|
"""DailyDialogue Bengali Dataset""" |
|
|
|
import os |
|
import json |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@inproceedings{bhattacharjee-etal-2023-banglanlg, |
|
title = "{B}angla{NLG} and {B}angla{T}5: Benchmarks and Resources for Evaluating Low-Resource Natural Language Generation in {B}angla", |
|
author = "Bhattacharjee, Abhik and |
|
Hasan, Tahmid and |
|
Ahmad, Wasi Uddin and |
|
Shahriyar, Rifat", |
|
booktitle = "Findings of the Association for Computational Linguistics: EACL 2023", |
|
month = may, |
|
year = "2023", |
|
address = "Dubrovnik, Croatia", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2023.findings-eacl.54", |
|
pages = "726--735", |
|
abstract = "This work presents {`}BanglaNLG,{'} a comprehensive benchmark for evaluating natural language generation (NLG) models in Bangla, a widely spoken yet low-resource language. We aggregate six challenging conditional text generation tasks under the BanglaNLG benchmark, introducing a new dataset on dialogue generation in the process. Furthermore, using a clean corpus of 27.5 GB of Bangla data, we pretrain {`}BanglaT5{'}, a sequence-to-sequence Transformer language model for Bangla. BanglaT5 achieves state-of-the-art performance in all of these tasks, outperforming several multilingual models by up to 9{\%} absolute gain and 32{\%} relative gain. We are making the new dialogue dataset and the BanglaT5 model publicly available at https://github.com/csebuetnlp/BanglaNLG in the hope of advancing future research on Bangla NLG.", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
DailyDialogue (bengali) has been derived from the original English dataset. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/csebuetnlp/BanglaNLG" |
|
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)" |
|
_URL = "https://huggingface.co/datasets/csebuetnlp/dailydialogue_bn/resolve/main/data/dailydialogue_bn.tar.bz2" |
|
_VERSION = datasets.Version("0.0.1") |
|
|
|
|
|
|
|
class DailydialogueBn(datasets.GeneratorBasedBuilder): |
|
"""DailyDialogue Bengali Dataset""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="dailydialogue_bn", |
|
version=_VERSION, |
|
description=_DESCRIPTION, |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"dialogue": datasets.features.Sequence( |
|
datasets.Value("string") |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = os.path.join(dl_manager.download_and_extract(_URL), "dailydialogue_bn") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "train.jsonl"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "test.jsonl"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "validation.jsonl"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for i, line in enumerate(f): |
|
data = json.loads(line.strip())['source'] |
|
yield i, { |
|
"id": str(i), |
|
"dialogue": data |
|
} |