, temperature=0.07, contrast_mode='all', base_temperature=0.07): super(SupConLoss, self).__init__() self.model = model self.temperature = temperature self.contrast_mode = contrast_mode self.base_temperature = base_temperature def forward(self, sentence_features, labels=None, mask=None): features = self.model(sentence_features[0])['sentence_embedding'] features = torch.nn.functional.normalize(features, p=2, dim=1) features = torch.unsqueeze(features, 1) device = features.device if len(features.shape) < 3: raise ValueError('`features` needs to be [bsz, n_views, ...],at least 3 dimensions are required') if len(features.shape) > 3: features = features.view(features.shape[0], features.shape[1], -1) batch_size = features.shape[0] if labels is not None and mask is not None: raise ValueError('Cannot define both `labels` and `mask`') elif labels is None and mask is None: mask = torch.eye(batch_size, dtype=torch.float32).to(device) elif labels is not None: labels = labels.contiguous().view(-1, 1) if labels.shape[0] != batch_size: raise ValueError('Num of labels does not match num of features') mask = torch.eq(labels, labels.T).float().to(device) else: mask = mask.float().to(device) contrast_count = features.shape[1] contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0) if self.contrast_mode == 'one': anchor_feature = features[:, 0] anchor_count = 1 elif self.contrast_mode == 'all': anchor_feature = contrast_feature anchor_count = contrast_count else: raise ValueError('Unknown mode: {}'.format(self.contrast_mode)) anchor_dot_contrast = torch.div(torch.matmul(anchor_feature, contrast_feature.T), self.temperature) (logits_max, _) = torch.max(anchor_dot_contrast, dim=1, keepdim=True) logits = anchor_dot_contrast - logits_max.detach() mask = mask.repeat(anchor_count, contrast_count) logits_mask = torch.scatter(torch.ones_like(mask), 1, torch.arange(batch_size * anchor_count).view(-1, 1).to(device), 0) mask = mask * logits_mask exp_logits = torch.exp(logits) * logits_mask log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)) mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) loss = -(self.temperature / self.base_temperature) * mean_log_prob_pos loss = loss.view(anchor_count, batch_size).mean() return loss # File: setfit-main/src/setfit/model_card.py import collections import random from collections import Counter, defaultdict from dataclasses import dataclass, field, fields from pathlib import Path from platform import python_version from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import datasets import tokenizers import torch import transformers from datasets import Dataset from huggingface_hub import CardData, ModelCard, dataset_info, list_datasets, model_info from huggingface_hub.repocard_data import EvalResult, eval_results_to_model_index from huggingface_hub.utils import yaml_dump from sentence_transformers import __version__ as sentence_transformers_version from transformers import PretrainedConfig, TrainerCallback from transformers.integrations import CodeCarbonCallback from transformers.modelcard import make_markdown_table from transformers.trainer_callback import TrainerControl, TrainerState from transformers.training_args import TrainingArguments from setfit import __version__ as setfit_version from . import logging logger = logging.get_logger(__name__) if TYPE_CHECKING: from setfit.modeling import SetFitModel from setfit.trainer import Trainer class ModelCardCallback(TrainerCallback): def __init__(self, trainer: 'Trainer') -> None: super().__init__() self.trainer = trainer callbacks = [callback for callback in self.trainer.callback_handler.callbacks if isinstance(callback, CodeCarbonCallback)] if callbacks: trainer.model.model_card_data.code_carbon_callback = callbacks[0] def on_init_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, model: 'SetFitModel', **kwargs): if not model.model_card_data.dataset_id: try: model.model_card_data.infer_dataset_id(self.trainer.train_dataset) except Exception: pass dataset = self.trainer.eval_dataset or self.trainer.train_dataset if dataset is not None: if not model.model_card_data.widget: model.model_card_data.set_widget_examples(dataset) if self.trainer.train_dataset: model.model_card_data.set_train_set_metrics(self.trainer.train_dataset) try: model.model_card_data.num_classes = len(set(self.trainer.train_dataset['label'])) model.model_card_data.set_label_examples(self.trainer.train_dataset) except Exception: pass def on_train_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, model: 'SetFitModel', **kwargs) -> None: ignore_keys = {'output_dir', 'logging_dir', 'logging_strategy', 'logging_first_step', 'logging_steps', 'eval_strategy', 'eval_steps', 'eval_delay', 'save_strategy', 'save_steps', 'save_total_limit', 'metric_for_best_model', 'greater_is_better', 'report_to', 'samples_per_label', 'show_progress_bar'} get_name_keys = {'loss', 'distance_metric'} args_dict = args.to_dict() model.model_card_data.hyperparameters = {key: value.__name__ if key in get_name_keys else value for (key, value) in args_dict.items() if key not in ignore_keys and value is not None} def on_evaluate(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, model: 'SetFitModel', metrics: Dict[str, float], **kwargs) -> None: if model.model_card_data.eval_lines_list and model.model_card_data.eval_lines_list[-1]['Step'] == state.global_step: model.model_card_data.eval_lines_list[-1]['Validation Loss'] = metrics['eval_embedding_loss'] else: model.model_card_data.eval_lines_list.append({'Epoch': state.epoch, 'Step': state.global_step, 'Training Loss': '-', 'Validation Loss': metrics['eval_embedding_loss']}) def on_log(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, model: 'SetFitModel', logs: Dict[str, float], **kwargs): keys = {'embedding_loss', 'polarity_embedding_loss', 'aspect_embedding_loss'} & set(logs) if keys: if model.model_card_data.eval_lines_list and model.model_card_data.eval_lines_list[-1]['Step'] == state.global_step: model.model_card_data.eval_lines_list[-1]['Training Loss'] = logs[keys.pop()] else: model.model_card_data.eval_lines_list.append({'Epoch': state.epoch, 'Step': state.global_step, 'Training Loss': logs[keys.pop()], 'Validation Loss': '-'}) YAML_FIELDS = ['language', 'license', 'library_name', 'tags', 'datasets', 'metrics', 'pipeline_tag', 'widget', 'model-index', 'co2_eq_emissions', 'base_model', 'inference'] IGNORED_FIELDS = ['model'] @dataclass class SetFitModelCardData(CardData): language: Optional[Union[str, List[str]]] = None license: Optional[str] = None tags: Optional[List[str]] = field(default_factory=lambda : ['setfit', 'sentence-transformers', 'text-classification', 'generated_from_setfit_trainer']) model_name: Optional[str] = None model_id: Optional[str] = None dataset_name: Optional[str] = None dataset_id: Optional[str] = None dataset_revision: Optional[str] = None task_name: Optional[str] = None st_id: Optional[str] = None hyperparameters: Dict[str, Any] = field(default_factory=dict, init=False) eval_results_dict: Optional[Dict[str, Any]] = field(default_factory=dict, init=False) eval_lines_list: List[Dict[str, float]] = field(default_factory=list, init=False) metric_lines: List[Dict[str, float]] = field(default_factory=list, init=False) widget: List[Dict[str, str]] = field(default_factory=list, init=False) predict_example: Optional[str] = field(default=None, init=False) label_example_list: List[Dict[str, str]] = field(default_factory=list, init=False) tokenizer_warning: bool = field(default=False, init=False) train_set_metrics_list: List[Dict[str, str]] = field(default_factory=list, init=False) train_set_sentences_per_label_list: List[Dict[str, str]] = field(default_factory=list, init=False) code_carbon_callback: Optional[CodeCarbonCallback] = field(default=None, init=False) num_classes: Optional[int] = field(default=None, init=False) best_model_step: Optional[int] = field(default=None, init=False) metrics: List[str] = field(default_factory=lambda : ['accuracy'], init=False) pipeline_tag: str = field(default='text-classification', init=False) library_name: str = field(default='setfit', init=False) version: Dict[str, str] = field(default_factory=lambda : {'python': python_version(), 'setfit': setfit_version, 'sentence_transformers': sentence_transformers_version, 'transformers': transformers.__version__, 'torch': torch.__version__, 'datasets': datasets.__version__, 'tokenizers': tokenizers.__version__}, init=False) absa: Dict[str, Any] = field(default=None, init=False, repr=False) model: Optional['SetFitModel'] = field(default=None, init=False, repr=False) head_class: Optional[str] = field(default=None, init=False, repr=False) inference: Optional[bool] = field(default=True, init=False, repr=False) def __post_init__(self): if self.dataset_id: if is_on_huggingface(self.dataset_id, is_model=False): if self.language is None: try: info = dataset_info(self.dataset_id) except Exception: pass else: if info.cardData: self.language = info.cardData.get('language', self.language) else: logger.warning(f'The provided {self.dataset_id!r} dataset could not be found on the Hugging Face Hub. Setting `dataset_id` to None.') self.dataset_id = None if self.model_id and self.model_id.count('/') != 1: logger.warning(f'The provided {self.model_id!r} model ID should include the organization or user, such as "tomaarsen/setfit-bge-small-v1.5-sst2-8-shot". Setting `model_id` to None.') self.model_id = None def set_best_model_step(self, step: int) -> None: self.best_model_step = step def set_widget_examples(self, dataset: Dataset) -> None: samples = dataset.select(random.sample(range(len(dataset)), k=min(len(dataset), 5)))['text'] self.widget = [{'text': sample} for sample in samples] samples.sort(key=len) if samples: self.predict_example = samples[0] def set_train_set_metrics(self, dataset: Dataset) -> None: def add_naive_word_count(sample: Dict[str, Any]) -> Dict[str, Any]: sample['word_count'] = len(sample['text'].split(' ')) return sample dataset = dataset.map(add_naive_word_count) self.train_set_metrics_list = [{'Training set': 'Word count', 'Min': min(dataset['word_count']), 'Median': sum(dataset['word_count']) / len(dataset), 'Max': max(dataset['word_count'])}] if 'label' not in dataset.column_names: return sample_label = dataset[0]['label'] if isinstance(sample_label, collections.abc.Sequence) and (not isinstance(sample_label, str)): return try: counter = Counter(dataset['label']) if self.model.labels: self.train_set_sentences_per_label_list = [{'Label': str_label, 'Training Sample Count': counter[str_label if isinstance(sample_label, str) else self.model.label2id[str_label]]} for str_label in self.model.labels] else: self.train_set_sentences_per_label_list = [{'Label': self.model.labels[label] if self.model.labels and isinstance(label, int) else str(label), 'Training Sample Count': count} for (label, count) in sorted(counter.items())] except Exception: pass def set_label_examples(self, dataset: Dataset) -> None: num_examples_per_label = 3 examples = defaultdict(list) finished_labels = set() for sample in dataset: text = sample['text'] label = sample['label'] if label not in finished_labels: examples[label].append(f'<li>{repr(text)}</li>') if len(examples[label]) >= num_examples_per_label: finished_labels.add(label) if len(finished_labels) == self.num_classes: break self.label_example_list = [{'Label': self.model.labels[label] if self.model.labels and isinstance(label, int) else label, 'Examples': '<ul>' + ''.join(example_set) + '</ul>'} for (label, example_set) in examples.items()] def infer_dataset_id(self, dataset: Dataset) -> None: def subtuple_finder(tuple: Tuple[str], subtuple: Tuple[str]) -> int: for (i, element) in enumerate(tuple): if element == subtuple[0] and tuple[i:i + len(subtuple)] == subtuple: return i return -1 def normalize(dataset_id: str) -> str: for token in '/\\_-': dataset_id = dataset_id.replace(token, '') return dataset_id.lower() cache_files = dataset.cache_files if cache_files and 'filename' in cache_files[0]: cache_path_parts = Path(cache_files[0]['filename']).parts subtuple = ('huggingface', 'datasets') index = subtuple_finder(cache_path_parts, subtuple) if index == -1: return cache_dataset_name = cache_path_parts[index + len(subtuple)] if '___' in cache_dataset_name: (author, dataset_name) = cache_dataset_name.split('___') else: author = None dataset_name = cache_dataset_name dataset_list = [dataset for dataset in list_datasets(author=author, dataset_name=dataset_name) if normalize(dataset.id) == normalize(cache_dataset_name)] if len(dataset_list) == 1: self.dataset_id = dataset_list[0].id def register_model(self, model: 'SetFitModel') -> None: self.model = model head_class = model.model_head.__class__.__name__ self.head_class = {'LogisticRegression': '[LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html)', 'SetFitHead': '[SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead)'}.get(head_class, head_class) if not self.model_name: if self.st_id: self.model_name = f'SetFit with {self.st_id}' if self.dataset_name or self.dataset_id: self.model_name += f' on {self.dataset_name or self.dataset_id}' else: self.model_name = 'SetFit' self.inference = self.model.multi_target_strategy is None def infer_st_id(self, setfit_model_id: str) -> None: (config_dict, _) = PretrainedConfig.get_config_dict(setfit_model_id) st_id = config_dict.get('_name_or_path') st_id_path = Path(st_id) candidate_model_ids = ['/'.join(st_id_path.parts[-2:])] splits = st_id_path.name.split('_') candidate_model_ids += ['_'.join(splits[:idx]) + '/' + '_'.join(splits[idx:]) for idx in range(1, len(splits))] for model_id in candidate_model_ids: if is_on_huggingface(model_id): self.st_id = model_id break def set_st_id(self, model_id: str) -> None: if is_on_huggingface(model_id): self.st_id = model_id def post_training_eval_results(self, results: Dict[str, float]) -> None: def try_to_pure_python(value: Any) -> Any: try: if hasattr(value, 'dtype'): return value.item() except Exception: pass return value pure_python_results = {key: try_to_pure_python(value) for (key, value) in results.items()} results_without_split = {key.split('_', maxsplit=1)[1].title(): value for (key, value) in pure_python_results.items()} self.eval_results_dict = pure_python_results self.metric_lines = [{'Label': '**all**', **results_without_split}] def _maybe_round(self, v, decimals=4): if isinstance(v, float) and len(str(v).split('.')) > 1 and (len(str(v).split('.')[1]) > decimals): return f'{v:.{decimals}f}' return str(v) def to_dict(self) -> Dict[str, Any]: super_dict = {field.name: getattr(self, field.name) for field in fields(self)} if self.eval_results_dict: dataset_split = list(self.eval_results_dict.keys())[0].split('_')[0] dataset_id = self.dataset_id or 'unknown' dataset_name = self.dataset_name or self.dataset_id or 'Unknown' eval_results = [EvalResult(task_type='text-classification', dataset_type=dataset_id, dataset_name=dataset_name, dataset_split=dataset_split, dataset_revision=self.dataset_revision, metric_type=metric_key.split('_', maxsplit=1)[1], metric_value=metric_value, task_name='Text Classification', metric_name=metric_key.split('_', maxsplit=1)[1].title()) for (metric_key, metric_value) in self.eval_results_dict.items()] super_dict['metrics'] = [metric_key.split('_', maxsplit=1)[1] for metric_key in self.eval_results_dict] super_dict['model-index'] = eval_results_to_model_index(self.model_name, eval_results) eval_lines_list = [{key: f'**{self._maybe_round(value)}**' if line['Step'] == self.best_model_step else value for (key, value) in line.items()} for line in self.eval_lines_list] super_dict['eval_lines'] = make_markdown_table(eval_lines_list) super_dict['explain_bold_in_eval'] = '**' in super_dict['eval_lines'] super_dict['label_examples'] = make_markdown_table(self.label_example_list).replace('-:|', '--|') super_dict['train_set_metrics'] = make_markdown_table(self.train_set_metrics_list).replace('-:|', '--|') super_dict['train_set_sentences_per_label_list'] = make_markdown_table(self.train_set_sentences_per_label_list).replace('-:|', '--|') super_dict['metrics_table'] = make_markdown_table(self.metric_lines).replace('-:|', '--|') if self.code_carbon_callback and self.code_carbon_callback.tracker: emissions_data = self.code_carbon_callback.tracker._prepare_emissions_data() super_dict['co2_eq_emissions'] = {'emissions': float(emissions_data.emissions) * 1000, 'source': 'codecarbon', 'training_type': 'fine-tuning', 'on_cloud': emissions_data.on_cloud == 'Y', 'cpu_model': emissions_data.cpu_model, 'ram_total_size': emissions_data.ram_total_size, 'hours_used': round(emissions_data.duration / 3600, 3)} if emissions_data.gpu_model: super_dict['co2_eq_emissions']['hardware_used'] = emissions_data.gpu_model if self.dataset_id: super_dict['datasets'] = [self.dataset_id] if self.st_id: super_dict['base_model'] = self.st_id super_dict['model_max_length'] = self.model.model_body.get_max_seq_length() if super_dict['num_classes'] is None: if self.model.labels: super_dict['num_classes'] = len(self.model.labels) if super_dict['absa']: super_dict.update(super_dict.pop('absa')) for key in IGNORED_FIELDS: super_dict.pop(key, None) return super_dict def to_yaml(self, line_break=None) -> str: return yaml_dump({key: value for (key, value) in self.to_dict().items() if key in YAML_FIELDS and value is not None}, sort_keys=False, line_break=line_break).strip() def is_on_huggingface(repo_id: str, is_model: bool=True) -> bool: if len(repo_id.split('/')) > 2: return False try: if is_model: model_info(repo_id) else: dataset_info(repo_id) return True except Exception: return False def generate_model_card(model: 'SetFitModel') -> str: template_path = Path(__file__).parent / 'model_card_template.md' model_card = ModelCard.from_template(card_data=model.model_card_data, template_path=template_path, hf_emoji='🤗') return model_card.content # File: setfit-main/src/setfit/modeling.py import json import os import tempfile import warnings from pathlib import Path from typing import Dict, List, Literal, Optional, Set, Tuple, Union import joblib import numpy as np import requests import torch from huggingface_hub import ModelHubMixin, hf_hub_download from huggingface_hub.utils import validate_hf_hub_args from packaging.version import Version, parse from sentence_transformers import SentenceTransformer from sentence_transformers import __version__ as sentence_transformers_version from sentence_transformers import models from sklearn.linear_model import LogisticRegression from sklearn.multiclass import OneVsRestClassifier from sklearn.multioutput import ClassifierChain, MultiOutputClassifier from torch import nn from torch.utils.data import DataLoader from tqdm.auto import tqdm, trange from transformers.utils import copy_func from . import logging from .data import SetFitDataset from .model_card import SetFitModelCardData, generate_model_card from .utils import set_docstring logging.set_verbosity_info() logger = logging.get_logger(__name__) MODEL_HEAD_NAME = 'model_head.pkl' CONFIG_NAME = 'config_setfit.json' class SetFitHead(models.Dense): def __init__(self, in_features: Optional[int]=None, out_features: int=2, temperature: float=1.0, eps: float=1e-05, bias: bool=True, device: Optional[Union[torch.device, str]]=None, multitarget: bool=False) -> None: super(models.Dense, self).__init__() if out_features == 1: logger.warning('Change `out_features` from 1 to 2 since we use `CrossEntropyLoss` for binary classification.') out_features = 2 if in_features is not None: self.linear = nn.Linear(in_features, out_features, bias=bias) else: self.linear = nn.LazyLinear(out_features, bias=bias) self.in_features = in_features self.out_features = out_features self.temperature = temperature self.eps = eps self.bias = bias self._device = device or 'cuda' if torch.cuda.is_available() else 'cpu' self.multitarget = multitarget self.to(self._device) self.apply(self._init_weight) def forward(self, features: Union[Dict[str, torch.Tensor], torch.Tensor], temperature: Optional[float]=None) -> Union[Dict[str, torch.Tensor], Tuple[torch.Tensor]]: temperature = temperature or self.temperature is_features_dict = False if isinstance(features, dict): assert 'sentence_embedding' in features is_features_dict = True x = features['sentence_embedding'] if is_features_dict else features logits = self.linear(x) logits = logits / (temperature + self.eps) if self.multitarget: probs = torch.sigmoid(logits) else: probs = nn.functional.softmax(logits, dim=-1) if is_features_dict: features.update({'logits': logits, 'probs': probs}) return features return (logits, probs) def predict_proba(self, x_test: torch.Tensor) -> torch.Tensor: self.eval() return self(x_test)[1] def predict(self, x_test: torch.Tensor) -> torch.Tensor: probs = self.predict_proba(x_test) if self.multitarget: return torch.where(probs >= 0.5, 1, 0) return torch.argmax(probs, dim=-1) def get_loss_fn(self) -> nn.Module: if self.multitarget: return torch.nn.BCEWithLogitsLoss() return torch.nn.CrossEntropyLoss() @property def device(self) -> torch.device: return next(self.parameters()).device def get_config_dict(self) -> Dict[str, Optional[Union[int, float, bool]]]: return {'in_features': self.in_features, 'out_features': self.out_features, 'temperature': self.temperature, 'bias': self.bias, 'device': self.device.type} @staticmethod def _init_weight(module) -> None: if isinstance(module, nn.Linear): nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0.01) def __repr__(self) -> str: return 'SetFitHead({})'.format(self.get_config_dict()) class SetFitModel(ModelHubMixin): def __init__(self, model_body: Optional[SentenceTransformer]=None, model_head: Optional[Union[SetFitHead, LogisticRegression]]=None, multi_target_strategy: Optional[str]=None, normalize_embeddings: bool=False, labels: Optional[List[str]]=None, model_card_data: Optional[SetFitModelCardData]=None, sentence_transformers_kwargs: Optional[Dict]=None, **kwargs) -> None: super(SetFitModel, self).__init__() self.model_body = model_body self.model_head = model_head self.multi_target_strategy = multi_target_strategy self.normalize_embeddings = normalize_embeddings self.labels = labels self.model_card_data = model_card_data or SetFitModelCardData() self.sentence_transformers_kwargs = sentence_transformers_kwargs or {} self.attributes_to_save: Set[str] = {'normalize_embeddings', 'labels'} self.model_card_data.register_model(self) @property def has_differentiable_head(self) -> bool: return isinstance(self.model_head, nn.Module) @property def id2label(self) -> Dict[int, str]: if self.labels is None: return {} return dict(enumerate(self.labels)) @property def label2id(self) -> Dict[str, int]: if self.labels is None: return {} return {label: idx for (idx, label) in enumerate(self.labels)} def fit(self, x_train: List[str], y_train: Union[List[int], List[List[int]]], num_epochs: int, batch_size: Optional[int]=None, body_learning_rate: Optional[float]=None, head_learning_rate: Optional[float]=None, end_to_end: bool=False, l2_weight: Optional[float]=None, max_length: Optional[int]=None, show_progress_bar: bool=True) -> None: if self.has_differentiable_head: self.model_body.train() self.model_head.train() if not end_to_end: self.freeze('body') dataloader = self._prepare_dataloader(x_train, y_train, batch_size, max_length) criterion = self.model_head.get_loss_fn() optimizer = self._prepare_optimizer(head_learning_rate, body_learning_rate, l2_weight) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5) for epoch_idx in trange(num_epochs, desc='Epoch', disable=not show_progress_bar): for batch in tqdm(dataloader, desc='Iteration', disable=not show_progress_bar, leave=False): (features, labels) = batch optimizer.zero_grad() features = {k: v.to(self.device) for (k, v) in features.items()} labels = labels.to(self.device) outputs = self.model_body(features) if self.normalize_embeddings: outputs['sentence_embedding'] = nn.functional.normalize(outputs['sentence_embedding'], p=2, dim=1) outputs = self.model_head(outputs) logits = outputs['logits'] loss: torch.Tensor = criterion(logits, labels) loss.backward() optimizer.step() scheduler.step() if not end_to_end: self.unfreeze('body') else: embeddings = self.model_body.encode(x_train, normalize_embeddings=self.normalize_embeddings) self.model_head.fit(embeddings, y_train) if self.labels is None and self.multi_target_strategy is None: try: classes = self.model_head.classes_ if classes.dtype.char == 'U': self.labels = classes.tolist() except Exception: pass def _prepare_dataloader(self, x_train: List[str], y_train: Union[List[int], List[List[int]]], batch_size: Optional[int]=None, max_length: Optional[int]=None, shuffle: bool=True) -> DataLoader: max_acceptable_length = self.model_body.get_max_seq_length() if max_length is None: max_length = max_acceptable_length logger.warning(f'The `max_length` is `None`. Using the maximum acceptable length according to the current model body: {max_length}.') if max_length > max_acceptable_length: logger.warning(f'The specified `max_length`: {max_length} is greater than the maximum length of the current model body: {max_acceptable_length}. Using {max_acceptable_length} instead.') max_length = max_acceptable_length dataset = SetFitDataset(x_train, y_train, tokenizer=self.model_body.tokenizer, max_length=max_length) dataloader = DataLoader(dataset, batch_size=batch_size, collate_fn=dataset.collate_fn, shuffle=shuffle, pin_memory=True) return dataloader def _prepare_optimizer(self, head_learning_rate: float, body_learning_rate: Optional[float], l2_weight: float) -> torch.optim.Optimizer: body_learning_rate = body_learning_rate or head_learning_rate l2_weight = l2_weight or 0.01 optimizer = torch.optim.AdamW([{'params': self.model_body.parameters(), 'lr': body_learning_rate, 'weight_decay': l2_weight}, {'params': self.model_head.parameters(), 'lr': head_learning_rate, 'weight_decay': l2_weight}]) return optimizer def freeze(self, component: Optional[Literal['body', 'head']]=None) -> None: if component is None or component == 'body': self._freeze_or_not(self.model_body, to_freeze=True) if (component is None or component == 'head') and self.has_differentiable_head: self._freeze_or_not(self.model_head, to_freeze=True) def unfreeze(self, component: Optional[Literal['body', 'head']]=None, keep_body_frozen: Optional[bool]=None) -> None: if keep_body_frozen is not None: warnings.warn('`keep_body_frozen` is deprecated and will be removed in v2.0.0 of SetFit. Please either pass "head", "body" or no arguments to unfreeze both.', DeprecationWarning, stacklevel=2) if keep_body_frozen and (not component): component = 'head' if component is None or component == 'body': self._freeze_or_not(self.model_body, to_freeze=False) if (component is None or component == 'head') and self.has_differentiable_head: self._freeze_or_not(self.model_head, to_freeze=False) def _freeze_or_not(self, model: nn.Module, to_freeze: bool) -> None: for param in model.parameters(): param.requires_grad = not to_freeze def encode(self, inputs: List[str], batch_size: int=32, show_progress_bar: Optional[bool]=None) -> Union[torch.Tensor, np.ndarray]: return self.model_body.encode(inputs, batch_size=batch_size, normalize_embeddings=self.normalize_embeddings, convert_to_tensor=self.has_differentiable_head, show_progress_bar=show_progress_bar) def _output_type_conversion(self, outputs: Union[torch.Tensor, np.ndarray], as_numpy: bool=False) -> Union[torch.Tensor, np.ndarray]: if as_numpy and self.has_differentiable_head: outputs = outputs.detach().cpu().numpy() elif not as_numpy and (not self.has_differentiable_head) and (outputs.dtype.char != 'U'): outputs = torch.from_numpy(outputs) return outputs def predict_proba(self, inputs: Union[str, List[str]], batch_size: int=32, as_numpy: bool=False, show_progress_bar: Optional[bool]=None) -> Union[torch.Tensor, np.ndarray]: is_singular = isinstance(inputs, str) if is_singular: inputs = [inputs] embeddings = self.encode(inputs, batch_size=batch_size, show_progress_bar=show_progress_bar) probs = self.model_head.predict_proba(embeddings) if isinstance(probs, list): if self.has_differentiable_head: probs = torch.stack(probs, axis=1) else: probs = np.stack(probs, axis=1) outputs = self._output_type_conversion(probs, as_numpy=as_numpy) return outputs[0] if is_singular else outputs def predict(self, inputs: Union[str, List[str]], batch_size: int=32, as_numpy: bool=False, use_labels: bool=True, show_progress_bar: Optional[bool]=None) -> Union[torch.Tensor, np.ndarray, List[str], int, str]: is_singular = isinstance(inputs, str) if is_singular: inputs = [inputs] embeddings = self.encode(inputs, batch_size=batch_size, show_progress_bar=show_progress_bar) preds = self.model_head.predict(embeddings) if use_labels and self.labels and (preds.ndim == 1) and (self.has_differentiable_head or preds.dtype.char != 'U'): outputs = [self.labels[int(pred)] for pred in preds] else: outputs = self._output_type_conversion(preds, as_numpy=as_numpy) return outputs[0] if is_singular else outputs def __call__(self, inputs: Union[str, List[str]], batch_size: int=32, as_numpy: bool=False, use_labels: bool=True, show_progress_bar: Optional[bool]=None) -> Union[torch.Tensor, np.ndarray, List[str], int, str]: return self.predict(inputs, batch_size=batch_size, as_numpy=as_numpy, use_labels=use_labels, show_progress_bar=show_progress_bar) @property def device(self) -> torch.device: if parse(sentence_transformers_version) >= Version('2.3.0'): return self.model_body.device return self.model_body._target_device def to(self, device: Union[str, torch.device]) -> 'SetFitModel': if parse(sentence_transformers_version) < Version('2.3.0'): self.model_body._target_device = device if isinstance(device, torch.device) else torch.device(device) self.model_body = self.model_body.to(device) if self.has_differentiable_head: self.model_head = self.model_head.to(device) return self def create_model_card(self, path: str, model_name: Optional[str]='SetFit Model') -> None: if not os.path.exists(path): os.makedirs(path) model_path = Path(model_name) if self.model_card_data.model_id is None and model_path.exists() and (Path(tempfile.gettempdir()) in model_path.resolve().parents): self.model_card_data.model_id = '/'.join(model_path.parts[-2:]) with open(os.path.join(path, 'README.md'), 'w', encoding='utf-8') as f: f.write(self.generate_model_card()) def generate_model_card(self) -> str: return generate_model_card(self) def _save_pretrained(self, save_directory: Union[Path, str]) -> None: save_directory = str(save_directory) config_path = os.path.join(save_directory, CONFIG_NAME) with open(config_path, 'w') as f: json.dump({attr_name: getattr(self, attr_name) for attr_name in self.attributes_to_save if hasattr(self, attr_name)}, f, indent=2) self.model_body.save(path=save_directory, create_model_card=False) self.create_model_card(path=save_directory, model_name=save_directory) if self.has_differentiable_head: self.model_head.to('cpu') joblib.dump(self.model_head, str(Path(save_directory) / MODEL_HEAD_NAME)) if self.has_differentiable_head: self.model_head.to(self.device) @classmethod @validate_hf_hub_args def _from_pretrained(cls, model_id: str, revision: Optional[str]=None, cache_dir: Optional[str]=None, force_download: Optional[bool]=None, proxies: Optional[Dict]=None, resume_download: Optional[bool]=None, local_files_only: Optional[bool]=None, token: Optional[Union[bool, str]]=None, multi_target_strategy: Optional[str]=None, use_differentiable_head: bool=False, device: Optional[Union[torch.device, str]]=None, trust_remote_code: bool=False, **model_kwargs) -> 'SetFitModel': sentence_transformers_kwargs = {'cache_folder': cache_dir, 'use_auth_token': token, 'device': device, 'trust_remote_code': trust_remote_code} if parse(sentence_transformers_version) >= Version('2.3.0'): sentence_transformers_kwargs = {'cache_folder': cache_dir, 'token': token, 'device': device, 'trust_remote_code': trust_remote_code} else: if trust_remote_code: raise ValueError('The `trust_remote_code` argument is only supported for `sentence-transformers` >= 2.3.0.') sentence_transformers_kwargs = {'cache_folder': cache_dir, 'use_auth_token': token, 'device': device} model_body = SentenceTransformer(model_id, **sentence_transformers_kwargs) if parse(sentence_transformers_version) >= Version('2.3.0'): device = model_body.device else: device = model_body._target_device model_body.to(device) config_file: Optional[str] = None if os.path.isdir(model_id): if CONFIG_NAME in os.listdir(model_id): config_file = os.path.join(model_id, CONFIG_NAME) else: try: config_file = hf_hub_download(repo_id=model_id, filename=CONFIG_NAME, revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, token=token, local_files_only=local_files_only) except requests.exceptions.RequestException: pass model_kwargs = {key: value for (key, value) in model_kwargs.items() if value is not None} if config_file is not None: with open(config_file, 'r', encoding='utf-8') as f: config = json.load(f) for (setting, value) in config.items(): if setting in model_kwargs: if model_kwargs[setting] != value: logger.warning(f'Overriding {setting} in model configuration from {value} to {model_kwargs[setting]}.') else: model_kwargs[setting] = value if os.path.isdir(model_id): if MODEL_HEAD_NAME in os.listdir(model_id): model_head_file = os.path.join(model_id, MODEL_HEAD_NAME) else: logger.info(f'{MODEL_HEAD_NAME} not found in {Path(model_id).resolve()}, initialising classification head with random weights. You should TRAIN this model on a downstream task to use it for predictions and inference.') model_head_file = None else: try: model_head_file = hf_hub_download(repo_id=model_id, filename=MODEL_HEAD_NAME, revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, token=token, local_files_only=local_files_only) except requests.exceptions.RequestException: logger.info(f'{MODEL_HEAD_NAME} not found on HuggingFace Hub, initialising classification head with random weights. You should TRAIN this model on a downstream task to use it for predictions and inference.') model_head_file = None model_card_data: SetFitModelCardData = model_kwargs.pop('model_card_data', SetFitModelCardData()) if model_head_file is not None: model_head = joblib.load(model_head_file) if isinstance(model_head, torch.nn.Module): model_head.to(device) model_card_data.infer_st_id(model_id) else: head_params = model_kwargs.pop('head_params', {}) if use_differentiable_head: if multi_target_strategy is None: use_multitarget = False elif multi_target_strategy in ['one-vs-rest', 'multi-output']: use_multitarget = True else: raise ValueError(f"multi_target_strategy '{multi_target_strategy}' is not supported for differentiable head") base_head_params = {'in_features': model_body.get_sentence_embedding_dimension(), 'device': device, 'multitarget': use_multitarget} model_head = SetFitHead(**{**head_params, **base_head_params}) else: clf = LogisticRegression(**head_params) if multi_target_strategy is not None: if multi_target_strategy == 'one-vs-rest': multilabel_classifier = OneVsRestClassifier(clf) elif multi_target_strategy == 'multi-output': multilabel_classifier = MultiOutputClassifier(clf) elif multi_target_strategy == 'classifier-chain': multilabel_classifier = ClassifierChain(clf) else: raise ValueError(f'multi_target_strategy {multi_target_strategy} is not supported.') model_head = multilabel_classifier else: model_head = clf model_card_data.set_st_id(model_id if '/' in model_id else f'sentence-transformers/{model_id}') model_kwargs.pop('config', None) return cls(model_body=model_body, model_head=model_head, multi_target_strategy=multi_target_strategy, model_card_data=model_card_data, sentence_transformers_kwargs=sentence_transformers_kwargs, **model_kwargs) docstring = SetFitModel.from_pretrained.__doc__ cut_index = docstring.find('model_kwargs') if cut_index != -1: docstring = docstring[:cut_index] + 'labels (`List[str]`, *optional*):\n If the labels are integers ranging from `0` to `num_classes-1`, then these labels indicate\n the corresponding labels.\n model_card_data (`SetFitModelCardData`, *optional*):\n A `SetFitModelCardData` instance storing data such as model language, license, dataset name,\n etc. to be used in the automatically generated model cards.\n multi_target_strategy (`str`, *optional*):\n The strategy to use with multi-label classification. One of "one-vs-rest", "multi-output",\n or "classifier-chain".\n use_differentiable_head (`bool`, *optional*):\n Whether to load SetFit using a differentiable (i.e., Torch) head instead of Logistic Regression.\n normalize_embeddings (`bool`, *optional*):\n Whether to apply normalization on the embeddings produced by the Sentence Transformer body.\n device (`Union[torch.device, str]`, *optional*):\n The device on which to load the SetFit model, e.g. `"cuda:0"`, `"mps"` or `torch.device("cuda")`.\n trust_remote_code (`bool`, defaults to `False`): Whether or not to allow for custom Sentence Transformers\n models defined on the Hub in their own modeling files. This option should only be set to True for\n repositories you trust and in which you have read the code, as it will execute code present on\n the Hub on your local machine. Defaults to False.\n\n Example::\n\n >>> from setfit import SetFitModel\n >>> model = SetFitModel.from_pretrained(\n ... "sentence-transformers/paraphrase-mpnet-base-v2",\n ... labels=["positive", "negative"],\n ... )\n ' SetFitModel.from_pretrained = set_docstring(SetFitModel.from_pretrained, docstring) SetFitModel.save_pretrained = copy_func(SetFitModel.save_pretrained) SetFitModel.save_pretrained.__doc__ = SetFitModel.save_pretrained.__doc__.replace('~ModelHubMixin._from_pretrained', 'SetFitModel.push_to_hub') # File: setfit-main/src/setfit/sampler.py from itertools import zip_longest from typing import Generator, Iterable, List, Optional import numpy as np import torch from sentence_transformers import InputExample from torch.utils.data import IterableDataset from . import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def shuffle_combinations(iterable: Iterable, replacement: bool=True) -> Generator: n = len(iterable) k = 1 if not replacement else 0 idxs = np.stack(np.triu_indices(n, k), axis=-1) for i in np.random.RandomState(seed=42).permutation(len(idxs)): (_idx, idx) = idxs[i, :] yield (iterable[_idx], iterable[idx]) class ContrastiveDataset(IterableDataset): def __init__(self, examples: List[InputExample], multilabel: bool, num_iterations: Optional[None]=None, sampling_strategy: str='oversampling', max_pairs: int=-1) -> None: super().__init__() self.pos_index = 0 self.neg_index = 0 self.pos_pairs = [] self.neg_pairs = [] self.sentences = np.array([s.texts[0] for s in examples]) self.labels = np.array([s.label for s in examples]) self.sentence_labels = list(zip(self.sentences, self.labels)) self.max_pairs = max_pairs if multilabel: self.generate_multilabel_pairs() else: self.generate_pairs() if num_iterations is not None and num_iterations > 0: self.len_pos_pairs = num_iterations * len(self.sentences) self.len_neg_pairs = num_iterations * len(self.sentences) elif sampling_strategy == 'unique': self.len_pos_pairs = len(self.pos_pairs) self.len_neg_pairs = len(self.neg_pairs) elif sampling_strategy == 'undersampling': self.len_pos_pairs = min(len(self.pos_pairs), len(self.neg_pairs)) self.len_neg_pairs = min(len(self.pos_pairs), len(self.neg_pairs)) elif sampling_strategy == 'oversampling': self.len_pos_pairs = max(len(self.pos_pairs), len(self.neg_pairs)) self.len_neg_pairs = max(len(self.pos_pairs), len(self.neg_pairs)) else: raise ValueError("Invalid sampling strategy. Must be one of 'unique', 'oversampling', or 'undersampling'.") def generate_pairs(self) -> None: for ((_text, _label), (text, label)) in shuffle_combinations(self.sentence_labels): if _label == label: self.pos_pairs.append(InputExample(texts=[_text, text], label=1.0)) else: self.neg_pairs.append(InputExample(texts=[_text, text], label=0.0)) if self.max_pairs != -1 and len(self.pos_pairs) > self.max_pairs and (len(self.neg_pairs) > self.max_pairs): break def generate_multilabel_pairs(self) -> None: for ((_text, _label), (text, label)) in shuffle_combinations(self.sentence_labels): if any(np.logical_and(_label, label)): self.pos_pairs.append(InputExample(texts=[_text, text], label=1.0)) else: self.neg_pairs.append(InputExample(texts=[_text, text], label=0.0)) if self.max_pairs != -1 and len(self.pos_pairs) > self.max_pairs and (len(self.neg_pairs) > self.max_pairs): break def get_positive_pairs(self) -> List[InputExample]: pairs = [] for _ in range(self.len_pos_pairs): if self.pos_index >= len(self.pos_pairs): self.pos_index = 0 pairs.append(self.pos_pairs[self.pos_index]) self.pos_index += 1 return pairs def get_negative_pairs(self) -> List[InputExample]: pairs = [] for _ in range(self.len_neg_pairs): if self.neg_index >= len(self.neg_pairs): self.neg_index = 0 pairs.append(self.neg_pairs[self.neg_index]) self.neg_index += 1 return pairs def __iter__(self): for (pos_pair, neg_pair) in zip_longest(self.get_positive_pairs(), self.get_negative_pairs()): if pos_pair is not None: yield pos_pair if neg_pair is not None: yield neg_pair def __len__(self) -> int: return self.len_pos_pairs + self.len_neg_pairs class ContrastiveDistillationDataset(ContrastiveDataset): def __init__(self, examples: List[InputExample], cos_sim_matrix: torch.Tensor, num_iterations: Optional[None]=None, sampling_strategy: str='oversampling', max_pairs: int=-1) -> None: self.cos_sim_matrix = cos_sim_matrix super().__init__(examples, multilabel=False, num_iterations=num_iterations, sampling_strategy=sampling_strategy, max_pairs=max_pairs) self.sentence_labels = list(enumerate(self.sentences)) self.len_neg_pairs = 0 if num_iterations is not None and num_iterations > 0: self.len_pos_pairs = num_iterations * len(self.sentences) else: self.len_pos_pairs = len(self.pos_pairs) def generate_pairs(self) -> None: for ((text_one, id_one), (text_two, id_two)) in shuffle_combinations(self.sentence_labels): self.pos_pairs.append(InputExample(texts=[text_one, text_two], label=self.cos_sim_matrix[id_one][id_two])) if self.max_pairs != -1 and len(self.pos_pairs) > self.max_pairs: break # File: setfit-main/src/setfit/span/aspect_extractor.py from typing import TYPE_CHECKING, List, Tuple if TYPE_CHECKING: from spacy.tokens import Doc class AspectExtractor: def __init__(self, spacy_model: str) -> None: super().__init__() import spacy self.nlp = spacy.load(spacy_model) def find_groups(self, aspect_mask: List[bool]): start = None for (idx, flag) in enumerate(aspect_mask): if flag: if start is None: start = idx elif start is not None: yield slice(start, idx) start = None if start is not None: yield slice(start, idx + 1) def __call__(self, texts: List[str]) -> Tuple[List['Doc'], List[slice]]: aspects_list = [] docs = list(self.nlp.pipe(texts)) for doc in docs: aspect_mask = [token.pos_ in ('NOUN', 'PROPN') for token in doc] aspects_list.append(list(self.find_groups(aspect_mask))) return (docs, aspects_list) # File: setfit-main/src/setfit/span/modeling.py import copy import os import re import tempfile import types from collections import defaultdict from dataclasses import dataclass from pathlib import Path from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Union import torch from datasets import Dataset from huggingface_hub.utils import SoftTemporaryDirectory from setfit.utils import set_docstring from .. import logging from ..modeling import SetFitModel from .aspect_extractor import AspectExtractor if TYPE_CHECKING: from spacy.tokens import Doc logger = logging.get_logger(__name__) class SpanSetFitModel(SetFitModel): def __init__(self, spacy_model: str='en_core_web_lg', span_context: int=0, **kwargs): super().__init__(**kwargs) self.spacy_model = spacy_model self.span_context = span_context self.attributes_to_save = {'normalize_embeddings', 'labels', 'span_context', 'spacy_model'} def prepend_aspects(self, docs: List['Doc'], aspects_list: List[List[slice]]) -> Iterable[str]: for (doc, aspects) in zip(docs, aspects_list): for aspect_slice in aspects: aspect = doc[max(aspect_slice.start - self.span_context, 0):aspect_slice.stop + self.span_context] yield (aspect.text + ':' + doc.text) def __call__(self, docs: List['Doc'], aspects_list: List[List[slice]]) -> List[bool]: inputs_list = list(self.prepend_aspects(docs, aspects_list)) preds = self.predict(inputs_list, as_numpy=True) iter_preds = iter(preds) return [[next(iter_preds) for _ in aspects] for aspects in aspects_list] def create_model_card(self, path: str, model_name: Optional[str]=None) -> None: if not os.path.exists(path): os.makedirs(path) model_path = Path(model_name) if model_path.exists() and Path(tempfile.gettempdir()) in model_path.resolve().parents: model_name = '/'.join(model_path.parts[-2:]) is_aspect = isinstance(self, AspectModel) aspect_model = 'setfit-absa-aspect' polarity_model = 'setfit-absa-polarity' if model_name is not None: if is_aspect: aspect_model = model_name if model_name.endswith('-aspect'): polarity_model = model_name[:-len('-aspect')] + '-polarity' else: polarity_model = model_name if model_name.endswith('-polarity'): aspect_model = model_name[:-len('-polarity')] + '-aspect' if self.model_card_data.absa is None and self.model_card_data.model_name: from spacy import __version__ as spacy_version self.model_card_data.model_name = self.model_card_data.model_name.replace('SetFit', 'SetFit Aspect Model' if is_aspect else 'SetFit Polarity Model', 1) self.model_card_data.tags.insert(1, 'absa') self.model_card_data.version['spacy'] = spacy_version self.model_card_data.absa = {'is_absa': True, 'is_aspect': is_aspect, 'spacy_model': self.spacy_model, 'aspect_model': aspect_model, 'polarity_model': polarity_model} if self.model_card_data.task_name is None: self.model_card_data.task_name = 'Aspect Based Sentiment Analysis (ABSA)' self.model_card_data.inference = False with open(os.path.join(path, 'README.md'), 'w', encoding='utf-8') as f: f.write(self.generate_model_card()) docstring = SpanSetFitModel.from_pretrained.__doc__ cut_index = docstring.find('multi_target_strategy') if cut_index != -1: docstring = docstring[:cut_index] + 'model_card_data (`SetFitModelCardData`, *optional*):\n A `SetFitModelCardData` instance storing data such as model language, license, dataset name,\n etc. to be used in the automatically generated model cards.\n use_differentiable_head (`bool`, *optional*):\n Whether to load SetFit using a differentiable (i.e., Torch) head instead of Logistic Regression.\n normalize_embeddings (`bool`, *optional*):\n Whether to apply normalization on the embeddings produced by the Sentence Transformer body.\n span_context (`int`, defaults to `0`):\n The number of words before and after the span candidate that should be prepended to the full sentence.\n By default, 0 for Aspect models and 3 for Polarity models.\n device (`Union[torch.device, str]`, *optional*):\n The device on which to load the SetFit model, e.g. `"cuda:0"`, `"mps"` or `torch.device("cuda")`.' SpanSetFitModel.from_pretrained = set_docstring(SpanSetFitModel.from_pretrained, docstring, cls=SpanSetFitModel) class AspectModel(SpanSetFitModel): def __call__(self, docs: List['Doc'], aspects_list: List[List[slice]]) -> List[bool]: sentence_preds = super().__call__(docs, aspects_list) return [[aspect for (aspect, pred) in zip(aspects, preds) if pred == 'aspect'] for (aspects, preds) in zip(aspects_list, sentence_preds)] AspectModel.from_pretrained = types.MethodType(AspectModel.from_pretrained.__func__, AspectModel) class PolarityModel(SpanSetFitModel): def __init__(self, span_context: int=3, **kwargs): super().__init__(**kwargs) self.span_context = span_context PolarityModel.from_pretrained = types.MethodType(PolarityModel.from_pretrained.__func__, PolarityModel) @dataclass class AbsaModel: aspect_extractor: AspectExtractor aspect_model: AspectModel polarity_model: PolarityModel def gold_aspect_spans_to_aspects_list(self, inputs: Dataset) -> List[List[slice]]: grouped_data = defaultdict(list) for sample in inputs: text = sample.pop('text') grouped_data[text].append(sample) (docs, _) = self.aspect_extractor(grouped_data.keys()) aspects_list = [] index = -1 skipped_indices = [] for (doc, samples) in zip(docs, grouped_data.values()): aspects_list.append([]) for sample in samples: index += 1 match_objects = re.finditer(re.escape(sample['span']), doc.text) for (i, match) in enumerate(match_objects): if i == sample['ordinal']: char_idx_start = match.start() char_idx_end = match.end() span = doc.char_span(char_idx_start, char_idx_end) if span is None: logger.warning(f"Aspect term {sample['span']!r} with ordinal {sample['ordinal']}, isn't a token in {doc.text!r} according to spaCy. Skipping this sample.") skipped_indices.append(index) continue aspects_list[-1].append(slice(span.start, span.end)) return (docs, aspects_list, skipped_indices) def predict_dataset(self, inputs: Dataset) -> Dataset: if set(inputs.column_names) >= {'text', 'span', 'ordinal'}: pass elif set(inputs.column_names) >= {'text', 'span'}: inputs = inputs.add_column('ordinal', [0] * len(inputs)) else: raise ValueError(f'`inputs` must be either a `str`, a `List[str]`, or a `datasets.Dataset` with columns `text` and `span` and optionally `ordinal`. Found a dataset with these columns: {inputs.column_names}.') if 'pred_polarity' in inputs.column_names: raise ValueError('`predict_dataset` wants to add a `pred_polarity` column, but the input dataset already contains that column.') (docs, aspects_list, skipped_indices) = self.gold_aspect_spans_to_aspects_list(inputs) polarity_list = sum(self.polarity_model(docs, aspects_list), []) for index in skipped_indices: polarity_list.insert(index, None) return inputs.add_column('pred_polarity', polarity_list) def predict(self, inputs: Union[str, List[str], Dataset]) -> Union[List[Dict[str, Any]], Dataset]: if isinstance(inputs, Dataset): return self.predict_dataset(inputs) is_str = isinstance(inputs, str) inputs_list = [inputs] if is_str else inputs (docs, aspects_list) = self.aspect_extractor(inputs_list) if sum(aspects_list, []) == []: return aspects_list aspects_list = self.aspect_model(docs, aspects_list) if sum(aspects_list, []) == []: return aspects_list polarity_list = self.polarity_model(docs, aspects_list) outputs = [] for (docs, aspects, polarities) in zip(docs, aspects_list, polarity_list): outputs.append([{'span': docs[aspect_slice].text, 'polarity': polarity} for (aspect_slice, polarity) in zip(aspects, polarities)]) return outputs if not is_str else outputs[0] @property def device(self) -> torch.device: return self.aspect_model.device def to(self, device: Union[str, torch.device]) -> 'AbsaModel': self.aspect_model.to(device) self.polarity_model.to(device) def __call__(self, inputs: Union[str, List[str]]) -> List[Dict[str, Any]]: return self.predict(inputs) def save_pretrained(self, save_directory: Union[str, Path], polarity_save_directory: Optional[Union[str, Path]]=None, push_to_hub: bool=False, **kwargs) -> None: if polarity_save_directory is None: base_save_directory = Path(save_directory) save_directory = base_save_directory.parent / (base_save_directory.name + '-aspect') polarity_save_directory = base_save_directory.parent / (base_save_directory.name + '-polarity') self.aspect_model.save_pretrained(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs) self.polarity_model.save_pretrained(save_directory=polarity_save_directory, push_to_hub=push_to_hub, **kwargs) @classmethod def from_pretrained(cls, model_id: str, polarity_model_id: Optional[str]=None, spacy_model: Optional[str]=None, span_contexts: Tuple[Optional[int], Optional[int]]=(None, None), force_download: bool=None, resume_download: bool=None, proxies: Optional[Dict]=None, token: Optional[Union[str, bool]]=None, cache_dir: Optional[str]=None, local_files_only: bool=None, use_differentiable_head: bool=None, normalize_embeddings: bool=None, **model_kwargs) -> 'AbsaModel': revision = None if len(model_id.split('@')) == 2: (model_id, revision) = model_id.split('@') if spacy_model: model_kwargs['spacy_model'] = spacy_model aspect_model = AspectModel.from_pretrained(model_id, span_context=span_contexts[0], revision=revision, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, cache_dir=cache_dir, local_files_only=local_files_only, use_differentiable_head=use_differentiable_head, normalize_embeddings=normalize_embeddings, labels=['no aspect', 'aspect'], **model_kwargs) if polarity_model_id: model_id = polarity_model_id revision = None if len(model_id.split('@')) == 2: (model_id, revision) = model_id.split('@') model_card_data = model_kwargs.pop('model_card_data', None) if model_card_data: model_kwargs['model_card_data'] = copy.deepcopy(model_card_data) polarity_model = PolarityModel.from_pretrained(model_id, span_context=span_contexts[1], revision=revision, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, cache_dir=cache_dir, local_files_only=local_files_only, use_differentiable_head=use_differentiable_head, normalize_embeddings=normalize_embeddings, **model_kwargs) if aspect_model.spacy_model != polarity_model.spacy_model: logger.warning(f'The Aspect and Polarity models are configured to use different spaCy models:\n* {repr(aspect_model.spacy_model)} for the aspect model, and\n* {repr(polarity_model.spacy_model)} for the polarity model.\nThis model will use {repr(aspect_model.spacy_model)}.') aspect_extractor = AspectExtractor(spacy_model=aspect_model.spacy_model) return cls(aspect_extractor, aspect_model, polarity_model) def push_to_hub(self, repo_id: str, polarity_repo_id: Optional[str]=None, **kwargs) -> None: if '/' not in repo_id: raise ValueError('`repo_id` must be a full repository ID, including organisation, e.g. "tomaarsen/setfit-absa-restaurant".') if polarity_repo_id is not None and '/' not in polarity_repo_id: raise ValueError('`polarity_repo_id` must be a full repository ID, including organisation, e.g. "tomaarsen/setfit-absa-restaurant".') commit_message = kwargs.pop('commit_message', 'Add SetFit ABSA model') with SoftTemporaryDirectory() as tmp_dir: save_directory = Path(tmp_dir) / repo_id polarity_save_directory = None if polarity_repo_id is None else Path(tmp_dir) / polarity_repo_id self.save_pretrained(save_directory=save_directory, polarity_save_directory=polarity_save_directory, push_to_hub=True, commit_message=commit_message, **kwargs) # File: setfit-main/src/setfit/span/trainer.py from collections import defaultdict from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union from datasets import Dataset from transformers.trainer_callback import TrainerCallback from setfit.span.modeling import AbsaModel, AspectModel, PolarityModel from setfit.training_args import TrainingArguments from .. import logging from ..trainer import ColumnMappingMixin, Trainer if TYPE_CHECKING: import optuna logger = logging.get_logger(__name__) class AbsaTrainer(ColumnMappingMixin): _REQUIRED_COLUMNS = {'text', 'span', 'label', 'ordinal'} def __init__(self, model: AbsaModel, args: Optional[TrainingArguments]=None, polarity_args: Optional[TrainingArguments]=None, train_dataset: Optional['Dataset']=None, eval_dataset: Optional['Dataset']=None, metric: Union[str, Callable[['Dataset', 'Dataset'], Dict[str, float]]]='accuracy', metric_kwargs: Optional[Dict[str, Any]]=None, callbacks: Optional[List[TrainerCallback]]=None, column_mapping: Optional[Dict[str, str]]=None) -> None: self.model = model self.aspect_extractor = model.aspect_extractor if train_dataset is not None and column_mapping: train_dataset = self._apply_column_mapping(train_dataset, column_mapping) (aspect_train_dataset, polarity_train_dataset) = self.preprocess_dataset(model.aspect_model, model.polarity_model, train_dataset) if eval_dataset is not None and column_mapping: eval_dataset = self._apply_column_mapping(eval_dataset, column_mapping) (aspect_eval_dataset, polarity_eval_dataset) = self.preprocess_dataset(model.aspect_model, model.polarity_model, eval_dataset) self.aspect_trainer = Trainer(model.aspect_model, args=args, train_dataset=aspect_train_dataset, eval_dataset=aspect_eval_dataset, metric=metric, metric_kwargs=metric_kwargs, callbacks=callbacks) self.aspect_trainer._set_logs_mapper({'eval_embedding_loss': 'eval_aspect_embedding_loss', 'embedding_loss': 'aspect_embedding_loss'}) self.polarity_trainer = Trainer(model.polarity_model, args=polarity_args or args, train_dataset=polarity_train_dataset, eval_dataset=polarity_eval_dataset, metric=metric, metric_kwargs=metric_kwargs, callbacks=callbacks) self.polarity_trainer._set_logs_mapper({'eval_embedding_loss': 'eval_polarity_embedding_loss', 'embedding_loss': 'polarity_embedding_loss'}) def preprocess_dataset(self, aspect_model: AspectModel, polarity_model: PolarityModel, dataset: Dataset) -> Dataset: if dataset is None: return (dataset, dataset) grouped_data = defaultdict(list) for sample in dataset: text = sample.pop('text') grouped_data[text].append(sample) def index_ordinal(text: str, target: str, ordinal: int) -> Tuple[int, int]: find_from = 0 for _ in range(ordinal + 1): start_idx = text.index(target, find_from) find_from = start_idx + 1 return (start_idx, start_idx + len(target)) def overlaps(aspect: slice, aspects: List[slice]) -> bool: for test_aspect in aspects: overlapping_indices = set(range(aspect.start, aspect.stop + 1)) & set(range(test_aspect.start, test_aspect.stop + 1)) if overlapping_indices: return True return False (docs, aspects_list) = self.aspect_extractor(grouped_data.keys()) aspect_aspect_list = [] aspect_labels = [] polarity_aspect_list = [] polarity_labels = [] for (doc, aspects, text) in zip(docs, aspects_list, grouped_data): gold_aspects = [] gold_polarity_labels = [] for annotation in grouped_data[text]: try: (start, end) = index_ordinal(text, annotation['span'], annotation['ordinal']) except ValueError: logger.info(f"The ordinal of {annotation['ordinal']} for span {annotation['span']!r} in {text!r} is too high. Skipping this sample.") continue gold_aspect_span = doc.char_span(start, end) if gold_aspect_span is None: continue gold_aspects.append(slice(gold_aspect_span.start, gold_aspect_span.end)) gold_polarity_labels.append(annotation['label']) aspect_labels.extend([True] * len(gold_aspects)) aspect_aspect_list.append(gold_aspects[:]) for aspect in aspects: if not overlaps(aspect, gold_aspects): aspect_labels.append(False) aspect_aspect_list[-1].append(aspect) polarity_labels.extend(gold_polarity_labels) polarity_aspect_list.append(gold_aspects) aspect_texts = list(aspect_model.prepend_aspects(docs, aspect_aspect_list)) polarity_texts = list(polarity_model.prepend_aspects(docs, polarity_aspect_list)) return (Dataset.from_dict({'text': aspect_texts, 'label': aspect_labels}), Dataset.from_dict({'text': polarity_texts, 'label': polarity_labels})) def train(self, args: Optional[TrainingArguments]=None, polarity_args: Optional[TrainingArguments]=None, trial: Optional[Union['optuna.Trial', Dict[str, Any]]]=None, **kwargs) -> None: self.train_aspect(args=args, trial=trial, **kwargs) self.train_polarity(args=polarity_args, trial=trial, **kwargs) def train_aspect(self, args: Optional[TrainingArguments]=None, trial: Optional[Union['optuna.Trial', Dict[str, Any]]]=None, **kwargs) -> None: self.aspect_trainer.train(args=args, trial=trial, **kwargs) def train_polarity(self, args: Optional[TrainingArguments]=None, trial: Optional[Union['optuna.Trial', Dict[str, Any]]]=None, **kwargs) -> None: self.polarity_trainer.train(args=args, trial=trial, **kwargs) def add_callback(self, callback: Union[type, TrainerCallback]) -> None: self.aspect_trainer.add_callback(callback) self.polarity_trainer.add_callback(callback) def pop_callback(self, callback: Union[type, TrainerCallback]) -> Tuple[TrainerCallback, TrainerCallback]: return (self.aspect_trainer.pop_callback(callback), self.polarity_trainer.pop_callback(callback)) def remove_callback(self, callback: Union[type, TrainerCallback]) -> None: self.aspect_trainer.remove_callback(callback) self.polarity_trainer.remove_callback(callback) def push_to_hub(self, repo_id: str, polarity_repo_id: Optional[str]=None, **kwargs) -> None: return self.model.push_to_hub(repo_id=repo_id, polarity_repo_id=polarity_repo_id, **kwargs) def evaluate(self, dataset: Optional[Dataset]=None) -> Dict[str, Dict[str, float]]: aspect_eval_dataset = polarity_eval_dataset = None if dataset: (aspect_eval_dataset, polarity_eval_dataset) = self.preprocess_dataset(self.model.aspect_model, self.model.polarity_model, dataset) return {'aspect': self.aspect_trainer.evaluate(aspect_eval_dataset), 'polarity': self.polarity_trainer.evaluate(polarity_eval_dataset)} # File: setfit-main/src/setfit/trainer.py import math import os import shutil import time import warnings from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Literal, Optional, Tuple, Union import evaluate import torch from datasets import Dataset, DatasetDict from sentence_transformers import InputExample, SentenceTransformer, losses from sentence_transformers.datasets import SentenceLabelDataset from sentence_transformers.losses.BatchHardTripletLoss import BatchHardTripletLossDistanceFunction from sentence_transformers.util import batch_to_device from sklearn.preprocessing import LabelEncoder from torch import nn from torch.cuda.amp import autocast from torch.utils.data import DataLoader from tqdm.autonotebook import tqdm from transformers.integrations import WandbCallback, get_reporting_integration_callbacks from transformers.trainer_callback import CallbackHandler, DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, TrainerCallback, TrainerControl, TrainerState from transformers.trainer_utils import HPSearchBackend, default_compute_objective, number_of_arguments, set_seed, speed_metrics from transformers.utils.import_utils import is_in_notebook from setfit.model_card import ModelCardCallback from . import logging from .integrations import default_hp_search_backend, is_optuna_available, run_hp_search_optuna from .losses import SupConLoss from .sampler import ContrastiveDataset from .training_args import TrainingArguments from .utils import BestRun, default_hp_space_optuna if TYPE_CHECKING: import optuna from .modeling import SetFitModel logging.set_verbosity_info() logger = logging.get_logger(__name__) DEFAULT_CALLBACKS = [DefaultFlowCallback] DEFAULT_PROGRESS_CALLBACK = ProgressCallback if is_in_notebook(): from transformers.utils.notebook import NotebookProgressCallback DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback class ColumnMappingMixin: _REQUIRED_COLUMNS = {'text', 'label'} def _validate_column_mapping(self, dataset: 'Dataset') -> None: column_names = set(dataset.column_names) if self.column_mapping is None and (not self._REQUIRED_COLUMNS.issubset(column_names)): if column_names == {'train'} and isinstance(dataset, DatasetDict): raise ValueError("SetFit expected a Dataset, but it got a DatasetDict with the split ['train']. Did you mean to select the training split with dataset['train']?") elif isinstance(dataset, DatasetDict): raise ValueError(f'SetFit expected a Dataset, but it got a DatasetDict with the splits {sorted(column_names)}. Did you mean to select one of these splits from the dataset?') else: raise ValueError(f'SetFit expected the dataset to have the columns {sorted(self._REQUIRED_COLUMNS)}, but only the columns {sorted(column_names)} were found. Either make sure these columns are present, or specify which columns to use with column_mapping in Trainer.') if self.column_mapping is not None: missing_columns = set(self._REQUIRED_COLUMNS) missing_columns -= set(self.column_mapping.values()) missing_columns -= set(dataset.column_names) - set(self.column_mapping.keys()) if missing_columns: raise ValueError(f'The following columns are missing from the column mapping: {missing_columns}. Please provide a mapping for all required columns.') if not set(self.column_mapping.keys()).issubset(column_names): raise ValueError(f'The column mapping expected the columns {sorted(self.column_mapping.keys())} in the dataset, but the dataset had the columns {sorted(column_names)}.') def _apply_column_mapping(self, dataset: 'Dataset', column_mapping: Dict[str, str]) -> 'Dataset': dataset = dataset.rename_columns({**column_mapping, **{col: f'feat_{col}' for col in dataset.column_names if col not in column_mapping and col not in self._REQUIRED_COLUMNS}}) dset_format = dataset.format dataset = dataset.with_format(type=dset_format['type'], columns=dataset.column_names, output_all_columns=dset_format['output_all_columns'], **dset_format['format_kwargs']) return dataset class Trainer(ColumnMappingMixin): def __init__(self, model: Optional['SetFitModel']=None, args: Optional[TrainingArguments]=None, train_dataset: Optional['Dataset']=None, eval_dataset: Optional['Dataset']=None, model_init: Optional[Callable[[], 'SetFitModel']]=None, metric: Union[str, Callable[['Dataset', 'Dataset'], Dict[str, float]]]='accuracy', metric_kwargs: Optional[Dict[str, Any]]=None, callbacks: Optional[List[TrainerCallback]]=None, column_mapping: Optional[Dict[str, str]]=None) -> None: if args is not None and (not isinstance(args, TrainingArguments)): raise ValueError('`args` must be a `TrainingArguments` instance imported from `setfit`.') self.args = args or TrainingArguments() self.column_mapping = column_mapping if train_dataset: self._validate_column_mapping(train_dataset) if self.column_mapping is not None: logger.info('Applying column mapping to the training dataset') train_dataset = self._apply_column_mapping(train_dataset, self.column_mapping) self.train_dataset = train_dataset if eval_dataset: self._validate_column_mapping(eval_dataset) if self.column_mapping is not None: logger.info('Applying column mapping to the evaluation dataset') eval_dataset = self._apply_column_mapping(eval_dataset, self.column_mapping) self.eval_dataset = eval_dataset self.model_init = model_init self.metric = metric self.metric_kwargs = metric_kwargs self.logs_mapper = {} set_seed(12) if model is None: if model_init is not None: model = self.call_model_init() else: raise RuntimeError('`Trainer` requires either a `model` or `model_init` argument.') elif model_init is not None: raise RuntimeError('`Trainer` requires either a `model` or `model_init` argument, but not both.') self.model = model self.hp_search_backend = None default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to) callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks if WandbCallback in callbacks: os.environ.setdefault('WANDB_PROJECT', 'setfit') self.callback_handler = CallbackHandler(callbacks, self.model, self.model.model_body.tokenizer, None, None) self.state = TrainerState() self.control = TrainerControl() self.add_callback(DEFAULT_PROGRESS_CALLBACK if self.args.show_progress_bar else PrinterCallback) self.control = self.callback_handler.on_init_end(self.args, self.state, self.control) self.add_callback(ModelCardCallback(self)) self.callback_handler.on_init_end(args, self.state, self.control) def add_callback(self, callback: Union[type, TrainerCallback]) -> None: self.callback_handler.add_callback(callback) def pop_callback(self, callback: Union[type, TrainerCallback]) -> TrainerCallback: return self.callback_handler.pop_callback(callback) def remove_callback(self, callback: Union[type, TrainerCallback]) -> None: self.callback_handler.remove_callback(callback) def apply_hyperparameters(self, params: Dict[str, Any], final_model: bool=False) -> None: if self.args is not None: self.args = self.args.update(params, ignore_extra=True) else: self.args = TrainingArguments.from_dict(params, ignore_extra=True) set_seed(self.args.seed) self.model = self.model_init(params) if final_model: self.model_init = None def _hp_search_setup(self, trial: Union['optuna.Trial', Dict[str, Any]]) -> None: if self.hp_search_backend is None or trial is None: return if isinstance(trial, Dict): params = trial elif self.hp_search_backend == HPSearchBackend.OPTUNA: params = self.hp_space(trial) else: raise ValueError('Invalid trial parameter') logger.info(f'Trial: {params}') self.apply_hyperparameters(params, final_model=False) def call_model_init(self, params: Optional[Dict[str, Any]]=None) -> 'SetFitModel': model_init_argcount = number_of_arguments(self.model_init) if model_init_argcount == 0: model = self.model_init() elif model_init_argcount == 1: model = self.model_init(params) else: raise RuntimeError('`model_init` should have 0 or 1 argument.') if model is None: raise RuntimeError('`model_init` should not return None.') return model def freeze(self, component: Optional[Literal['body', 'head']]=None) -> None: warnings.warn(f'`{self.__class__.__name__}.freeze` is deprecated and will be removed in v2.0.0 of SetFit. Please use `SetFitModel.freeze` directly instead.', DeprecationWarning, stacklevel=2) return self.model.freeze(component) def unfreeze(self, component: Optional[Literal['body', 'head']]=None, keep_body_frozen: Optional[bool]=None) -> None: warnings.warn(f'`{self.__class__.__name__}.unfreeze` is deprecated and will be removed in v2.0.0 of SetFit. Please use `SetFitModel.unfreeze` directly instead.', DeprecationWarning, stacklevel=2) return self.model.unfreeze(component, keep_body_frozen=keep_body_frozen) def train(self, args: Optional[TrainingArguments]=None, trial: Optional[Union['optuna.Trial', Dict[str, Any]]]=None, **kwargs) -> None: if len(kwargs): warnings.warn(f'`{self.__class__.__name__}.train` does not accept keyword arguments anymore. Please provide training arguments via a `TrainingArguments` instance to the `{self.__class__.__name__}` initialisation or the `{self.__class__.__name__}.train` method.', DeprecationWarning, stacklevel=2) if trial: self._hp_search_setup(trial) args = args or self.args or TrainingArguments() if self.train_dataset is None: raise ValueError(f'Training requires a `train_dataset` given to the `{self.__class__.__name__}` initialization.') train_parameters = self.dataset_to_parameters(self.train_dataset) full_parameters = train_parameters + self.dataset_to_parameters(self.eval_dataset) if self.eval_dataset else train_parameters self.train_embeddings(*full_parameters, args=args) self.train_classifier(*train_parameters, args=args) def dataset_to_parameters(self, dataset: Dataset) -> List[Iterable]: return [dataset['text'], dataset['label']] def train_embeddings(self, x_train: List[str], y_train: Optional[Union[List[int], List[List[int]]]]=None, x_eval: Optional[List[str]]=None, y_eval: Optional[Union[List[int], List[List[int]]]]=None, args: Optional[TrainingArguments]=None) -> None: args = args or self.args or TrainingArguments() self.state.logging_steps = args.logging_steps self.state.eval_steps = args.eval_steps self.state.save_steps = args.save_steps self.state.global_step = 0 self.state.total_flos = 0 train_max_pairs = -1 if args.max_steps == -1 else args.max_steps * args.embedding_batch_size (train_dataloader, loss_func, batch_size, num_unique_pairs) = self.get_dataloader(x_train, y_train, args=args, max_pairs=train_max_pairs) if x_eval is not None and args.eval_strategy != IntervalStrategy.NO: eval_max_pairs = -1 if args.eval_max_steps == -1 else args.eval_max_steps * args.embedding_batch_size (eval_dataloader, _, _, _) = self.get_dataloader(x_eval, y_eval, args=args, max_pairs=eval_max_pairs) else: eval_dataloader = None total_train_steps = len(train_dataloader) * args.embedding_num_epochs if args.max_steps > 0: total_train_steps = min(args.max_steps, total_train_steps) logger.info('***** Running training *****') logger.info(f' Num unique pairs = {num_unique_pairs}') logger.info(f' Batch size = {batch_size}') logger.info(f' Num epochs = {args.embedding_num_epochs}') logger.info(f' Total optimization steps = {total_train_steps}') warmup_steps = math.ceil(total_train_steps * args.warmup_proportion) self._train_sentence_transformer(self.model.model_body, train_dataloader=train_dataloader, eval_dataloader=eval_dataloader, args=args, loss_func=loss_func, warmup_steps=warmup_steps) def get_dataloader(self, x: List[str], y: Union[List[int], List[List[int]]], args: TrainingArguments, max_pairs: int=-1) -> Tuple[DataLoader, nn.Module, int, int]: input_data = [InputExample(texts=[text], label=label) for (text, label) in zip(x, y)] if args.loss in [losses.BatchAllTripletLoss, losses.BatchHardTripletLoss, losses.BatchSemiHardTripletLoss, losses.BatchHardSoftMarginTripletLoss, SupConLoss]: data_sampler = SentenceLabelDataset(input_data, samples_per_label=args.samples_per_label) batch_size = min(args.embedding_batch_size, len(data_sampler)) dataloader = DataLoader(data_sampler, batch_size=batch_size, drop_last=True) if args.loss is losses.BatchHardSoftMarginTripletLoss: loss = args.loss(model=self.model.model_body, distance_metric=args.distance_metric) elif args.loss is SupConLoss: loss = args.loss(model=self.model.model_body) else: loss = args.loss(model=self.model.model_body, distance_metric=args.distance_metric, margin=args.margin) else: data_sampler = ContrastiveDataset(input_data, self.model.multi_target_strategy, args.num_iterations, args.sampling_strategy, max_pairs=max_pairs) batch_size = min(args.embedding_batch_size, len(data_sampler)) dataloader = DataLoader(data_sampler, batch_size=batch_size, drop_last=False) loss = args.loss(self.model.model_body) return (dataloader, loss, batch_size, len(data_sampler)) def log(self, args: TrainingArguments, logs: Dict[str, float]) -> None: logs = {self.logs_mapper.get(key, key): value for (key, value) in logs.items()} if self.state.epoch is not None: logs['epoch'] = round(self.state.epoch, 2) output = {**logs, **{'step': self.state.global_step}} self.state.log_history.append(output) return self.callback_handler.on_log(args, self.state, self.control, logs) def _set_logs_mapper(self, logs_mapper: Dict[str, str]) -> None: self.logs_mapper = logs_mapper def _train_sentence_transformer(self, model_body: SentenceTransformer, train_dataloader: DataLoader, eval_dataloader: Optional[DataLoader], args: TrainingArguments, loss_func: nn.Module, warmup_steps: int=10000) -> None: max_grad_norm = 1 weight_decay = 0.01 self.state.epoch = 0 start_time = time.time() if args.max_steps > 0: self.state.max_steps = args.max_steps else: self.state.max_steps = len(train_dataloader) * args.embedding_num_epochs self.control = self.callback_handler.on_train_begin(args, self.state, self.control) steps_per_epoch = len(train_dataloader) if args.use_amp: scaler = torch.cuda.amp.GradScaler() model_body.to(self.model.device) loss_func.to(self.model.device) train_dataloader.collate_fn = model_body.smart_batching_collate if eval_dataloader: eval_dataloader.collate_fn = model_body.smart_batching_collate param_optimizer = list(loss_func.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{'params': [p for (n, p) in param_optimizer if not any((nd in n for nd in no_decay))], 'weight_decay': weight_decay}, {'params': [p for (n, p) in param_optimizer if any((nd in n for nd in no_decay))], 'weight_decay': 0.0}] optimizer = torch.optim.AdamW(optimizer_grouped_parameters, **{'lr': args.body_embedding_learning_rate}) scheduler_obj = model_body._get_scheduler(optimizer, scheduler='WarmupLinear', warmup_steps=warmup_steps, t_total=self.state.max_steps) self.callback_handler.optimizer = optimizer self.callback_handler.lr_scheduler = scheduler_obj self.callback_handler.train_dataloader = train_dataloader self.callback_handler.eval_dataloader = eval_dataloader self.callback_handler.on_train_begin(args, self.state, self.control) data_iterator = iter(train_dataloader) skip_scheduler = False for epoch in range(args.embedding_num_epochs): self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control) loss_func.zero_grad() loss_func.train() for step in range(steps_per_epoch): self.control = self.callback_handler.on_step_begin(args, self.state, self.control) try: data = next(data_iterator) except StopIteration: data_iterator = iter(train_dataloader) data = next(data_iterator) (features, labels) = data labels = labels.to(self.model.device) features = list(map(lambda batch: batch_to_device(batch, self.model.device), features)) if args.use_amp: with autocast(): loss_value = loss_func(features, labels) scale_before_step = scaler.get_scale() scaler.scale(loss_value).backward() scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(loss_func.parameters(), max_grad_norm) scaler.step(optimizer) scaler.update() skip_scheduler = scaler.get_scale() != scale_before_step else: loss_value = loss_func(features, labels) loss_value.backward() torch.nn.utils.clip_grad_norm_(loss_func.parameters(), max_grad_norm) optimizer.step() optimizer.zero_grad() if not skip_scheduler: scheduler_obj.step() self.state.global_step += 1 self.state.epoch = epoch + (step + 1) / steps_per_epoch self.control = self.callback_handler.on_step_end(args, self.state, self.control) self.maybe_log_eval_save(model_body, eval_dataloader, args, scheduler_obj, loss_func, loss_value) if self.control.should_epoch_stop or self.control.should_training_stop: break self.control = self.callback_handler.on_epoch_end(args, self.state, self.control) self.maybe_log_eval_save(model_body, eval_dataloader, args, scheduler_obj, loss_func, loss_value) if self.control.should_training_stop: break if self.args.load_best_model_at_end and self.state.best_model_checkpoint: dir_name = Path(self.state.best_model_checkpoint).name if dir_name.startswith('step_'): step_to_load = dir_name[5:] logger.info(f'Loading best SentenceTransformer model from step {step_to_load}.') self.model.model_card_data.set_best_model_step(int(step_to_load)) sentence_transformer_kwargs = self.model.sentence_transformers_kwargs sentence_transformer_kwargs['device'] = self.model.device self.model.model_body = SentenceTransformer(self.state.best_model_checkpoint, **sentence_transformer_kwargs) self.model.model_body.to(self.model.device) num_train_samples = self.state.max_steps * args.embedding_batch_size metrics = speed_metrics('train', start_time, num_samples=num_train_samples, num_steps=self.state.max_steps) self.control.should_log = True self.log(args, metrics) self.control = self.callback_handler.on_train_end(args, self.state, self.control) def maybe_log_eval_save(self, model_body: SentenceTransformer, eval_dataloader: Optional[DataLoader], args: TrainingArguments, scheduler_obj, loss_func, loss_value: torch.Tensor) -> None: if self.control.should_log: learning_rate = scheduler_obj.get_last_lr()[0] metrics = {'embedding_loss': round(loss_value.item(), 4), 'learning_rate': learning_rate} self.control = self.log(args, metrics) eval_loss = None if self.control.should_evaluate and eval_dataloader is not None: eval_loss = self._evaluate_with_loss(model_body, eval_dataloader, args, loss_func) learning_rate = scheduler_obj.get_last_lr()[0] metrics = {'eval_embedding_loss': round(eval_loss, 4), 'learning_rate': learning_rate} self.control = self.log(args, metrics) self.control = self.callback_handler.on_evaluate(args, self.state, self.control, metrics) loss_func.zero_grad() loss_func.train() if self.control.should_save: checkpoint_dir = self._checkpoint(self.args.output_dir, args.save_total_limit, self.state.global_step) self.control = self.callback_handler.on_save(self.args, self.state, self.control) if eval_loss is not None and (self.state.best_metric is None or eval_loss < self.state.best_metric): self.state.best_metric = eval_loss self.state.best_model_checkpoint = checkpoint_dir def _evaluate_with_loss(self, model_body: SentenceTransformer, eval_dataloader: DataLoader, args: TrainingArguments, loss_func: nn.Module) -> float: model_body.eval() losses = [] eval_steps = min(len(eval_dataloader), args.eval_max_steps) if args.eval_max_steps != -1 else len(eval_dataloader) for (step, data) in enumerate(tqdm(iter(eval_dataloader), total=eval_steps, leave=False, disable=not args.show_progress_bar), start=1): (features, labels) = data labels = labels.to(self.model.device) features = list(map(lambda batch: batch_to_device(batch, self.model.device), features)) if args.use_amp: with autocast(): loss_value = loss_func(features, labels) losses.append(loss_value.item()) else: losses.append(loss_func(features, labels).item()) if step >= eval_steps: break model_body.train() return sum(losses) / len(losses) def _checkpoint(self, checkpoint_path: str, checkpoint_save_total_limit: int, step: int) -> None: if checkpoint_save_total_limit is not None and checkpoint_save_total_limit > 0: old_checkpoints = [] for subdir in Path(checkpoint_path).glob('step_*'): if subdir.name[5:].isdigit() and (self.state.best_model_checkpoint is None or subdir != Path(self.state.best_model_checkpoint)): old_checkpoints.append({'step': int(subdir.name[5:]), 'path': str(subdir)}) if len(old_checkpoints) > checkpoint_save_total_limit - 1: old_checkpoints = sorted(old_checkpoints, key=lambda x: x['step']) shutil.rmtree(old_checkpoints[0]['path']) checkpoint_file_path = str(Path(checkpoint_path) / f'step_{step}') self.model.save_pretrained(checkpoint_file_path) return checkpoint_file_path def train_classifier(self, x_train: List[str], y_train: Union[List[int], List[List[int]]], args: Optional[TrainingArguments]=None) -> None: args = args or self.args or TrainingArguments() self.model.fit(x_train, y_train, num_epochs=args.classifier_num_epochs, batch_size=args.classifier_batch_size, body_learning_rate=args.body_classifier_learning_rate, head_learning_rate=args.head_learning_rate, l2_weight=args.l2_weight, max_length=args.max_length, show_progress_bar=args.show_progress_bar, end_to_end=args.end_to_end) def evaluate(self, dataset: Optional[Dataset]=None, metric_key_prefix: str='test') -> Dict[str, float]: if dataset is not None: self._validate_column_mapping(dataset) if self.column_mapping is not None: logger.info('Applying column mapping to the evaluation dataset') eval_dataset = self._apply_column_mapping(dataset, self.column_mapping) else: eval_dataset = dataset else: eval_dataset = self.eval_dataset if eval_dataset is None: raise ValueError('No evaluation dataset provided to `Trainer.evaluate` nor the `Trainer` initialzation.') x_test = eval_dataset['text'] y_test = eval_dataset['label'] logger.info('***** Running evaluation *****') y_pred = self.model.predict(x_test, use_labels=False) if isinstance(y_pred, torch.Tensor): y_pred = y_pred.cpu() if y_test and isinstance(y_test[0], str): encoder = LabelEncoder() encoder.fit(list(y_test) + list(y_pred)) y_test = encoder.transform(y_test) y_pred = encoder.transform(y_pred) metric_kwargs = self.metric_kwargs or {} if isinstance(self.metric, str): metric_config = 'multilabel' if self.model.multi_target_strategy is not None else None metric_fn = evaluate.load(self.metric, config_name=metric_config) results = metric_fn.compute(predictions=y_pred, references=y_test, **metric_kwargs) elif callable(self.metric): results = self.metric(y_pred, y_test, **metric_kwargs) else: raise ValueError('metric must be a string or a callable') if not isinstance(results, dict): results = {'metric': results} self.model.model_card_data.post_training_eval_results({f'{metric_key_prefix}_{key}': value for (key, value) in results.items()}) return results def hyperparameter_search(self, hp_space: Optional[Callable[['optuna.Trial'], Dict[str, float]]]=None, compute_objective: Optional[Callable[[Dict[str, float]], float]]=None, n_trials: int=10, direction: str='maximize', backend: Optional[Union['str', HPSearchBackend]]=None, hp_name: Optional[Callable[['optuna.Trial'], str]]=None, **kwargs) -> BestRun: if backend is None: backend = default_hp_search_backend() if backend is None: raise RuntimeError('optuna should be installed. To install optuna run `pip install optuna`.') backend = HPSearchBackend(backend) if backend == HPSearchBackend.OPTUNA and (not is_optuna_available()): raise RuntimeError('You picked the optuna backend, but it is not installed. Use `pip install optuna`.') elif backend != HPSearchBackend.OPTUNA: raise RuntimeError('Only optuna backend is supported for hyperparameter search.') self.hp_search_backend = backend if self.model_init is None: raise RuntimeError('To use hyperparameter search, you need to pass your model through a model_init function.') self.hp_space = default_hp_space_optuna if hp_space is None else hp_space self.hp_name = hp_name self.compute_objective = default_compute_objective if compute_objective is None else compute_objective backend_dict = {HPSearchBackend.OPTUNA: run_hp_search_optuna} best_run = backend_dict[backend](self, n_trials, direction, **kwargs) self.hp_search_backend = None return best_run def push_to_hub(self, repo_id: str, **kwargs) -> str: if '/' not in repo_id: raise ValueError('`repo_id` must be a full repository ID, including organisation, e.g. "tomaarsen/setfit-sst2".') commit_message = kwargs.pop('commit_message', 'Add SetFit model') return self.model.push_to_hub(repo_id, commit_message=commit_message, **kwargs) class SetFitTrainer(Trainer): def __init__(self, model: Optional['SetFitModel']=None, train_dataset: Optional['Dataset']=None, eval_dataset: Optional['Dataset']=None, model_init: Optional[Callable[[], 'SetFitModel']]=None, metric: Union[str, Callable[['Dataset', 'Dataset'], Dict[str, float]]]='accuracy', metric_kwargs: Optional[Dict[str, Any]]=None, loss_class=losses.CosineSimilarityLoss, num_iterations: int=20, num_epochs: int=1, learning_rate: float=2e-05, batch_size: int=16, seed: int=42, column_mapping: Optional[Dict[str, str]]=None, use_amp: bool=False, warmup_proportion: float=0.1, distance_metric: Callable=BatchHardTripletLossDistanceFunction.cosine_distance, margin: float=0.25, samples_per_label: int=2): warnings.warn('`SetFitTrainer` has been deprecated and will be removed in v2.0.0 of SetFit. Please use `Trainer` instead.', DeprecationWarning, stacklevel=2) args = TrainingArguments(num_iterations=num_iterations, num_epochs=num_epochs, body_learning_rate=learning_rate, head_learning_rate=learning_rate, batch_size=batch_size, seed=seed, use_amp=use_amp, warmup_proportion=warmup_proportion, distance_metric=distance_metric, margin=margin, samples_per_label=samples_per_label, loss=loss_class) super().__init__(model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, model_init=model_init, metric=metric, metric_kwargs=metric_kwargs, column_mapping=column_mapping) # File: setfit-main/src/setfit/trainer_distillation.py import warnings from typing import TYPE_CHECKING, Callable, Dict, Iterable, List, Optional, Tuple, Union import torch from datasets import Dataset from sentence_transformers import InputExample, losses, util from torch import nn from torch.utils.data import DataLoader from . import logging from .sampler import ContrastiveDistillationDataset from .trainer import Trainer from .training_args import TrainingArguments if TYPE_CHECKING: from .modeling import SetFitModel logging.set_verbosity_info() logger = logging.get_logger(__name__) class DistillationTrainer(Trainer): _REQUIRED_COLUMNS = {'text'} def __init__(self, teacher_model: 'SetFitModel', student_model: Optional['SetFitModel']=None, args: TrainingArguments=None, train_dataset: Optional['Dataset']=None, eval_dataset: Optional['Dataset']=None, model_init: Optional[Callable[[], 'SetFitModel']]=None, metric: Union[str, Callable[['Dataset', 'Dataset'], Dict[str, float]]]='accuracy', column_mapping: Optional[Dict[str, str]]=None) -> None: super().__init__(model=student_model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, model_init=model_init, metric=metric, column_mapping=column_mapping) self.teacher_model = teacher_model self.student_model = self.model def dataset_to_parameters(self, dataset: Dataset) -> List[Iterable]: return [dataset['text']] def get_dataloader(self, x: List[str], y: Optional[Union[List[int], List[List[int]]]], args: TrainingArguments, max_pairs: int=-1) -> Tuple[DataLoader, nn.Module, int, int]: x_embd_student = self.teacher_model.model_body.encode(x, convert_to_tensor=self.teacher_model.has_differentiable_head) cos_sim_matrix = util.cos_sim(x_embd_student, x_embd_student) input_data = [InputExample(texts=[text]) for text in x] data_sampler = ContrastiveDistillationDataset(input_data, cos_sim_matrix, args.num_iterations, args.sampling_strategy, max_pairs=max_pairs) batch_size = min(args.embedding_batch_size, len(data_sampler)) dataloader = DataLoader(data_sampler, batch_size=batch_size, drop_last=False) loss = args.loss(self.model.model_body) return (dataloader, loss, batch_size, len(data_sampler)) def train_classifier(self, x_train: List[str], args: Optional[TrainingArguments]=None) -> None: y_train = self.teacher_model.predict(x_train, as_numpy=not self.student_model.has_differentiable_head) return super().train_classifier(x_train, y_train, args) class DistillationSetFitTrainer(DistillationTrainer): def __init__(self, teacher_model: 'SetFitModel', student_model: Optional['SetFitModel']=None, train_dataset: Optional['Dataset']=None, eval_dataset: Optional['Dataset']=None, model_init: Optional[Callable[[], 'SetFitModel']]=None, metric: Union[str, Callable[['Dataset', 'Dataset'], Dict[str, float]]]='accuracy', loss_class: torch.nn.Module=losses.CosineSimilarityLoss, num_iterations: int=20, num_epochs: int=1, learning_rate: float=2e-05, batch_size: int=16, seed: int=42, column_mapping: Optional[Dict[str, str]]=None, use_amp: bool=False, warmup_proportion: float=0.1) -> None: warnings.warn('`DistillationSetFitTrainer` has been deprecated and will be removed in v2.0.0 of SetFit. Please use `DistillationTrainer` instead.', DeprecationWarning, stacklevel=2) args = TrainingArguments(num_iterations=num_iterations, num_epochs=num_epochs, body_learning_rate=learning_rate, head_learning_rate=learning_rate, batch_size=batch_size, seed=seed, use_amp=use_amp, warmup_proportion=warmup_proportion, loss=loss_class) super().__init__(teacher_model=teacher_model, student_model=student_model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, model_init=model_init, metric=metric, column_mapping=column_mapping) # File: setfit-main/src/setfit/training_args.py from __future__ import annotations import inspect import json from copy import copy from dataclasses import dataclass, field, fields from typing import Any, Callable, Dict, Optional, Tuple, Union import torch from sentence_transformers import losses from transformers import IntervalStrategy from transformers.integrations import get_available_reporting_integrations from transformers.training_args import default_logdir from transformers.utils import is_torch_available from . import logging logger = logging.get_logger(__name__) @dataclass class TrainingArguments: output_dir: str = 'checkpoints' batch_size: Union[int, Tuple[int, int]] = field(default=(16, 2), repr=False) num_epochs: Union[int, Tuple[int, int]] = field(default=(1, 16), repr=False) max_steps: int = -1 sampling_strategy: str = 'oversampling' num_iterations: Optional[int] = None body_learning_rate: Union[float, Tuple[float, float]] = field(default=(2e-05, 1e-05), repr=False) head_learning_rate: float = 0.01 loss: Callable = losses.CosineSimilarityLoss distance_metric: Callable = losses.BatchHardTripletLossDistanceFunction.cosine_distance margin: float = 0.25 end_to_end: bool = field(default=False) use_amp: bool = False warmup_proportion: float = 0.1 l2_weight: Optional[float] = None max_length: Optional[int] = None samples_per_label: int = 2 show_progress_bar: bool = True seed: int = 42 report_to: str = 'all' run_name: Optional[str] = None logging_dir: Optional[str] = None logging_strategy: str = 'steps' logging_first_step: bool = True logging_steps: int = 50 eval_strategy: str = 'no' evaluation_strategy: Optional[str] = field(default=None, repr=False) eval_steps: Optional[int] = None eval_delay: int = 0 eval_max_steps: int = -1 save_strategy: str = 'steps' save_steps: int = 500 save_total_limit: Optional[int] = 1 load_best_model_at_end: bool = False metric_for_best_model: str = field(default='embedding_loss', repr=False) greater_is_better: bool = field(default=False, repr=False) def __post_init__(self) -> None: if isinstance(self.batch_size, int): self.batch_size = (self.batch_size, self.batch_size) if isinstance(self.num_epochs, int): self.num_epochs = (self.num_epochs, self.num_epochs) if isinstance(self.body_learning_rate, float): self.body_learning_rate = (self.body_learning_rate, self.body_learning_rate) if self.warmup_proportion < 0.0 or self.warmup_proportion > 1.0: raise ValueError(f'warmup_proportion must be greater than or equal to 0.0 and less than or equal to 1.0! But it was: {self.warmup_proportion}') if self.report_to in (None, 'all', ['all']): self.report_to = get_available_reporting_integrations() elif self.report_to in ('none', ['none']): self.report_to = [] elif not isinstance(self.report_to, list): self.report_to = [self.report_to] if self.logging_dir is None: self.logging_dir = default_logdir() self.logging_strategy = IntervalStrategy(self.logging_strategy) if self.evaluation_strategy is not None: logger.warning('The `evaluation_strategy` argument is deprecated and will be removed in a future version. Please use `eval_strategy` instead.') self.eval_strategy = self.evaluation_strategy self.eval_strategy = IntervalStrategy(self.eval_strategy) if self.eval_steps is not None and self.eval_strategy == IntervalStrategy.NO: logger.info('Using `eval_strategy="steps"` as `eval_steps` is defined.') self.eval_strategy = IntervalStrategy.STEPS if self.eval_strategy == IntervalStrategy.STEPS and (self.eval_steps is None or self.eval_steps == 0): if self.logging_steps > 0: self.eval_steps = self.logging_steps else: raise ValueError(f'evaluation strategy {self.eval_strategy} requires either non-zero `eval_steps` or `logging_steps`') if self.load_best_model_at_end: if self.eval_strategy != self.save_strategy: raise ValueError(f'`load_best_model_at_end` requires the save and eval strategy to match, but found\n- Evaluation strategy: {self.eval_strategy}\n- Save strategy: {self.save_strategy}') if self.eval_strategy == IntervalStrategy.STEPS and self.save_steps % self.eval_steps != 0: raise ValueError(f'`load_best_model_at_end` requires the saving steps to be a round multiple of the evaluation steps, but found {self.save_steps}, which is not a round multiple of {self.eval_steps}.') if self.logging_strategy == IntervalStrategy.STEPS and self.logging_steps == 0: raise ValueError(f'Logging strategy {self.logging_strategy} requires non-zero `logging_steps`') @property def embedding_batch_size(self) -> int: return self.batch_size[0] @property def classifier_batch_size(self) -> int: return self.batch_size[1] @property def embedding_num_epochs(self) -> int: return self.num_epochs[0] @property def classifier_num_epochs(self) -> int: return self.num_epochs[1] @property def body_embedding_learning_rate(self) -> float: return self.body_learning_rate[0] @property def body_classifier_learning_rate(self) -> float: return self.body_learning_rate[1] def to_dict(self) -> Dict[str, Any]: return {field.name: getattr(self, field.name) for field in fields(self) if field.init} @classmethod def from_dict(cls, arguments: Dict[str, Any], ignore_extra: bool=False) -> TrainingArguments: if ignore_extra: return cls(**{key: value for (key, value) in arguments.items() if key in inspect.signature(cls).parameters}) return cls(**arguments) def copy(self) -> TrainingArguments: return copy(self) def update(self, arguments: Dict[str, Any], ignore_extra: bool=False) -> TrainingArguments: return TrainingArguments.from_dict({**self.to_dict(), **arguments}, ignore_extra=ignore_extra) def to_json_string(self): return json.dumps({key: str(value) for (key, value) in self.to_dict().items()}, indent=2) def to_sanitized_dict(self) -> Dict[str, Any]: d = self.to_dict() d = {**d, **{'train_batch_size': self.embedding_batch_size, 'eval_batch_size': self.embedding_batch_size}} valid_types = [bool, int, float, str] if is_torch_available(): valid_types.append(torch.Tensor) return {k: v if type(v) in valid_types else str(v) for (k, v) in d.items()} # File: setfit-main/src/setfit/utils.py import types from contextlib import contextmanager from dataclasses import dataclass, field from time import monotonic_ns from typing import Any, Dict, List, NamedTuple, Optional, Tuple from datasets import Dataset, DatasetDict, load_dataset from sentence_transformers import losses from transformers.utils import copy_func from .data import create_fewshot_splits, create_fewshot_splits_multilabel from .losses import SupConLoss SEC_TO_NS_SCALE = 1000000000 DEV_DATASET_TO_METRIC = {'sst2': 'accuracy', 'imdb': 'accuracy', 'subj': 'accuracy', 'bbc-news': 'accuracy', 'enron_spam': 'accuracy', 'student-question-categories': 'accuracy', 'TREC-QC': 'accuracy', 'toxic_conversations': 'matthews_correlation'} TEST_DATASET_TO_METRIC = {'emotion': 'accuracy', 'SentEval-CR': 'accuracy', 'sst5': 'accuracy', 'ag_news': 'accuracy', 'enron_spam': 'accuracy', 'amazon_counterfactual_en': 'matthews_correlation'} MULTILINGUAL_DATASET_TO_METRIC = {f'amazon_reviews_multi_{lang}': 'mae' for lang in ['en', 'de', 'es', 'fr', 'ja', 'zh']} LOSS_NAME_TO_CLASS = {'CosineSimilarityLoss': losses.CosineSimilarityLoss, 'ContrastiveLoss': losses.ContrastiveLoss, 'OnlineContrastiveLoss': losses.OnlineContrastiveLoss, 'BatchSemiHardTripletLoss': losses.BatchSemiHardTripletLoss, 'BatchAllTripletLoss': losses.BatchAllTripletLoss, 'BatchHardTripletLoss': losses.BatchHardTripletLoss, 'BatchHardSoftMarginTripletLoss': losses.BatchHardSoftMarginTripletLoss, 'SupConLoss': SupConLoss} def default_hp_space_optuna(trial) -> Dict[str, Any]: from transformers.integrations import is_optuna_available assert is_optuna_available(), 'This function needs Optuna installed: `pip install optuna`' return {'learning_rate': trial.suggest_float('learning_rate', 1e-06, 0.0001, log=True), 'num_epochs': trial.suggest_int('num_epochs', 1, 5), 'num_iterations': trial.suggest_categorical('num_iterations', [5, 10, 20]), 'seed': trial.suggest_int('seed', 1, 40), 'batch_size': trial.suggest_categorical('batch_size', [4, 8, 16, 32, 64])} def load_data_splits(dataset: str, sample_sizes: List[int], add_data_augmentation: bool=False) -> Tuple[DatasetDict, Dataset]: print(f'\n\n\n============== {dataset} ============') train_split = load_dataset(f'SetFit/{dataset}', split='train') train_splits = create_fewshot_splits(train_split, sample_sizes, add_data_augmentation, f'SetFit/{dataset}') test_split = load_dataset(f'SetFit/{dataset}', split='test') print(f'Test set: {len(test_split)}') return (train_splits, test_split) def load_data_splits_multilabel(dataset: str, sample_sizes: List[int]) -> Tuple[DatasetDict, Dataset]: print(f'\n\n\n============== {dataset} ============') train_split = load_dataset(f'SetFit/{dataset}', 'multilabel', split='train') train_splits = create_fewshot_splits_multilabel(train_split, sample_sizes) test_split = load_dataset(f'SetFit/{dataset}', 'multilabel', split='test') print(f'Test set: {len(test_split)}') return (train_splits, test_split) @dataclass class Benchmark: out_path: Optional[str] = None summary_msg: str = field(default_factory=str) def print(self, msg: str) -> None: print(msg) if self.out_path is not None: with open(self.out_path, 'a+') as f: f.write(msg + '\n') @contextmanager def track(self, step): start = monotonic_ns() yield ns = monotonic_ns() - start msg = f"\n{'*' * 70}\n'{step}' took {ns / SEC_TO_NS_SCALE:.3f}s ({ns:,}ns)\n{'*' * 70}\n" print(msg) self.summary_msg += msg + '\n' def summary(self) -> None: self.print(f"\n{'#' * 30}\nBenchmark Summary:\n{'#' * 30}\n\n{self.summary_msg}") class BestRun(NamedTuple): run_id: str objective: float hyperparameters: Dict[str, Any] backend: Any = None def set_docstring(method, docstring, cls=None): copied_function = copy_func(method) copied_function.__doc__ = docstring return types.MethodType(copied_function, cls or method.__self__) |