Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 42,119 Bytes
a81729c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import set_seed\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "from collections import Counter\n",
    "import numpy as np\n",
    "import random\n",
    "import torch"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "three fields in each prompt: question, bot, task\n",
    "\n",
    "input to the model is:\n",
    "```\n",
    "<s>human\n",
    "[question]\n",
    "<s>bot\n",
    "[bot]\n",
    "```\n",
    "where a question is\n",
    "```\n",
    "[program]\n",
    "\n",
    "[question]\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "debug = ''\n",
    "in_dir = f\"/Users/zzy/Documents/graph{debug}\"\n",
    "out_dir = f\"/Users/zzy/Documents/graph{debug}/instruction\"\n",
    "no_return_sample_num = 20 if len(debug) > 0 else 40000\n",
    "\n",
    "figsize = (24, 16)\n",
    "fontsize = 28\n",
    "fontsize_tick = 16\n",
    "\n",
    "def filter_df(df, n=None):\n",
    "    try:\n",
    "        n = n if n is not None else no_return_sample_num\n",
    "        return pd.concat([df[df.source.apply(lambda x: 'return ' in x)], df[df.source.apply(lambda x: 'return ' not in x)].sample(n)]).reset_index(drop=True)\n",
    "    except:\n",
    "        return df\n",
    "\n",
    "def capitalize(s: str):\n",
    "    return s[0].upper() + s[1:]\n",
    "\n",
    "def replace_digit(s: str):\n",
    "    return s.replace('10', 'ten').replace('1', 'one').replace('2', 'two').replace('3', 'three').replace('4', 'four').replace('5', 'five').replace('6', 'six').replace('7', 'seven').replace('8', 'eight').replace('9', 'nine')\n",
    "\n",
    "def print_df(df, n=10):\n",
    "    for i in range(n):\n",
    "        print(df.loc[i].question)\n",
    "        print(df.loc[i].bot)\n",
    "        print('---'*10)\n",
    "\n",
    "graph_type_map = {'AST': 'abstract syntax tree', 'DFG': 'data flow graph'}\n",
    "NODE_TYPES = [\n",
    "    'assignment expression',\n",
    "    'basic block',\n",
    "    'binary expression',\n",
    "    'break statement',\n",
    "    'call expression',\n",
    "    'catch clause',\n",
    "    'class expression',\n",
    "    'compile unit',\n",
    "    'conditional expression',\n",
    "    'continue statement',\n",
    "    'export statement',\n",
    "    'for statement',\n",
    "    'function expression',\n",
    "    'identifier expression', \n",
    "    'if statement',\n",
    "    'import expression',\n",
    "    'key value parameter',\n",
    "    'literal expression',\n",
    "    'member access',\n",
    "    'new expression',\n",
    "    'new with type expression',\n",
    "    'object expression',\n",
    "    'object property',\n",
    "    'parameter',\n",
    "    'Python delete',\n",
    "    'Python with',\n",
    "    'Python with expression clause',\n",
    "    'Python yield expression',\n",
    "    'range statement',\n",
    "    'return statement',\n",
    "    'scope',\n",
    "    'spread collection expression',\n",
    "    'spread dictionary expression',\n",
    "    'super expression',\n",
    "    'switch case',\n",
    "    'switch statement',\n",
    "    'this expression',\n",
    "    'throw statement',\n",
    "    'try statement',\n",
    "    'tuple expression',\n",
    "    'unary expression',\n",
    "    'variable declaration',\n",
    "    'while statement'\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ph stands for place holder\n",
    "ph1 = 'aohg981thgboir2bnjosi1839r8g9udnfv,mqwfo'\n",
    "ph2 = 'io12i3ru9ginal90109ja-efi1-3gasd130gn0wa9'\n",
    "ph3 = '2091rng09wegnb2p09jojmpzf,k[2e00-jmaa]'\n",
    "ph4 = '0391gnea-g0-jr0aegbm[afk0-249jgps]waeg0'\n",
    "ph5 = 'io1hngi0enriqgpgv]139gonpiamofj10onem;alf'\n",
    "ph_list = [ph1, ph2, ph3, ph4, ph5]\n",
    "punc_list = [\",\", \"?\", \".\", \";\", \"'s\"]\n",
    "\n",
    "def replace_place_holder(s, node_text, placeholder=\"{node}\"):\n",
    "    # this function injects a multi-line code snippet into the template\n",
    "\n",
    "    if placeholder not in s:\n",
    "        return s\n",
    "\n",
    "    # 1. remove the white spaces around {node} placeholder\n",
    "    s = s.replace(f\"{placeholder} \", f\"{placeholder}\").replace(f\" {placeholder}\", f\"{placeholder}\")\n",
    "    for punc in punc_list:\n",
    "        s = s.replace(f\"{placeholder}{punc} \", f\"{placeholder}{punc}\")\n",
    "    \n",
    "    # 2. injects the code, but first replace patterns like '\\n.' in both the code and template (the template may contain previously injected code)\n",
    "    for ph, punc in zip(ph_list, punc_list):\n",
    "        node_text = node_text.replace(f\"\\n{punc}\", ph)\n",
    "        s = s.replace(f\"\\n{punc}\", ph)\n",
    "    s = s.replace(placeholder, node_text)\n",
    "\n",
    "    # 3. replace patterns like \"\\n.\" caused by the template\n",
    "    for punc in punc_list:\n",
    "        s = s.replace(f\"\\n{punc}\", f\"{punc}\\n\")\n",
    "\n",
    "    # 4. replace the placerholders inserted in step 2\n",
    "    for ph, punc in zip(ph_list, punc_list):\n",
    "        s = s.replace(ph, f\"\\n{punc}\")\n",
    "    return s"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## node classification"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "questions = [\n",
    "    'In the {graph} of this {lang} program, what is the type of this node: {node}.',\n",
    "    'Tell me the node type of {node} in the {graph} of this {lang} program.',\n",
    "    'What is the node type of {node} in the {graph} of this {lang} program',\n",
    "    \"In the {graph} of the provided {lang} program, could you identify the type of the node {node}?\",\n",
    "    \"What kind of node is {node} in the {graph} of this {lang} program?\",\n",
    "    \"Can you classify the node {node} in the {graph} of this {lang} program?\",\n",
    "    \"What category does the node {node} fall under in the {graph} of this {lang} program?\",\n",
    "    \"Regarding the {graph} of this {lang} program, what is the classification of the node {node}?\",\n",
    "    \"In the context of the {graph} of this {lang} program, what is the nature of the node identified as {node}?\",\n",
    "    \"Could you tell me what the node {node} represents in the {graph} of this {lang} program?\",\n",
    "    \"I'm curious, what type of node is {node} in the {graph} of the {lang} program presented?\",\n",
    "    \"What is the designation of the node {node} within the {graph} of this {lang} program?\",\n",
    "    \"Could you specify the node type for {node} in the {graph} of this particular {lang} program?\",\n",
    "    'Determine the node type of {node} in the {graph} of this {lang} program.',\n",
    "]\n",
    "answers = [\n",
    "    \"This node, {node}, is classified as a {answer}.\",\n",
    "    \"The node {node} is a {answer}.\",\n",
    "    \"This node is identified as a {answer}.\",\n",
    "    \"It's a {answer}.\",\n",
    "    \"Regarding the node {node}, it falls under the category of a {answer}.\",\n",
    "    \"{node} is classified as a {answer} in the {graph} of this program.\",\n",
    "    \"The classification of the node {node} is a {answer}.\",\n",
    "    \"Within the {graph} of this program, {node} is a {answer} type of node.\",\n",
    "    \"As for the node identified as {node}, it's considered a {answer}.\",\n",
    "    \"The node {node} is of the {answer} variety.\",\n",
    "    'The type of this node is {answer}.',\n",
    "    'The given node is a {answer}.',\n",
    "    \"{answer}.\",\n",
    "    \"{answer}\",\n",
    "]\n",
    "print(len(questions), len(set(questions)))\n",
    "print(len(answers), len(set(answers)))\n",
    "assert all(a.count('{answer}') == 1 for a in answers)\n",
    "assert all(a.count('{graph}') == 1 for a in questions)\n",
    "assert all(a.count('{lang}') == 1 for a in questions)\n",
    "\n",
    "bots = [a for a in answers]\n",
    "prompts = [[q, b] for q in questions for b in bots]\n",
    "print(len(prompts))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "set_seed(0)\n",
    "results = {}\n",
    "for lang in ['Java', 'Python']:\n",
    "    for graph in ['DFG', 'AST']:\n",
    "        result = []\n",
    "        df = pd.read_json(f\"{in_dir}/{lang}_{graph}.jsonl\", lines=True)\n",
    "        if lang == 'Python':\n",
    "            df = filter_df(df)\n",
    "\n",
    "        question, bot = [], []\n",
    "        for i in range(len(df)):\n",
    "\n",
    "            # filter out nodes that occur multiple times in the source code\n",
    "            node_texts = df.loc[i]['text']\n",
    "            node_ids = df.loc[i]['node_ids']\n",
    "            source = df.loc[i]['source']\n",
    "            assert len(node_ids) == len(node_texts)\n",
    "\n",
    "            occurrences = np.array([source.count(t) for t in node_texts])\n",
    "            nodes_single_occurrence = np.where(occurrences == 1)[0]\n",
    "\n",
    "            # we sample 1 node from each program\n",
    "            nodes = np.random.choice(nodes_single_occurrence, 1)\n",
    "            for node in nodes:\n",
    "                node_text = node_texts[node]\n",
    "                node_id = node_ids[node]\n",
    "                node_type = NODE_TYPES[node_id]\n",
    "\n",
    "                p = random.sample(prompts, 1)[0]\n",
    "                p = [s.replace('{graph}', f\"{graph_type_map[graph]}\").replace('{lang}', f\"{lang}\") for s in p]\n",
    "                \n",
    "                response = p[1]\n",
    "                # deal with answer first in the response before plugging in the node text to avoid replacing something in the code\n",
    "                if any(node_type.startswith(l) for l in 'aeio'):\n",
    "                    response = response.replace(' a ', ' an ')\n",
    "                response = response.replace('{answer}', node_type)\n",
    "                response = capitalize(response)\n",
    "                    \n",
    "                if '\\n' in node_text:\n",
    "                    node_text = f\"\\n```\\n{node_text}\\n```\\n\"\n",
    "                    assert ph1 not in node_text and ph2 not in node_text and ph3 not in node_text and ph4 not in node_text and ph5 not in node_text\n",
    "                    q = replace_place_holder(p[0], node_text)\n",
    "                    response = replace_place_holder(response, node_text)\n",
    "                else:\n",
    "                    node_text = f\"`{node_text}`\"\n",
    "                    q = p[0].replace('{node}', node_text)\n",
    "                    response = response.replace('{node}', node_text)\n",
    "\n",
    "                source = source.strip('\\n')\n",
    "                q = f\"```\\n{source}\\n```\\n\\n{q}\"\n",
    "                question.append(q)\n",
    "                bot.append(response)\n",
    "                result.append(node_id)\n",
    "\n",
    "        df['question'] = question\n",
    "        df['bot'] = bot\n",
    "        df = df.drop(columns={'text', 'source', 'node_ids', 'edge_index'})\n",
    "        df.to_json(f\"{out_dir}/Node_Classification_{lang}_{graph}.jsonl\", orient='records', lines=True)\n",
    "        results[f\"{lang}-{graph}\"] = result"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## parent node"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "questions = [\n",
    "    'In the {graph} of this {lang} program, what is the parent node of this {node_type}: {node}.',\n",
    "    'What is the parent of {node_type} {node} in the {graph} of this {lang} program?',\n",
    "    'What is the parent node of {node_type} {node} in the {graph} of this {lang} program?',\n",
    "    'Based on the {graph} of this {lang} program, identify the parent of {node_type} {node}.',\n",
    "    'Based on the {graph} of this {lang} program, identify the parent of this {node_type}: {node}.',\n",
    "    'Identify the parent of {node_type} {node} in the {graph} of this {lang} program.',\n",
    "    \"In the {graph} of the {lang} program presented, what is the predecessor of {node_type} {node}?\",\n",
    "    \"What node acts as the parent to {node_type} {node} in the {graph} of the displayed {lang} program?\",\n",
    "    \"Can you determine the parent node of {node_type} {node} in the {graph} of this {lang} program?\",\n",
    "    \"Which node is directly above {node_type} {node} in the hierarchy of the {graph} of the provided {lang} program?\",\n",
    "    \"Whose child is {node_type} {node} within the {graph} of this {lang} program?\",\n",
    "    \"What is the immediate ancestor of the {node_type} {node} in the {graph} of this {lang} program?\",\n",
    "    \"Regarding the {graph} of this {lang} program, can you point out the parent of {node_type} {node}?\",\n",
    "    \"In terms of graph theory, what is the parent of the {node_type} {node} in the {graph} of this {lang} program?\",\n",
    "    \"Who has the parental role for {node_type} {node} in the {graph}'s topology of this {lang} program?\",\n",
    "    \"For {node_type} {node} in the {graph} of the given {lang} program, which node supplies the incoming edge?\",\n",
    "]\n",
    "answers1 = [\n",
    "    \"In the {graph} of the given {lang} program, the parent of the given {node_type} is {parent}, which is a {parent_type}.\",\n",
    "    \"This {node_type}'s parent is the {parent_type} {parent}.\",\n",
    "    \"The given {node_type}'s parent in the {graph} of this {lang} program is the {parent_type} {parent}.\",\n",
    "    \"The parent of {node_type} {node} in the {graph} of this {lang} program is identified as {parent}, categorized as a {parent_type}.\",\n",
    "    \"In the structure of the {graph} of this {lang} program, {node_type} {node} finds its parent in node {parent}, which is a {parent_type}.\",\n",
    "    \"Node {parent}, a {parent_type}, serves as the parent to {node_type} {node} in the {graph} of this {lang} program.\",\n",
    "    \"As per the hierarchy in the {graph}, the {parent_type} node {parent} is the direct predecessor to {node_type} {node}.\",\n",
    "    \"Upon inspection, it is clear that the parent of {node_type} {node} is the {parent_type} {parent}.\",\n",
    "    \"The {node_type} {node} is immediately descended from {parent}, a {parent_type} in the {graph} of this {lang} program.\",\n",
    "    \"{node_type} {node}'s parental node is determined to be {parent}, which falls into the category of {parent_type}.\",\n",
    "    \"For {node_type} {node}, its lineage traces back to the {parent_type} node {parent} as its parent.\",\n",
    "    \"Within the nodal arrangement of the {graph}, {parent} is the progenitor to {node_type} {node}, having the classification of a {parent_type}.\",\n",
    "    \"Tracing the edges leads to confirming {parent}, a {parent_type}, as the parent of {node_type} {node}.\"\n",
    "]\n",
    "answers2 = [\n",
    "    'This {node_type} has no parent in the {graph} of this {lang} program.',\n",
    "    'This {node_type} has no parent in the {graph} of the given {lang} program.',\n",
    "    'There is no edge pointing to this {node_type} in the {graph}. Therefore it does not have any parent.',\n",
    "    'There is no edge pointing to this {node_type} in the {graph} of the given {lang} program. Therefore it does not have any parent.',\n",
    "    \"Within the confines of the {graph} of this {lang} program, {node_type} {node} does not have a parent node.\",\n",
    "    \"{node_type} {node} stands without a parent in the {graph}'s structure.\",\n",
    "    \"No parent node is associated with {node_type} {node} in the {graph} of the provided {lang} program.\",\n",
    "    \"A review of the code establishes that there is no preceding node to {node_type} {node} in the {graph}; it has no parent.\",\n",
    "    \"The {node_type} designated as {node} appears to lack a parental connection within the {graph} of this code.\",\n",
    "    \"In terms of graph topology, {node_type} {node} is an orphan node with no parent.\",\n",
    "    \"There is no edge incoming to {node_type} {node}, indicating the absence of a parent in the {graph} of this {lang} program.\",\n",
    "    \"After analyzing the code, it becomes evident that {node_type} {node} lacks a directly linked parent node in the {graph}.\",\n",
    "    \"The {graph} denotes that {node_type} {node} is disconnected from any parental lineage.\",\n",
    "    \"As depicted in the code, {node_type} {node} exists without a parent node to claim in the {graph}.\",\n",
    "]\n",
    "answers3 = [\n",
    "    \"There are multiple parents of this {node_type} in the {graph}:\\n\",\n",
    "    \"This {node_type} has more than one parent in the {graph}:\\n\"\n",
    "]\n",
    "print(len(questions), len(set(questions)))\n",
    "print(len(answers1), len(set(answers1)))\n",
    "print(len(answers2), len(set(answers2)))\n",
    "print(len(answers3), len(set(answers3)))\n",
    "assert all(a.count('{graph}') == 1 for a in questions)\n",
    "assert all(a.count('{lang}') == 1 for a in questions)\n",
    "\n",
    "bots = [a for a in answers1]\n",
    "bots_none = [a for a in answers2]\n",
    "bots_multiple = [a for a in answers3]\n",
    "prompts = [[q, b] for q in questions for b in bots]\n",
    "print(len(prompts))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "set_seed(1)\n",
    "\n",
    "results = {}\n",
    "for lang in ['Java', 'Python']:\n",
    "    for graph in ['DFG', 'AST']:\n",
    "        result = []\n",
    "        df = pd.read_json(f\"{in_dir}/{lang}_{graph}.jsonl\", lines=True)\n",
    "        if lang == 'Python':\n",
    "            df = filter_df(df)\n",
    "        \n",
    "        question, bot = [], []\n",
    "        for i in range(len(df)):\n",
    "\n",
    "            # filter out nodes that occur multiple times in the source code\n",
    "            node_texts = df.loc[i]['text']\n",
    "            node_ids = df.loc[i]['node_ids']\n",
    "            source = df.loc[i]['source']\n",
    "            edge_index = torch.tensor(df.loc[i]['edge_index'])\n",
    "            assert len(node_ids) == len(node_texts)\n",
    "\n",
    "            occurrences = np.array([source.count(t) for t in node_texts])\n",
    "            nodes_single_occurrence = np.where(occurrences == 1)[0]\n",
    "            nodes_with_parents = [n for n in nodes_single_occurrence if n in edge_index[:, 1]]\n",
    "            nodes_without_parents = [n for n in nodes_single_occurrence if n not in edge_index[:, 1]]\n",
    "            \n",
    "            # we roughly maintain a balanced distribution\n",
    "            if random.random() < 0.75 and len(nodes_with_parents) > 0:\n",
    "                node = random.sample(nodes_with_parents, 1)[0]\n",
    "            elif len(nodes_without_parents) > 0:\n",
    "                node = random.sample(nodes_without_parents, 1)[0]\n",
    "            else:\n",
    "                node = np.random.choice(nodes_single_occurrence, 1)[0]\n",
    "            \n",
    "            node_text = node_texts[node]\n",
    "            node_id = node_ids[node]\n",
    "            node_type = NODE_TYPES[node_id]\n",
    "            edge_to_node = [edge for edge in edge_index if edge[1] == node]\n",
    "\n",
    "            p = (random.sample(prompts, 1)[0] + random.sample(bots_none, 1) + random.sample(bots_multiple, 1)).copy()\n",
    "            assert p[2] in bots_none\n",
    "            p = [s.replace('{graph}', f\"{graph_type_map[graph]}\").replace('{lang}', f\"{lang}\") for s in p]\n",
    "\n",
    "            # deal with answer first in the response before plugging in the node text to avoid replacing something in the code\n",
    "            num_parents = len(edge_to_node)\n",
    "            response = p[2] if num_parents == 0 else (p[1] if num_parents == 1 else p[3])\n",
    "            response = capitalize(response.replace('{node_type}', node_type))\n",
    "\n",
    "            if num_parents > 1:\n",
    "                # no problem here\n",
    "                for j in range(num_parents):\n",
    "                    parent_node = edge_to_node[j][0]\n",
    "                    parent_text = node_texts[parent_node]\n",
    "                    parent_id = node_ids[parent_node]\n",
    "                    parent_type = NODE_TYPES[parent_id]\n",
    "                    if '\\n' in parent_text:\n",
    "                        parent_text = f\"\\n```\\n{parent_text}\\n```\\n\"\n",
    "                        response += f\"{parent_type}:{parent_text}\"\n",
    "                    else:\n",
    "                        parent_text = f\"`{parent_text}`\"\n",
    "                        response += f\"{parent_type}: {parent_text}\\n\"\n",
    "            elif num_parents == 1:\n",
    "                parent_node = edge_to_node[0][0]\n",
    "                parent_text = node_texts[parent_node]\n",
    "                parent_id = node_ids[parent_node]\n",
    "                parent_type = NODE_TYPES[parent_id]\n",
    "                if any(parent_type.startswith(l) for l in 'aeio'):\n",
    "                    response = response.replace(' a ', ' an ')\n",
    "                if '\\n' in parent_text:\n",
    "                    parent_text = f\"\\n```\\n{parent_text}\\n```\\n\"\n",
    "                    response = replace_place_holder(response, parent_text, \"{parent}\")\n",
    "                else:\n",
    "                    parent_text = f\"`{parent_text}`\"\n",
    "                    response = response.replace('{parent}', parent_text)\n",
    "                response = response.replace('{parent_type}', parent_type)                \n",
    "            \n",
    "            # now deal with node text\n",
    "            assert response.count('{node}') <= 1\n",
    "            if '\\n' in node_text:\n",
    "                node_text = f\"\\n```\\n{node_text}\\n```\\n\"\n",
    "                # note that now response may contain \"\\n,\" patterns\n",
    "                q = replace_place_holder(p[0].replace('{node_type}', node_type), node_text)\n",
    "                response = replace_place_holder(response, node_text)\n",
    "            else:\n",
    "                node_text = f\"`{node_text}`\"\n",
    "                q = p[0].replace('{node_type}', node_type).replace('{node}', node_text)\n",
    "                response = response.replace('{node}', node_text)\n",
    "\n",
    "            source = source.strip('\\n')\n",
    "            q = f\"```\\n{source}\\n```\\n\\n{q}\"\n",
    "            question.append(q)\n",
    "            bot.append(response)\n",
    "            result.append(num_parents)\n",
    "\n",
    "        df['question'] = question\n",
    "        df['bot'] = bot\n",
    "        df = df.drop(columns={'text', 'source', 'node_ids', 'edge_index'})\n",
    "        df.to_json(f\"{out_dir}/Parent_{lang}_{graph}.jsonl\", orient='records', lines=True)\n",
    "        results[f\"{lang}-{graph}\"] = result"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Children"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "questions = [\n",
    "    'In the {graph} of this {lang} program, what are the children of this {node_type}: {node}.',\n",
    "    'Identify all children of {node_type} {node} in the {graph} of this {lang} program.',\n",
    "    'Find the child nodes of {node_type} {node} in the {graph} of this {lang} program.',\n",
    "    'In the {graph} of this {lang} program, how many children does the {node_type} {node} have? What are they?',\n",
    "    \"How many children does {node_type} {node} have in the {graph} of this {lang} program? What are they?\",\n",
    "    'Please find all children of {node_type} {node} in the {graph} of this {lang} program.',\n",
    "    'Can you find all children of {node_type} {node} in the {graph} of this {lang} program?',\n",
    "    \"List all the descendant nodes of {node_type} {node} in the {graph} of this {lang} program.\",\n",
    "    \"What are the direct children of the {node_type} {node} in the {graph} of this {lang} program?\",\n",
    "    \"Can you enumerate the offspring of {node_type} {node} within the {graph} of this {lang} program?\",\n",
    "    \"Could you provide the list of child nodes attached to {node_type} {node} in the {graph} of this {lang} program?\",\n",
    "    \"Please identify the child nodes emanating from {node_type} {node} in the {graph} of this {lang} program.\",\n",
    "    \"Show me the child nodes of {node_type} {node} in the {graph} of this {lang} program.\",\n",
    "    \"What nodes are directly connected to {node_type} {node} as its children in the {graph} of this {lang} program?\",\n",
    "    \"I need to know all the child elements of {node_type} {node} in the {graph} of this {lang} program. Can you provide that?\",\n",
    "    \"Are there any nodes that directly derive from {node_type} {node} in the {graph} of this {lang} program?\",\n",
    "    \"Which nodes act as successors to the node tagged as {node_type} {node} in the {graph} of this {lang} program?\",\n",
    "    \"What are the adjacent nodes that are children of {node_type} {node} in the {graph} of this {lang} program?\",\n",
    "    \"Identify the nodes that are immediate successors of {node_type} {node} in the {graph} of this {lang} program.\",\n",
    "    \"Detail the nodes branching from {node_type} {node} in the {graph} of this {lang} program.\",\n",
    "    \"Reveal all nodes that are directly beneath {node_type} {node} in the topology of the {graph} of this {lang} program.\",\n",
    "]\n",
    "answers1 = [\n",
    "    \"The given {node_type} has {child_num} children in the {graph}, they are:\\n\",\n",
    "    \"This {node_type} has {child_num} children:\\n\",\n",
    "    \"{node_type} {node} has a total of {child_num} children in the {graph}, which are:\\n\",\n",
    "    \"There are {child_num} child nodes of {node_type} {node}, specifically:\\n\",\n",
    "    \"As for the children of {node_type} {node}, you will find {child_num} direct descendants:\\n\",\n",
    "    \"The count of {node_type} {node}'s children amounts to {child_num}. They include:\\n\",\n",
    "    \"Upon identification, {node_type} {node} appears to have {child_num} offspring, namely:\\n\",\n",
    "    \"{node_type} {node} is parent to the following {child_num} nodes:\\n\",\n",
    "    \"A list of the {child_num} children under {node_type} {node} is as follows:\\n\",\n",
    "    \"Directly under {node_type} {node}, there are {child_num} children listed as:\\n\",\n",
    "    \"{node_type} {node} holds the hierarchy over {child_num} child nodes, which are:\\n\",\n",
    "    \"{child_num} children spring from {node_type} {node}, which are given below:\\n\",\n",
    "]\n",
    "answers2 = [\n",
    "    \"This {node_type} does not have any child nodes in the {graph}.\",\n",
    "    \"This {node_type} does not have any children in the {graph}.\",\n",
    "    \"There are no children of this {node_type} in the {graph} of the given code.\",\n",
    "    \"The given {node_type} does not have any children in the {graph}.\",\n",
    "    \"After examining the code, it's determined that in the {graph} this {node_type} has no children.\",\n",
    "    \"{node_type} {node} stands alone with zero child nodes descending from it.\",\n",
    "    \"I've checked the {node_type} {node} and found it has no direct descendants.\",\n",
    "    \"There are no child nodes attached to {node_type} {node} in the {graph} of this program.\",\n",
    "    \"No descendants can be traced from this {node_type}.\",\n",
    "    \"The {node_type} {node} is devoid of child nodes within the {graph} of the code.\",\n",
    "    \"Upon inspection, no nodes emerge as children of {node_type} {node}.\",\n",
    "    \"{node_type} {node} exists without progeny in the hierarchical layout.\",\n",
    "    \"It appears {node_type} {node} has no children.\",\n",
    "]\n",
    "\n",
    "print(len(questions), len(set(questions)))\n",
    "print(len(answers1), len(set(answers1)))\n",
    "print(len(answers2), len(set(answers2)))\n",
    "assert all(a.count('{answer}') == 1 for a in answers)\n",
    "assert all(a.count('{graph}') == 1 for a in questions)\n",
    "assert all(a.count('{lang}') == 1 for a in questions)\n",
    "\n",
    "bots = [a for a in answers1]\n",
    "bots_none = [a for a in answers2]\n",
    "prompts = [[q, b] for q in questions for b in bots]\n",
    "print(len(prompts))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "set_seed(2)\n",
    "\n",
    "results = {}\n",
    "for lang in ['Java', 'Python']:\n",
    "    for graph in ['DFG', 'AST']:\n",
    "        result = []\n",
    "        df = pd.read_json(f\"{in_dir}/{lang}_{graph}.jsonl\", lines=True)\n",
    "        if lang == 'Python':\n",
    "            df = filter_df(df)\n",
    "        \n",
    "        question, bot = [], []\n",
    "        selected_idx = []\n",
    "        for i in range(len(df)):\n",
    "\n",
    "            # filter out nodes that occur multiple times in the source code\n",
    "            node_texts = df.loc[i]['text']\n",
    "            node_ids = df.loc[i]['node_ids']\n",
    "            source = df.loc[i]['source']\n",
    "            edge_index = torch.tensor(df.loc[i]['edge_index'])\n",
    "\n",
    "            occurrences = np.array([source.count(t) for t in node_texts])\n",
    "            nodes_single_occurrence = np.where(occurrences == 1)[0]\n",
    "            nodes_with_children = [n for n in nodes_single_occurrence if n in edge_index[:, 0]]\n",
    "            nodes_without_children = [n for n in nodes_single_occurrence if n not in edge_index[:, 0]]\n",
    "            \n",
    "            # we roughly maintain a balanced distribution\n",
    "            if random.random() < 0.85 and len(nodes_with_children) > 0:\n",
    "                node = random.sample(nodes_with_children, 1)[0]\n",
    "            elif len(nodes_without_children) > 0:\n",
    "                node = random.sample(nodes_without_children, 1)[0]\n",
    "            else:\n",
    "                node = np.random.choice(nodes_single_occurrence, 1)[0]\n",
    "            \n",
    "            node_text = node_texts[node]\n",
    "            node_id = node_ids[node]\n",
    "            node_type = NODE_TYPES[node_id]\n",
    "            edge_from_node = [edge for edge in edge_index if edge[0] == node]\n",
    "\n",
    "            p = (random.sample(prompts, 1)[0] + random.sample(bots_none, 1)).copy()\n",
    "            assert p[1] in bots\n",
    "            p = [s.replace('{graph}', f\"{graph_type_map[graph]}\").replace('{lang}', f\"{lang}\") for s in p]\n",
    "\n",
    "            num_children = len(edge_from_node)\n",
    "            if num_children > 10:\n",
    "                continue\n",
    "            else:\n",
    "                selected_idx.append(i)\n",
    "            response = p[2] if num_children == 0 else p[1]\n",
    "            response = capitalize(response.replace('{node_type}', node_type))\n",
    "            if num_children == 1:\n",
    "                response = response.replace('{child_num}', \"1\").replace('children', 'child').replace('nodes', 'node').replace('they are', 'it is').replace(' are', ' is').replace('descendants', 'descendant').replace('They include', 'It is').replace(' spring ', ' springs ')\n",
    "            else:\n",
    "                response = response.replace('{child_num}', f\"{num_children}\")\n",
    "            \n",
    "            if '\\n' in node_text:\n",
    "                node_text = f\"\\n```\\n{node_text}\\n```\\n\"\n",
    "                q = replace_place_holder(p[0].replace('{node_type}', node_type), node_text)\n",
    "                response = replace_place_holder(response, node_text)\n",
    "            else:\n",
    "                node_text = f\"`{node_text}`\"\n",
    "                q = p[0].replace('{node_type}', node_type).replace('{node}', node_text)\n",
    "                response = response.replace('{node}', node_text)\n",
    "                \n",
    "            for j in range(num_children):\n",
    "                child_node = edge_from_node[j][1]\n",
    "                child_text = node_texts[child_node]\n",
    "                child_id = node_ids[child_node]\n",
    "                child_type = NODE_TYPES[child_id]\n",
    "\n",
    "                if '\\n' in child_text:\n",
    "                    child_text = f\"\\n```\\n{child_text}\\n```\\n\"\n",
    "                    response += f\"{child_type}:{child_text}\"\n",
    "                else:\n",
    "                    child_text = f\"`{child_text}`\"\n",
    "                    response += f\"{child_type}: {child_text}\\n\"\n",
    "            if num_children != len(set((node_ids[e[1]], node_texts[e[1]]) for e in edge_from_node)):\n",
    "                response += \"Note that there are multiple children with the same node type and literal representation.\"\n",
    "\n",
    "            source = source.strip('\\n')\n",
    "            q = f\"```\\n{source}\\n```\\n\\n{q}\"\n",
    "            question.append(q)\n",
    "            bot.append(response)\n",
    "            result.append(num_children)\n",
    "\n",
    "        df = df.loc[selected_idx].reset_index(drop=True)\n",
    "        df['question'] = question\n",
    "        df['bot'] = bot\n",
    "        df = df.drop(columns={'text', 'source', 'node_ids', 'edge_index'})\n",
    "        df.to_json(f\"{out_dir}/Children_{lang}_{graph}.jsonl\", orient='records', lines=True)\n",
    "        results[f\"{lang}-{graph}\"] = result"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Edge prediction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "questions = [\n",
    "    \"In the {graph} of this {lang} program, is there {edge_or_link} from {node_type1} {node1} to {node_type2} {node2}?\",\n",
    "    'In the {graph} of this {lang} program, is there {edge_or_link} pointing from {node_type1} {node1} to {node_type2} {node2}?',\n",
    "    \"Please tell me if there is {edge_or_link} pointing from {node_type1} {node1} to {node_type2} {node2} in the {graph} of this {lang} program.\",\n",
    "    'Is there {edge_or_link} from {node_type1} {node1} to {node_type2} {node2} in the {graph} of this {lang} program?',\n",
    "    \"Does a connection exist from {node_type1} {node1} to {node_type2} {node2} in the {graph} of this {lang} program?\",\n",
    "    \"In the {graph} of this {lang} program, do we have an arrow leading from {node_type1} {node1} to {node_type2} {node2}?\",\n",
    "    \"Is it true that {node_type1} {node1} is a predecessor of {node_type2} {node2} in the {graph} of this {lang} program?\",\n",
    "]\n",
    "answers1 = [\n",
    "    \"Yes, that is the case.\",\n",
    "    \"Yes, there is {edge_or_link} from {node_type1} {node1} to {node_type2} {node2}.\",\n",
    "    \"Yes, there is {edge_or_link} from {node_type1} {node1} to {node_type2} {node2} in the {graph} of this code.\",\n",
    "    \"Yes, there is {edge_or_link} pointing from {node_type1} {node1} to {node_type2} {node2} in the {graph}.\",\n",
    "    \"Affirmative, there exists {edge_or_link} from {node_type1} {node1} to {node_type2} {node2}.\",\n",
    "    \"Yes, that is the case. {node1} is directly connected to {node2}.\",\n",
    "]\n",
    "answers2 = [\n",
    "    \"No, that is not the case.\",\n",
    "    \"No, {node_type1} {node1} is not linked to {node_type2} {node2} by any edge in the {graph} of the given code.\",\n",
    "    \"No, there is no {edge_or_link} from {node_type1} {node1} to {node_type2} {node2}.\",\n",
    "    \"No, such {edge_or_link} is absent from the {graph}.\",\n",
    "    \"The code does not show {node_type1} {node1} as a predecessor to {node_type2} {node2} in the {graph}.\",\n",
    "]\n",
    "\n",
    "print(len(questions), len(set(questions)))\n",
    "print(len(answers1), len(set(answers1)))\n",
    "print(len(answers2), len(set(answers2)))\n",
    "assert all(a.count('{graph}') == 1 for a in questions)\n",
    "assert all(a.count('{lang}') == 1 for a in questions)\n",
    "\n",
    "bots = [a for a in answers1]\n",
    "bots_none = [a for a in answers2]\n",
    "prompts = [[q, b] for q in questions for b in bots]\n",
    "print(len(prompts))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "set_seed(3)\n",
    "results = {}\n",
    "for lang in ['Java', 'Python']:\n",
    "    for graph in ['DFG', 'AST']:\n",
    "        result = []\n",
    "        df = pd.read_json(f\"{in_dir}/{lang}_{graph}.jsonl\", lines=True)\n",
    "        if lang == 'Python':\n",
    "            df = filter_df(df)\n",
    "        \n",
    "        question, bot = [], []\n",
    "        for i in range(len(df)):\n",
    "\n",
    "            # filter out nodes that occur multiple times in the source code\n",
    "            node_texts = df.loc[i]['text']\n",
    "            node_ids = df.loc[i]['node_ids']\n",
    "            source = df.loc[i]['source']\n",
    "            edge_index = df.loc[i]['edge_index']\n",
    "\n",
    "            occurrences = np.array([source.count(t) for t in node_texts])\n",
    "            nodes_single_occurrence = np.where(occurrences == 1)[0]\n",
    "            edge_index_elligible = [e for e in edge_index if (e[0] in nodes_single_occurrence and e[1] in nodes_single_occurrence)]\n",
    "            if graph == 'AST' and random.random() > 0.1:\n",
    "                edge_index_elligible = [e for e in edge_index_elligible if (node_texts[e[1]] not in node_texts[e[0]])]\n",
    "            \n",
    "            # we make sure at least half the problems have positive answer\n",
    "            if random.random() < 0.75 and len(edge_index_elligible) > 0:\n",
    "                n1, n2 = random.sample(edge_index_elligible, 1)[0]\n",
    "            else:\n",
    "                n1, n2 = np.random.choice(nodes_single_occurrence, 2)\n",
    "            \n",
    "            n1_text, n2_text = node_texts[n1], node_texts[n2]\n",
    "            n1_type, n2_type = NODE_TYPES[node_ids[n1]], NODE_TYPES[node_ids[n2]]\n",
    "\n",
    "            p = random.sample(prompts, 1)[0] + random.sample(bots_none, 1)\n",
    "            p = [s.replace('{graph}', f\"{graph_type_map[graph]}\").replace('{lang}', f\"{lang}\") for s in p]\n",
    "            edge_or_link = 'an edge' if random.random() < 0.5 else 'a link'\n",
    "            p = [s.replace('{edge_or_link}', edge_or_link) for s in p[:-1]] + [p[-1].replace('such {edge_or_link}', f\"such {edge_or_link}\").replace('{edge_or_link}', edge_or_link.split()[-1])]\n",
    "            \n",
    "            q, b = '', ''\n",
    "            b = p[1] if [n1, n2] in edge_index else p[2]\n",
    "            b = b.replace('{node_type1}', n1_type).replace('{node_type2}', n2_type)\n",
    "\n",
    "            if '\\n' in n1_text:\n",
    "                n1_text = f\"\\n```\\n{n1_text}\\n```\\n\"\n",
    "                q = replace_place_holder(p[0].replace('{node_type1}', n1_type).replace('{node_type2}', n2_type), n1_text, \"{node1}\")\n",
    "                b = replace_place_holder(b, n1_text, \"{node1}\")\n",
    "            else:\n",
    "                n1_text = f\"`{n1_text}`\"\n",
    "                q = p[0].replace('{node_type1}', n1_type).replace('{node_type2}', n2_type).replace('{node1}', n1_text)\n",
    "                b = b.replace('{node1}', n1_text)\n",
    "            \n",
    "            if '\\n' in n2_text:\n",
    "                n2_text = f\"\\n```\\n{n2_text}\\n```\\n\"\n",
    "                q = replace_place_holder(q, n2_text, \"{node2}\")\n",
    "                b = replace_place_holder(b, n2_text, \"{node2}\")\n",
    "            else:\n",
    "                n2_text = f\"`{n2_text}`\"\n",
    "                q = q.replace('{node2}', n2_text)\n",
    "                b = b.replace('{node2}', n2_text)\n",
    "            \n",
    "            source = source.strip('\\n')\n",
    "            q = f\"```\\n{source}\\n```\\n\\n{q}\"\n",
    "            question.append(q)\n",
    "            bot.append(b)\n",
    "            result.append(int([n1, n2] in edge_index))\n",
    "\n",
    "        df['question'] = question\n",
    "        df['bot'] = bot\n",
    "        df = df.drop(columns={'text', 'source', 'node_ids', 'edge_index'})\n",
    "        df.to_json(f\"{out_dir}/Edge_Prediction_{lang}_{graph}.jsonl\", orient='records', lines=True)\n",
    "        results[f\"{lang}-{graph}\"] = result"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "py39",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.17"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}