content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import torch
def sign(input, *args, **kwargs):
"""
Returns a tree of new tensors with the signs of the elements of input.
Examples::
>>> import torch
>>> import treetensor.torch as ttorch
>>> ttorch.sign(ttorch.tensor([12, 0, -3]))
tensor([ 1, 0, -1])
>>> ttorch.sign(ttorch.tensor({
... 'a': [12, 0, -3],
... 'b': {'x': [[-3, 1], [0, -2]]},
... }))
<Tensor 0x7f1c81d02d30>
βββ a --> tensor([ 1, 0, -1])
βββ b --> <Tensor 0x7f1c81d02a60>
βββ x --> tensor([[-1, 1],
[ 0, -1]])
"""
return torch.sign(input, *args, **kwargs) | 768b4a6a4d12d4f7de5854c060fe1d7a494e8e6a | 21,396 |
def _get_included_folds(folds, holdout_index = None):
"""
Returns a list that contains the holds to include whe joining.
If a holdout index is specified, it will not be included.
:param folds: the folds to join
:param holdout_index: an index to holdout
:return: the folds to use when joining
"""
return [folds[index] for index in range(len(folds)) if index != holdout_index] | f6715734620d3acbb43fc1146b84d312199ad741 | 21,398 |
def determine_colors(percentage):
"""
Determine the color of the duplicated section.
The color depends on the amount of code duplication.
"""
colors = []
if 3 >= percentage > 0:
colors.append("rgb(121, 185, 79)")
elif 5 >= percentage > 3:
colors.append("rgb(255, 204, 5)")
elif 20 >= percentage > 5:
colors.append("rgb(251, 135, 56)")
else:
colors.append("rgb(204, 5, 5)")
colors.append("rgb(121, 185, 79)")
return colors | 3b9aa1071476a34c30fef274fb2a0d86f3eeb687 | 21,399 |
def equal_near(item_1: float, item_2: float, thresold: float = 0.1) -> bool:
"""Is two item close to equl?
Return True is difference less than thresold.
Args:
item_1 (float): First item.
item_2 (float): Second item.
thresold (float, optional): Thresold for compare. Defaults to 0.01.
Returns:
bool: Return True if difference less than thresold.
"""
return abs(1 - (item_1 / item_2)) < thresold | e9d61f1e14d7c09a42444d32da19e0d81be56af2 | 21,403 |
import itertools
def reject(iterable, conditional=None):
"""
Returns the values in list without the elements that the truth test (predicate) passes. The opposite of filter.
params: iterable, conditional
iterable -> list, sequenece, set, dictionary, generator etc
conditional -> a lambda or function that takes one or two inputs, first is element from iterable, second is index (optional)
Examples:
>>> odds = _.reject([1, 2, 3, 4, 5, 6], lambda x: x % 2 == 0)
>>> list(odds)
>>> [1,3,5]
"""
return itertools.filterfalse(conditional, iterable) | 02baa409454d20c07e328b669014768fdd971e5c | 21,407 |
def build_msg(request, msg_type, name, drink):
"""Personalize SMS by replacing tags with customer info"""
msg = request.form.get(msg_type)
msg = msg.replace('<firstName>', name)
msg = msg.replace('<productType>', drink)
return msg | 2a22f1b48717d9a874e2397791f734fce483e703 | 21,410 |
def _pascal_case_to_underscore_case(value: str) -> str:
"""
Converts a pascal case string (e.g. MyClass)
into a lower case underscore separated string (e.g. my_class).
"""
result = ""
state = "initial"
partial = ""
for char in value:
if "A" <= char <= "Z":
if state == "initial":
state = "upper"
elif state == "upper":
state = "multi-upper"
else:
if result:
result += "_"
result += partial
partial = ""
state = "upper"
partial += char.lower()
else:
if state == "multi-upper":
if result:
result += "_"
result += partial
partial = ""
partial += char
state = "lower"
if result:
result += "_"
result += partial
return result | 540d4b7525424d3e2f40f52d357fcb6c94b77d52 | 21,416 |
import struct
def read_uint32(fp, pos):
"""Read 4 little-endian bytes into an unsigned 32-bit integer. Return value, position + 4."""
fp.seek(pos)
val = struct.unpack("<I", fp.read(4))[0]
return val, pos + 4 | 2b2f4fa99bc480aae5eb8bc8602f1c11aa775031 | 21,418 |
import collections
def process_types(mrsty_file):
"""Reads UMLS semantic types file MRSTY.2019.RRF.
For details on each column, please check: https://www.ncbi.nlm.nih.gov/books/NBK9685/
"""
cui_to_entity_types = collections.defaultdict(set)
with open(mrsty_file) as rf:
for line in rf:
line = line.strip()
if not line:
continue
# Each line is as such:
# 'C0000005|T116|A1.4.1.2.1.7|Amino Acid, Peptide, or Protein|AT17648347|256|
# CUI|TUI|STN|STY|ATUI|CVF
# Unique identifier of concept|Unique identifier of Semantic Type|Semantic Type tree number|Semantic Type. The valid values are defined in the Semantic Network.|Unique identifier for attribute|Content View Flag
line = line.split("|")
e_id = line[0]
e_type = line[3].strip()
# considering entities with entity types only
if not e_type:
continue
cui_to_entity_types[e_id].add(e_type)
return cui_to_entity_types | b20b26f5015abb2ee5ce718eaa83895d4cb4f5e2 | 21,422 |
def week_of_year(date):
"""
Our weeks starts on Mondays
%W - week number of the current year, starting with the first
Monday as the first day of the first week
:param date: a datetime object
:return: the week of the year
"""
return date.strftime("%W") | 6de546b23e5cc717b3b0fc357da3af6b4fa1305b | 21,425 |
def append_hostname(machine_name, num_list):
"""
Helper method to append the hostname to node numbers.
:param machine_name: The name of the cluster.
:param num_list: The list of nodes to be appended to the cluster name.
:return: A hostlist string with the hostname and node numbers.
"""
hostlist = []
for elem in num_list:
hostlist.append(machine_name + str(elem))
return '%s' % ','.join(map(str, hostlist)) | d2ff25273a21682ec31febc1e63fbc2f562017c3 | 21,430 |
def objsize(obj):
"""
Returns the size of a deeply nested object (dict/list/set).
The size of each leaf (non-dict/list/set) is 1.
"""
assert isinstance(obj, (dict, list, set)), obj
if not obj:
return 0
if isinstance(obj, dict):
obj = obj.values()
elem = next(iter(obj))
if isinstance(elem, (dict, list, set)):
return sum(objsize(v) for v in obj)
else:
return len(obj) | 66c792c4799df530cded59c5a006ae251032a2b9 | 21,433 |
def reduceDictionary(data: dict):
"""
This function reduce a dictionary in the case of one only element dict.
Eg. a = {"key": value} -> value
"""
if len(data) == 1:
return data[list(data.keys())[0]]
else:
return data | 9165a12bf04601d903fb1b6caed120a193279e30 | 21,435 |
from typing import Dict
from typing import Any
def merge_dict(dict1: Dict[str, Any], dict2: Dict[str, Any]
) -> Dict[str, Any]:
"""Merge two dictionaries into a third dictionary.
Args:
dict1: First dictionary to be merged.
dict2: Second dictionary to be merged.
Returns:
A dictionary by merging the two dictionaries. Note that if the two
dictionary has the same keys the value of the latter dictionary will be
used.
"""
res = dict1.copy()
res.update(dict2)
return res | baa64359ab740fcf9689305d091a75fb7c7a0cbc | 21,436 |
def normalise_error_asymptotic(absolute_error: float, scaling_factor: float) -> float:
"""
Given an error in the interval [0, +inf], returns a normalised error in [0, 1]
The normalised error asymptotically approaches 1 as absolute_error -> +inf.
The parameter scaling_factor is used to scale for magnitude.
When absolute_error == scaling_factor, the normalised error is equal to 0.5
"""
if absolute_error < 0:
raise ValueError(f'Error to be normalised must be non-negative '
f': {absolute_error}')
scaled_error = absolute_error / scaling_factor
return scaled_error / (scaled_error + 1) | a3a2a99390acf65b334fc7b2b1d0792c042582fd | 21,439 |
def inverse_clamp(value, liveband):
"""
Ensures value is in (-β, -liveband] βͺ [liveband, β)
liveband must be a positive value
"""
if value > 0:
value = max(value, liveband)
if value < 0:
value = min(value, -liveband)
return value | 07b0b617e1658bf6534b92360087bd0b150ef731 | 21,443 |
import math
def normalize_value(x, exponent_min, exponent_max):
"""
Normalize the input value. Note that this assumes that `allocation: lg2` is used for the color space in
the OpenColorIO configuration.
:param x: Input value
:param exponent_min: Smallest exponent for the input values
:param exponent_max: Largest exponent for the input values
:return: Normalized value
"""
return (math.log2(x) - exponent_min) / abs(exponent_max - exponent_min) | 808f70446a2e450fd7dfe1df480c696ed38163dd | 21,447 |
def first_word(str):
"""
returns the first word in a given text.
"""
text=str.split()
return text[0] | 73f1efc24c6c68e92b2af824358b0656cfbe278b | 21,448 |
import torch
def sinc(x: torch.Tensor):
"""
Implementation of sinc, i.e. sin(x) / x
__Warning__: the input is not multiplied by `pi`!
"""
return torch.where(x == 0, torch.tensor(1., device=x.device, dtype=x.dtype), torch.sin(x) / x) | 2b7fd194a0e5ef8449b88f711312fce9a2d0ba84 | 21,455 |
def collisions(distance_list, distance_cutoff):
"""
Determine if there are any collisions between non-bonded
particles, where a "collision" is defined as a distance shorter than 'distance_cutoff'.
:param distance_list: A list of distances.
:type distance_list: List( `Quantity() <https://docs.openmm.org/development/api-python/generated/simtk.unit.quantity.Quantity.html>`_ )
:param distance_cutoff: The distance below which particles will be considered to have "collisions".
:type distance_cutoff: `Quantity() <https://docs.openmm.org/development/api-python/generated/simtk.unit.quantity.Quantity.html>`_
:returns:
- collision (Logical) - A variable indicating whether or not the model contains particle collisions.
"""
collision = False
if len(distance_list) > 0:
for distance in distance_list:
if distance < distance_cutoff:
collision = True
return collision | cab45e8a2da21b9096656cce7eedce74fdae4d76 | 21,462 |
def _get_comparable_seq(seq_i, seq_j, start_phase, end_phase):
"""
Return the residues of the exon/subexon that can be shared.
It takes into account that first/last residue could be different
if the start/end phase is different from 0 or -1.
>>> _get_comparable_seq("ASMGSLTSSPSSL", "TSMGSLTSSPSSC", 1, 2)
('SMGSLTSSPSS', 'SMGSLTSSPSS')
"""
if start_phase in [1, 2]:
seq_i = seq_i[1:]
seq_j = seq_j[1:]
if end_phase in [1, 2]:
seq_i = seq_i[:-1]
seq_j = seq_j[:-1]
return seq_i, seq_j | 0d309f2c2081e84f7285485577b4edd84aba9635 | 21,463 |
from typing import Dict
def csv_pep_filter(p, **kwargs) -> Dict[str, str]:
"""
CSV PEP filter, that returns Sample object representations
This filter can save the CSVs to files, if kwargs include
`sample_table_path` and/or `subsample_table_path`.
:param peppy.Project p: a Project to run filter on
"""
sample_table_path = kwargs.get("sample_table_path")
subsample_table_path = kwargs.get("subsample_table_path")
sample_table_repr = p.sample_table.to_csv(path_or_buf=sample_table_path)
s = ""
if sample_table_repr is not None:
s += sample_table_repr
if p.subsample_table is not None:
subsample_table_repr = p.subsample_table.to_csv(
path_or_buf=subsample_table_path
)
if subsample_table_repr is not None:
s += subsample_table_repr
return {"samples.csv": s} | 8cadf3f1cf292e6b511bf7d2489ffaa0edf22191 | 21,464 |
import torch
def onehot_labels(labels: torch.Tensor, n_classes: int):
"""Convert loaded labels to one-hot form.
:param labels: tensor of shape (batch_size x n_cells) with integers indicating class
:param n_classes: number of classes
:return: tensor of shape (batch_size x n_cells x n_classes) with one-hot encodings
"""
onehot = torch.zeros((*labels.shape[:2], n_classes), device=labels.device)
onehot.scatter_(-1, labels.unsqueeze(-1), 1.0)
return onehot | 3e27693b62eacf19d1bd996a79e18b82addc91e6 | 21,465 |
def list_encoder_factory(type_callable):
"""
Creates a function encoder that iterates on the elements of a list to apply the specified type_callable format.
:param type_callable: type to apply to data
:return: function that applies type_callable to a supplied list of data
"""
def inner(data):
return [type_callable(x) for x in data]
return inner | 6a892956d94e88e24ad738de6a19e2394aa34842 | 21,470 |
def hex_to_rgb(value):
"""Given a color in hex format, return it in RGB."""
values = value.lstrip('#')
lv = len(values)
rgb = list(int(values[i:i + lv // 3], 16) for i in range(0, lv, lv // 3))
return rgb | 274725a7f6695e190d3590565c935fbe1f6c7676 | 21,471 |
def determine_input_arg(arg_val, default_arg_val):
""" if arg_val exists, use it, else return default_arg_val """
if arg_val:
return arg_val
else:
return default_arg_val | c15500b7869a5b4c5a0c687228c926bfa4568f74 | 21,474 |
def _dict_depth(d):
"""
Get the nesting depth of a dictionary.
For example:
>>> _dict_depth(None)
0
>>> _dict_depth({})
1
>>> _dict_depth({"a": "b"})
1
>>> _dict_depth({"a": {}})
2
>>> _dict_depth({"a": {"b": {}}})
3
Args:
d (dict): dictionary
Returns:
int: depth
"""
try:
return 1 + _dict_depth(next(iter(d.values())))
except AttributeError:
# d doesn't have attribute "values"
return 0
except StopIteration:
# d.values() returns an empty sequence
return 1 | 0c6fd91ed64b25ff023edbfbf210c6b354cd3af8 | 21,478 |
def inherit_function_doc(parent):
"""Inherit a parent instance function's documentation.
Parameters
----------
parent : callable
The parent class from which to inherit the documentation. If the
parent class does not have the function name in its MRO, this will
fail.
Examples
--------
>>> class A(object):
... def do_something(self):
... '''Does something'''
>>>
>>> class B(A):
... @inherit_function_doc(A)
... def do_something(self):
... pass
>>>
>>> print(B().do_something.__doc__)
Does something
"""
def doc_wrapper(method):
func_name = method.__name__
assert (func_name in dir(
parent)), '%s.%s is not a method! Cannot inherit documentation' % (
parent.__name__, func_name)
# Set the documentation. This only ever happens at the time of class
# definition, and not every time the method is called.
method.__doc__ = getattr(parent, func_name).__doc__
# We don't need another wrapper, we can just return the method as its
# own method
return method
return doc_wrapper | 0d22610e66118363fdeda6139eab0a8065e6c354 | 21,481 |
import re
def check_files(files, count_limit, size_limit):
"""
Check if uploaded files are conforming given requirements.
"""
if len(files) == 0:
return False, "No file was uploaded"
elif len(files) > count_limit:
return False, "Limit on amount of files exceeded"
for file in files:
if file.size > size_limit:
return False, "Limit on file size exceeded"
if re.search(r'[^a-zA-Z0-9_\-\.]', file.name):
return False, "File name contains invalid characters"
return True, None | 25ccb7641b9f4b8b3f71f25dbcbf5f73be8de6b0 | 21,484 |
import math
def distance_between_points(p0, p1):
""" Distance between two points (x0, y0), (x1, y1)
Parameters
----------
p0 : tuple
Point 0
p1 : tuple
Point 1
Returns
-------
distance : value
Distance
"""
return math.sqrt((p0[1] - p1[1])**2+(p0[0] - p1[0])**2) | 58ee3b4536c912846704c581fa42065cd1b2f0a1 | 21,487 |
def _stocknames_in_data_columns(names, df):
"""Returns True if at least one element of names was found as a column
label in the dataframe df.
"""
return any((name in label for name in names for label in df.columns)) | 30eee497f7a21755eda7e1915bf84dc800a09abc | 21,488 |
import six
def to_bytes(value, encoding='utf-8'):
"""
Makes sure the value is encoded as a byte string.
:param value: The Python string value to encode.
:param encoding: The encoding to use.
:return: The byte string that was encoded.
"""
if isinstance(value, six.binary_type):
return value
return value.encode(encoding) | c4f0e24d39ee565135326550006a3d5311adbb40 | 21,491 |
import requests
def get_team(team_id, gw):
""" Get the players in a team
Args:
team_id (int): Team id to get the data from
gw (int): GW in which the team is taken
Returns:
(tuple): List of integers, Remaining budget
"""
res = requests.get(
'https://fantasy.premierleague.com/api/entry/' +
f'{team_id}/event/{gw}/picks/').json()
# Scrape GW before FH to get the team from GW prior
if res['active_chip'] == 'freehit':
res = requests.get(
'https://fantasy.premierleague.com/api/entry/' +
f'{team_id}/event/{gw-1}/picks/').json()
# Adjust the player id with fplreview indices
return [i['element'] for i in res['picks']], res['entry_history']['bank'] | 295c46628c14ad64715ee4a06537598878a8ef2e | 21,495 |
def get_indexes(start_index, chunk_size, nth):
"""
Creates indexes from a reference index, a chunk size an nth number
Args:
start_index (int): first position
chunk_size (int): Chunk size
nth (int): The nth number
Returns:
list: First and last position of indexes
"""
start_index = nth * chunk_size
stop_index = chunk_size + nth * chunk_size
return([start_index,stop_index]) | a8dba6fef788b542b502e1e0ce52ce57f2372485 | 21,498 |
def _get_request_wait_time(attempts):
""" Use Fibonacci numbers for determining the time to wait when rate limits
have been encountered.
"""
n = attempts + 3
a, b = 1, 0
for _ in range(n):
a, b = a + b, a
return a | 91e4c165fee5b821e8654468e954786f89ad1e0b | 21,502 |
def GetProblemIndexFromKey(problems, problem_key):
"""Get a problem's index given its key and a problem list.
Args:
problems: Iterable of problems in the current contest.
problem_key: String with the problem key that must be searched.
Returns:
The index of the requested problem in the problem list. If the problem is
not found this method returns None.
"""
# Look at all the problems and return position of the first problem whose
# key matches the looked key.
for i, problem in enumerate(problems):
if problem['key'] == problem_key:
return i
return None | 08e84afe65695c0d0aedb391975b37c7b42f22af | 21,508 |
from typing import List
from pathlib import Path
def get_core_paths(root: str) -> List[str]:
"""Return all the files/directories that are part of core package.
In practice, it just excludes the directories in env module"""
paths = []
for _path in Path(root).iterdir():
if _path.stem == "envs":
for _env_path in _path.iterdir():
if _env_path.is_file():
paths.append(str(_env_path))
else:
paths.append(str(_path))
return paths | 96b9e6391fa8aabbec947a88c4f142b8007eaddc | 21,509 |
import re
def get_symbol_name(module, symbol_id):
"""Return a pretty printed name for the symbol_id if available.
The pretty printed name is created from OpName decorations for the
symbol_id if available, otherwise a numerical ID (e.g. '%23') is
returned.
Names are not unique in SPIR-V, so it is possible that several IDs
have the same name in their OpName decoration. This function will
return that name for the first ID found, and the rest will get a
numerical name."""
if symbol_id in module.id_to_symbol_name:
return module.id_to_symbol_name[symbol_id]
for inst in module.global_instructions.name_insts:
if inst.op_name == 'OpName' and inst.operands[0] == symbol_id:
name = inst.operands[1]
# glslang tend to add type information to function names.
# E.g. "foo(vec4)" get the symbol name "foo(vf4;"
# Truncate such names to fit our IL.
regex = re.compile(r'^[a-zA-Z_][a-zA-Z0-9_]*')
match = regex.match(name)
if match is None:
return '%' + str(symbol_id.value)
new_name = match.group(0)
symbol_name = '%' + new_name
if symbol_name in module.symbol_name_to_id:
# This name is already used for another ID (which is
# possible, as the decorations we are using for symbol
# names are not guaranteed to be unique). Let the first
# ID use this name, and use a numerical name for this ID.
symbol_name = '%' + str(symbol_id.value)
break
else:
symbol_name = '%' + str(symbol_id.value)
module.id_to_symbol_name[symbol_id] = symbol_name
module.symbol_name_to_id[symbol_name] = symbol_id
return symbol_name | b82ec2e06e289a58d1a4dc6ebd858a74a4c07ca6 | 21,510 |
import struct
def unpack_uint32(byte_stream, endian="<"):
"""Return list of uint32s, (either endian) from bytes object.
Unpack a bytes object into list of 32-bit unsigned integers.
Each 4 input bytes decodes to a uint32.
Args:
byte_stream (bytes): length is a multiple of 4
endian (char, optional): "<" means little-endian unpacking, and
">" means big-endian unpacking
Returns:
list: unpacked uint32 numbers
"""
num_uint32 = len(byte_stream) // 4
out_uint32s = struct.unpack(endian + "I" * num_uint32, byte_stream)
return out_uint32s | 87f7bd12607e9be193098a407b51cbc01bdbe3c4 | 21,511 |
def tag_to_rtsip(tag):
"""Convert tag to relation type, sense, id, and part."""
rel_type, rel_sense, rel_id, rel_part = tag.split(":")
return rel_type, rel_sense, int(rel_id), rel_part | 38237836cd16d34a594296c5077eee062600d899 | 21,519 |
def _clean_name(s: str) -> str:
"""
>>> _clean_name("Residual x ")
'residual_x'
"""
return str(s).strip().lower().replace(" ", "_") | 15bce66826a7caa76f4f25810369047de451c276 | 21,520 |
import torch
def sample_points(rays_o, rays_d, near, far, num_samples, perturb=False):
"""
Sample points along the ray
Args:
rays_o (num_rays, 3): ray origins
rays_d (num_rays, 3): ray directions
near (float): near plane
far (float): far plane
num_samples (int): number of points to sample along each ray
perturb (bool): if True, use randomized stratified sampling
Returns:
t_vals (num_rays, num_samples): sampled t values
coords (num_rays, num_samples, 3): coordinate of the sampled points
"""
num_rays = rays_o.shape[0]
t_vals = torch.linspace(near, far, num_samples, device=rays_o.device)
t_vals = t_vals.expand(num_rays, num_samples) # t_vals has shape (num_samples)
# we must broadcast it to (num_rays, num_samples)
if perturb:
rand = torch.rand_like(t_vals) * (far-near)/num_samples
t_vals = t_vals + rand
coords = rays_o.unsqueeze(dim=-2) + t_vals.unsqueeze(dim=-1) * rays_d.unsqueeze(dim=-2)
return t_vals, coords | 28adc68aa8a6d8cf0fd54fa62d23bc2e7a1dc296 | 21,529 |
def html(html_data):
"""
Builds a raw HTML element. Provides a way to directly display some HTML.
Args:
html_data: The HTML to display
Returns:
A dictionary with the metadata specifying that it is to be
rendered directly as HTML
"""
html_el = {
'Type': 'HTML',
'Data': html_data,
}
return html_el | 898100fe5eef22fb7852b5991b1927ac4b3bf8f6 | 21,530 |
def distance_sqr_2d(pt0, pt1):
""" return distance squared between 2d points pt0 and pt1 """
return (pt0[0] - pt1[0])**2 + (pt0[1] - pt1[1])**2 | 23820a4e5f396ddda9bea0a0701c26d416e6567b | 21,532 |
def wlv_datetime(value):
"""Default format for printing datetimes."""
return value.strftime("%d/%m/%Y %H:%M:%S") if value else "" | c8bf50d239c7bad195e65f6036c7bcf522d38feb | 21,533 |
def get_diff_sq(a, b):
"""
Computes squared pairwise differences between a and b.
:param a: tensor a
:param b: tensor b
:return: squared pairwise differences between a and b
"""
aa = a.matmul(a.t())
bb = b.matmul(b.t())
ab = a.matmul(b.t())
diff_sq = -2 * ab + aa.diag().unsqueeze(1) + bb.diag().unsqueeze(0)
return diff_sq | fcaec3db6316c8872c24a89ee56e1b6e6b83787b | 21,535 |
from typing import List
def D0_dd( phi: List[float], s: List[float] ) -> float:
"""
Compute the central difference approximation of the second order derivative of phi along the same dimension, as in [3].
:param phi: List of the 3 upwind-ordered phi values (i.e. [\phi_{i-1}, \phi_i, \phi_{i+1}]).
:param s: List of the 2 distances along the d dimension between the upwind-ordered phi values (i.e. [s_{i-1}, s_{i+1}]).
:return: D^0_{dd}\phi_i.
"""
return 2.0 / sum( s[:2] ) * ( ( phi[2] - phi[1] ) / s[1] - ( phi[1] - phi[0] ) / s[0] ) | 20c012098827e929b08770fe159d87cf29eb15c2 | 21,537 |
def separate_categories(data):
"""
Separate the rows concerning "script-identifiable edits" from those
concerning "other edits".
Also, in each categry, and for each line, calculate the sum of
levenshtein distances across all edits for that line.
Return two separate DataFrames.
"""
# Line 6 should have an entry in both other and script.
data = data.groupby(["category", "line"], axis=0).sum()
other = data.loc["other", :].reset_index()\
.astype(int).sort_values(by=["line"])
script = data.loc["script-identifiable", :]\
.reset_index().astype(int).sort_values(by=["line"])
# print(script.head(), other.head())
return other, script | 6d7b844bd69402fc32c2deb4c0ee3df131fdf6aa | 21,538 |
import math
def calculate_distance(coord1, coord2, box_length=None):
"""
Calculate the distance between two 3D coordinates.
Parameters
----------
coord1, coord2 : list
The atomic coordinates [x, y, z]
box_length : float, optional
The box length. This function assumes box is a cube.
Returns
-------
distance: float
The distance between the two atoms
"""
#Do periodic boundary corrections if given a box_length
if box_length is not None:
#Distance = sqrt(sum of square differences of each dimension)
#initialize the sum of square differences to 0
sum_square_diff = 0
#Iterate through dimensions
for i in range(len(coord1)):
#Find the raw distance between the two coordinates in this dimension
dim_dist_uncorrected = math.fabs(coord1[i] - coord2[i])
#Periodic boundary corrections
#If raw distance is less than half the box_length, no corrections are needed
if dim_dist_uncorrected <= box_length / 2:
dim_dist_corrected = dim_dist_uncorrected
#If raw distance is greater than half the box length and less than one whole box length, correct accordingly
elif (dim_dist_uncorrected > box_length / 2 and dim_dist_uncorrected <= box_length):
dim_dist_corrected = box_length - dim_dist_uncorrected
#If raw distance is greater than one whole box length, correct accordingly
else:
dim_dist_corrected = dim_dist_uncorrected - box_length * round(dim_dist_uncorrected / box_length)
#Add the square difference to the total sum
sum_square_diff += (dim_dist_corrected)**2
#Calculate distance after finding the sum of square differences
distance = math.sqrt(sum_square_diff)
#Otherwise assume no periodic boundaries
else:
sum_square_diff = 0
for i in range(len(coord1)):
sum_square_diff += (coord1[i] - coord2[i])**2
distance = math.sqrt(sum_square_diff)
return distance | 954bdf6dc66ca4edf58b1b96aa63343930e1a604 | 21,539 |
def practice_problem2a(sequence, delta):
"""
What comes in:
-- A sequence of integers, e.g. ([2, 10, 5, -20, 8])
-- A number delta
What goes out:
-- Returns a new list that is the same as the given list,
but with each number in the list having had the given
delta
added to it (see example below)
Side effects: None.
Example:
Given the list [2, 10, 5, -20, 8] and the number 6,
this problem returns [8, 16, 11, -14, 14]
Type hints:
:type sequence: [int]
:type delta: int
"""
####################################################################
# DONE 3. Implement and test this function.
# The testing code is already written for you (above).
####################################################################
# DIFFICULTY AND TIME RATINGS (see top of this file for explanation)
# DIFFICULTY: 5
# TIME ESTIMATE: 5 minutes.
####################################################################
seq = []
for k in range (len(sequence)):
seq = seq + [sequence[k] + delta]
return seq | 31cc3f1272f5563db0f2edcb5c1f5f7052b10751 | 21,542 |
import torch
def compute_tv_norm(values, losstype = "l2"):
"""Returns TV norm for input values.
Source: regnerf/internal/math.py
Args:
values: [batch, H, W, *]. 3 or more dimensional tensor.
losstype: l2 or l1
Returns:
loss: [batch, H-1, W-1, *]
"""
v00 = values[:, :-1, :-1]
v01 = values[:, :-1, 1:]
v10 = values[:, 1:, :-1]
if losstype == "l2":
loss = ((v00 - v01)**2) + ((v00 - v10)**2)
elif losstype == "l1":
loss = torch.abs(v00 - v01) + torch.abs(v00 - v10)
else:
raise ValueError(f"Unsupported TV losstype {losstype}.")
return loss | 34088d342cac0f1d4ee0ec4946f73aec9cc92639 | 21,543 |
import re
def is_sale(word):
"""Test if the line is a record of a sale"""
cattle_clue = r'(bulls?|steers?|strs?|cows?|heifers?|hfrs?|calf|calves|pairs?|hc|sc)'
price_clue = r'[0-9,]+'
has_cattle = any(bool(re.search(cattle_clue, this_word, re.IGNORECASE)) for this_word in word)
has_price = any(bool(re.search(price_clue, this_word)) for this_word in word)
return has_cattle & has_price | f4b53e28b18f7f7fdffeebf8884076224660ae48 | 21,545 |
import re
def word_count(text: str) -> int:
"""
Counts the total words in a string.
Parameters
------------
text: str
The text to count the words of.
Returns
------------
int
The number of words in the text.
"""
list_words = re.split(' |\n|\t', text) #Splits along spaces
list_words = list(filter(str.strip, list_words))
return len(list_words) | 869afd06172c9ffb61430489804cac20706ca245 | 21,551 |
def tobin(i):
"""
Maps a ray index "i" into a bin index.
"""
#return int(log(3*y+1)/log(2))>>1
return int((3*i+1).bit_length()-1)>>1 | a32bf5895071ac111bbd0c76a3fa8b630feb252d | 21,552 |
def get_model_path(model):
"""Return the qualified path to a model class: 'model_logging.models.LogEntry'."""
return '{}.{}'.format(model.__module__, model.__qualname__) | ab6b631aa4fb3acac0355c587f792441ecf25702 | 21,553 |
def get_image_data(image):
"""
Return a mapping of Image-related data given an `image`.
"""
exclude = ["base_location", "extracted_to_location", "layers"]
image_data = {
key: value for key, value in image.to_dict().items() if key not in exclude
}
return image_data | 684cd2a358599b161e2311f88c3e84c016ad2fef | 21,558 |
def proceed() -> bool:
"""
Ask to prooceed with extraction or not
"""
while True:
response = input("::Proocced with extraction ([y]/n)?")
if response in ["Y", "y", ""]:
return True
elif response in ["N", "n"]:
return False
else:
continue | 6d4c93ee7a216d9eb62f565657cf89a2e829dd30 | 21,559 |
def clean_input(text):
"""
Text sanitization function
:param text: User input text
:return: Sanitized text, without non ascii characters
"""
# To keep things simple at the start, let's only keep ASCII characters
return str(text.encode().decode("ascii", errors="ignore")) | 974a24e4d516faac650a9899790b66ebe29fc0a2 | 21,560 |
import requests
def get_player_stats_from_pfr(player_url, year):
"""
Function that returns the HTML content for a particular player
in a given NFL year/season.
:param player_url: URL for the player's Pro Football Reference Page
:param year: Year to access the player's stats for
:return: String containing all content of the player's gamelogs for the given year
"""
get_url = player_url + year
response = requests.get(get_url)
return response.content | d6e4b34de9498dd8dff80bf5e6bd0bdc9f44255b | 21,564 |
def euclidean_rhythm(beats, pulses):
"""Computes Euclidean rhythm of beats/pulses
From: https://kountanis.com/2017/06/13/python-euclidean/
Examples:
euclidean_rhythm(8, 5) -> [1, 0, 1, 0, 1, 0, 1, 1]
euclidean_rhythm(7, 3) -> [1, 0, 0, 1, 0, 1, 0]
Args:
beats (int): Beats of the rhythm
pulses (int): Pulses to distribute. Should be <= beats
Returns:
list: 1s are pulses, zeros rests
"""
if pulses is None or pulses < 0:
pulses = 0
if beats is None or beats < 0:
beats = 0
if pulses > beats:
beats, pulses = pulses, beats
if beats == 0:
return []
rests = beats - pulses
result = [1] * pulses
pivot = 1
interval = 2
while rests > 0:
if pivot > len(result):
pivot = 1
interval += 1
result.insert(pivot, 0)
pivot += interval
rests -= 1
return result | c1ded4891dfc658a4ba1e92db7b736c70f25f4f5 | 21,566 |
import csv
def get_device_name(file_name, sys_obj_id, delimiter=":"):
"""Get device name by its SNMP sysObjectID property from the file map.
:param str file_name:
:param str sys_obj_id:
:param str delimiter:
:rtype: str
"""
try:
with open(file_name) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=delimiter)
for row in csv_reader:
if len(row) >= 2 and row[0] == sys_obj_id:
return row[1]
except OSError:
pass # file does not exist
return sys_obj_id | 3074dffc5274d882bb99c13a0e642b05fd68cb9c | 21,568 |
def get_replaces_to_rule(rules):
"""Invert rules dictionary to list of (replace, rule) tuples."""
replaces = []
for rule, rule_replaces in rules.items():
for replace in rule_replaces:
replaces.append((replace, rule))
return replaces | de3fd8235eb8926682544def49de500412ee3084 | 21,569 |
def query_epo_desc_table(src_table: str):
"""
Return the query generating the aggregate table to compute descriptive statistics on the EPO
full text database
:param src_table: str, table path to EPO full-text database on BigQuery e.g.
'project.dataset.table'
:return: str
"""
query = f"""
WITH
tmp AS (
SELECT
publication_number AS publication_number,
publication_date,
title.text IS NOT NULL AS has_title,
title.LANGUAGE AS title_language,
abstract.text IS NOT NULL AS has_abstract,
abstract.LANGUAGE AS abstract_language,
description.text IS NOT NULL AS has_description,
description.LANGUAGE AS description_language,
claims.text IS NOT NULL AS has_claims,
claims.LANGUAGE AS claims_language,
amendment.text IS NOT NULL AS has_amendment,
amendment.LANGUAGE AS amendment_language,
url.text IS NOT NULL AS has_url,
url.LANGUAGE AS url_language,
FROM
`{src_table}`)
SELECT
family_id AS family_id,
tmp.*
FROM
tmp,
`patents-public-data.patents.publications` AS p
WHERE
tmp.publication_number = p.publication_number
"""
return query | 20f114cc4c54e03261362458140b2f7bc7318ea4 | 21,570 |
def _get_metadata_map_from_client_details(client_call_details):
"""Get metadata key->value map from client_call_details"""
metadata = {metadatum[0]: metadatum[1] for metadatum in (client_call_details.metadata or [])}
return metadata | 1d0b843b41f2777685dad13b9269410033086b02 | 21,571 |
def snake_to_camel_case(name: str, initial: bool = False) -> str:
"""Convert a PEP8 style snake_case name to CamelCase."""
chunks = name.split('_')
converted = [s.capitalize() for s in chunks]
if initial:
return ''.join(converted)
else:
return chunks[0].lower() + ''.join(converted[1:]) | 1669c0a1065da8133771d83ebbc7ed4c393d4a8f | 21,572 |
def filter_default(input_dict, params_default):
"""
Filter input parameters with default params.
:param input_dict: input parameters
:type input_dict : dict
:param params_default: default parameters
:type params_default : dict
:return: modified input_dict as dict
"""
for i in params_default.keys():
if i not in input_dict.keys():
input_dict[i] = params_default[i]
return input_dict | 5cae639c2a18c6db7a858ebe4ce939bf551088c2 | 21,577 |
def is_even(n):
"""Determines whether `n` is even
"""
# even = n % 2 == 0
even = not(n & 1)
return even | cfb0d961bf456fe84b99ba3dd81ec34b2bdd4f2f | 21,579 |
import time
def minutesTillBus(busTimepoint, nowTime = None):
""" given a bus timepoint record from getTimepointDepartures, return the number of minutes until that bus, as a float. nowTime is the current time since unix epoch, but leave it out to just use the system time. """
t = busTimepoint["DepartureTime"]
if nowTime is None: nowTime = time.time()
secondsFromNow = float(t[6:-2].split('-')[0])/1000.0 - nowTime
return secondsFromNow / 60.0 | b26f194fd07160a2e7b2d5a059a6242af636d1fe | 21,580 |
import base64
def read_file_as_b64(image_path):
"""
Encode image file or image from zip archive to base64
Args:
image_path (bytes or str): if from a zip archive, it is an image in
bytes;
if from local directory, it should be a
string specifying the filepath
Returns:
b64_string (str): encoded image file ready to be sent to server
"""
# If input is from zip archive, it will be in bytes
if type(image_path) is bytes:
b64_bytes = base64.b64encode(image_path)
else: # Or it is from a directory
with open(image_path, "rb") as image_file:
b64_bytes = base64.b64encode(image_file.read())
b64_string = str(b64_bytes, encoding='utf-8')
return b64_string | 516200ba2c7a129f236c92dbf7952592f449b6e3 | 21,581 |
from typing import Iterable
import functools
def prod(iterable: Iterable[int]) -> int:
""" Calculates the product of an iterable. In Python 3.8 this can be replaced with a call to math.prod """
return functools.reduce(lambda x, y: x * y, iterable) | 219aec67b87fb1b4b16e6d4e70f8d1deca3a4388 | 21,582 |
def return_int(user_input):
"""Function to check and return an integer from user input"""
try:
user_int = int(user_input)
except ValueError:
print("Oops! Not a valid integer format.")
else:
return user_int | 01dccefb92e3b854029ec6100a11d02bc51af240 | 21,585 |
def get_clusterID(filename):
"""given a file name return the cluster id"""
return filename.split(".")[0] | 43de7ab212d41d4e7c1d40e6dadb988c178db1f4 | 21,586 |
import json
def to_json(value):
"""A filter that outputs Python objects as JSON"""
return json.dumps(value) | 386a27290c2f9e1f0a926143bc7e54e2ca98912b | 21,594 |
def get_mac_addr_from_dbus_path(path):
"""Return the mac addres from a dev_XX_XX_XX_XX_XX_XX dbus path"""
return path.split("/")[-1].replace("dev_", '').replace("_", ":") | a8603f2f7b6202ab9bafe5f911606efd8dc54358 | 21,599 |
import typing
def compute_parent(
tour_edges: typing.List[int],
) -> typing.List[typing.Optional[int]]:
"""Compute parent from Euler-tour-on-edges.
Args:
tour_edges (typing.List[int]): euler tour on edges.
Returns:
typing.List[typing.Optional[int]]:
parent list.
the tour root's parent is None.
Examples:
>>> tour_edges = [0, 1, 4, -5, 2, -3, -2, 3, -4, -1]
>>> compute_parent(tour_edges)
[None, 0, 1, 0, 1]
"""
n = len(tour_edges) >> 1
parent: typing.List[typing.Optional[int]] = [None] * n
st = [tour_edges[0]]
for u in tour_edges[1:]:
if u < 0:
st.pop()
continue
parent[u] = st[-1]
st.append(u)
return parent | 5887a22faf42fae32b81fab902de9490c5dc4b00 | 21,600 |
from typing import Optional
def build_netloc(host: str, port: Optional[int] = None) -> str:
"""Create a netloc that can be passed to `url.parse.urlunsplit` while safely handling ipv6 addresses."""
escaped_host = f"[{host}]" if ":" in host else host
return escaped_host if port is None else f"{escaped_host}:{port}" | 56e44584b2f5e76142c40b639919951772f75aed | 21,602 |
def error404(e):
"""
404 error handler.
"""
return ''.join([
'<html><body>',
'<h1>D20 - Page Not Found</h1>',
'<p>The only endpoint available on this entropy micro-service is <a href="/api/entropy">/api/entropy</a>.</p>',
'<p>For more information including the complete source code, visit <a href="https://github.com/AgalmicVentures/D20">the D20 repository</a>.</p>',
'</body></html>',
]), 404 | 35ab121b88e84295aaf97e2d60209c17acffd84d | 21,607 |
import string
import random
def id_generator(
size=6,
chars=string.ascii_uppercase + string.ascii_lowercase + string.digits
):
""" Creates a unique ID consisting of a given number of characters with
a given set of characters """
return ''.join(random.choice(chars) for _ in range(size)) | 9a6bf02c63e5ad933340be70e95c812683a69dee | 21,609 |
def convert_hubs_to_datastores(hubs, datastores):
"""Get filtered subset of datastores as represented by hubs.
:param hubs: represents a sub set of datastore ids
:param datastores: represents all candidate datastores
:returns: that subset of datastores objects that are also present in hubs
"""
hubIds = [hub.hubId for hub in hubs]
filtered_dss = [ds for ds in datastores if ds.value in hubIds]
return filtered_dss | 14e7231f9c6a1e273c217bf77b8a7d3b3632709c | 21,611 |
def inspect_chain(chain):
"""Return whether a chain is 'GOOD' or 'BAD'."""
next_key = chain.pop('BEGIN')
while True:
try:
next_key = chain.pop(next_key)
if next_key == "END":
break
except KeyError:
return "BAD"
if len(chain) > 0:
return "BAD"
return "GOOD" | 083886aa31fa81cc90d4c7bd30149c5575a5a675 | 21,613 |
def hex(string):
"""
Convert a string to hex.
"""
return string.encode('hex') | 66ff8fe8797c840d5471dbb4693e0ae6ef32fb8e | 21,624 |
import ast
def literal(str_field: str):
"""
converts string of object back to object
example:
$ str_literal('['a','b','c']')
['a', 'b', 'c'] # type is list
"""
return ast.literal_eval(str_field) | 25d23f55e52cdb4727f157a3db13614932bcbec7 | 21,626 |
def tail_logfile(logfile=''):
"""Read n lines of the logfile"""
result = "Can't read logfile: {}".format(logfile)
lines = 40
with open(logfile) as f:
# for line in (f.readlines()[-lines:]):
# print(line)
result = ''.join(f.readlines()[-lines:])
return result | 61a4046d2a7bfb8be907a325253424b2d425b410 | 21,627 |
from typing import Dict
from typing import Any
from typing import Optional
import requests
def request_data(url: str, params: Dict[str, Any]) -> Optional[str]:
"""Request data about energy production from Entsoe API.
Args:
url (str): Entsoe API url.
params (Dict[str, str]): Parameters for the API get requests.
Returns:
Optional[str]: If response status is ok returns xml response as a string.
"""
headers = {
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:83.0) Gecko/20100101 Firefox/83.0'
}
r = requests.get(url, params=params, headers=headers)
if r.status_code == 200:
return r.text
return None | 187d134f3457616d830ec5c78b02a11f880c981e | 21,629 |
def minimum_katcp_version(major, minor=0):
"""Decorator; exclude handler if server's protocol version is too low
Useful for including default handler implementations for KATCP features that
are only present in certain KATCP protocol versions
Examples
--------
>>> class MyDevice(DeviceServer):
... '''This device server will expose ?myreq'''
... PROTOCOL_INFO = katcp.core.ProtocolFlags(5, 1)
...
... @minimum_katcp_version(5, 1)
... def request_myreq(self, req, msg):
... '''A request that should only be present for KATCP >v5.1'''
... # Request handler implementation here.
...
>>> class MyOldDevice(MyDevice):
... '''This device server will not expose ?myreq'''
...
... PROTOCOL_INFO = katcp.core.ProtocolFlags(5, 0)
...
"""
version_tuple = (major, minor)
def decorator(handler):
handler._minimum_katcp_version = version_tuple
return handler
return decorator | bcaefb29af78400cd283895fef0d4fd94f175112 | 21,631 |
def newick_to_json(newick_string, namestring = "id", lengthstring = "branch_length", childrenstring = "children", generate_names=False):
"""Parses a newick string (example "((A,B),C)") into JSON format accepted by NetworkX
Args:
newick_string: The newick string to convert to JSON. Names, branch lengths and named
internal nodes accepted. If no names are given, an ID is generated for the name if generate_names=True.
namestring: The label for node name to use in the JSON (default "id").
lengthstring: The label for branch length to use in the JSON (default "branch_length").
childrenstring: The label for children arrays to use in the JSON (default "children").
generate_names: Whether or not to generate names if none are given
"""
def __split_into_children(children_string):
""" Helper function for splitting a newick string into siblings """
string = children_string
opened = 0
closed = 0
pieces = []
last_stop = 0
for i, s in enumerate(string):
if s == "(":
opened += 1
if s == ")":
closed += 1
if s == "," and opened == closed:
pieces.append(string[last_stop:i])
last_stop = i+1
pieces.append(string[last_stop:])
return(pieces)
newick_string = newick_string.strip(";")
node = dict()
info = newick_string[newick_string.rfind(")")+1:]
info = info.split(":")
name = info[0]
node[namestring] = name
length = ""
if len(info) > 1:
length = info[1]
node[lengthstring] = float(length)
children_string = newick_string[0:newick_string.rfind(")")+1]
if children_string != "":
if children_string[-1] == ")":
children_string = children_string[1:-1]
children_string = __split_into_children(children_string)
child_nodes_JSON = []
for child_string in children_string:
child_JSON = newick_to_json(child_string, namestring, lengthstring, childrenstring, generate_names)
if (not name) and generate_names:
node[namestring] += child_JSON[namestring]
child_nodes_JSON.append(child_JSON)
node[childrenstring] = child_nodes_JSON
return node | b116869f46467390b6dd2463bf2b982f01a95a13 | 21,633 |
def __str2key(_):
"""Make string a valid jinja2 template key e.g. dictionary.key
Ref: https://jinja.palletsprojects.com/en/3.0.x/templates/#variables
"""
return _.replace('.', '') | 7980e8d38576211f9bd02bcedd817c5d0087e415 | 21,635 |
import re
def compile_re(pattern):
""" Compile a regular expression with pattern
Args:
pattern (str): a string representing the pattern
e.g. "NoviPRD-.*" means strings that start with "NoviPRD-"
e.g. ".*\.csv" means strings that end with ".csv"
e.g. ".*xxx.*" means strings that contain "xxx" in the middle
Returns:
regular expression object
"""
return re.compile(pattern) | f5fa043b9472bf19e350c880bbaf6200739234f5 | 21,636 |
import warnings
def check_args(parsed_args):
""" Function to check for inherent contradictions within parsed arguments.
For example, batch_size < num_gpus
Intended to raise errors prior to backend initialisation.
Args
parsed_args: parser.parse_args()
Returns
parsed_args
"""
if 'resnet' not in parsed_args.backbone:
warnings.warn('Using experimental backbone {}. Only resnet50 has been properly tested.'.format(parsed_args.backbone))
return parsed_args | 160f4bacc40d6187191c6b8ec18e0bc214856d4d | 21,640 |
def email_associated(env, email):
"""Returns whether an authenticated user account with that email address
exists.
"""
for row in env.db_query("""
SELECT value FROM session_attribute
WHERE authenticated=1 AND name='email' AND value=%s
""", (email,)):
return True
return False | 4f5ff9954cf7a73eca17529f74f3004835c6a07d | 21,641 |
def _ListOpToList(listOp):
"""Apply listOp to an empty list, yielding a list."""
return listOp.ApplyOperations([]) if listOp else [] | 1c6aefacdbadc604a2566b85483894d98d116856 | 21,644 |
def calc_rectangle_bbox(points, img_h, img_w):
"""
calculate bbox from a rectangle.
Parameters
----------
points : list
a list of two points. E.g. `[[x1, y1], [x2, y2]]`
img_h : int
maximal image height
img_w : int
maximal image width
Returns
-------
dict
corresponding bbox. I.e. `{ 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax }`
"""
lt, rb = points
xmin, ymin = lt
xmax, ymax = rb
xmin = min(max(0, xmin), img_w)
xmax = min(max(0, xmax), img_w)
ymin = min(max(0, ymin), img_h)
ymax = min(max(0, ymax), img_h)
return { 'xmin':xmin, 'ymin':ymin, 'xmax':xmax, 'ymax':ymax } | 45be9537c80d54e26a54dc4a04ece3759d988feb | 21,646 |
def __en_omelete(soup):
"""
Helper function to get Omelete News
:param soup: the BeautifulSoup object
:return: a list with the most read news from a given Omelete Page
"""
news = []
anchors = soup.find('aside', class_='c-ranking c-ranking--read').find_all('a')
for a in anchors:
link = 'http://www.omelete.com.br' + a['href']
title = a.find('div', class_='c-ranking__text').string
news.append(dict(title=title, link=link))
return news | 3c18168ca3f4656182e09c5dbde98ce1665b425d | 21,647 |
def trailing_zeros(n):
"""Count trailing zero bits in an integer."""
if n & 1: return 0
if not n: return 0
if n < 0: n = -n
t = 0
while not n & 0xffffffffffffffff: n >>= 64; t += 64
while not n & 0xff: n >>= 8; t += 8
while not n & 1: n >>= 1; t += 1
return t | dd25d3f855500ae4853130c3b84601c51b64d9f0 | 21,651 |
def extract_node_attribute(graph, name, default=None):
"""
Extract attributes of a networx graph nodes to a dict.
:param graph: target graph
:param name: name of the attribute
:param default: default value (used if node doesn't have the specified attribute)
:return: a dict of attributes in form of { node_name : attribute }
"""
return { i : d.get(name, default) for i, d in graph.nodes(data=True) } | 5ec1b7124ecbe048107d4d571c18fe66436d0c7b | 21,653 |
import struct
def Rf4ceMakeFCS(data):
"""
Returns a CRC that is the FCS for the frame (CRC-CCITT Kermit 16bit on the data given)
Implemented using pseudocode from: June 1986, Kermit Protocol Manual
https://www.kermitproject.org/kproto.pdf
"""
crc = 0
for i in range(0, len(data)):
c = ord(data[i])
q = (crc ^ c) & 15 #Do low-order 4 bits
crc = (crc // 16) ^ (q * 4225)
q = (crc ^ (c // 16)) & 15 #And high 4 bits
crc = (crc // 16) ^ (q * 4225)
return struct.pack('<H', crc) | 81add4f980ded4e26b78252257933a191be8721c | 21,654 |
def _best_streak(year_of_commits):
"""
Return our longest streak in days, given a yeare of commits.
"""
best = 0
streak = 0
for commits in year_of_commits:
if commits > 0:
streak += 1
if streak > best:
best = streak
else:
streak = 0
return best | 3d0f042dc9565d5ef7002b6729550a76d01d3b00 | 21,655 |
def labels_to_clusters(X, labels):
"""Utility function for converting labels to clusters.
Args:
X (ndarray[m, n]): input dataset
labels (ndarray[m]): labels of each point
Returns:
clusters (list, ndarray[i, n]): list of clusters (i denotes the size of each cluster)
"""
return [X[labels==i] for i in range(labels.max() + 1)] | d3e316f8563d0e8c4853754bddb294b51462d724 | 21,661 |
import requests
def get_page(url):
"""
Get a single page of results.
"""
response = requests.get(url)
data = response.json()
return data | d7d31ea8abbaa13523f33aa9eb39fca903d5cb21 | 21,662 |
def lst_to_ans(ans_lst):
"""
:param ans_lst: list[str], contains correct guesses the user entered and undeciphered character.
:return: str, turns the list into string.
"""
ans = ''
for i in range(len(ans_lst)):
ans += ans_lst[i]
return ans | b1f0c196a53dc88e76967481d573bdff591597b9 | 21,665 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.