File size: 7,374 Bytes
c4d7a2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import os
import random
import numpy as np
import pandas as pd
from PIL import Image
from torchvision import datasets, transforms, io
def get_random_occluder(dataset_occluder):
index = random.randint(0, len(dataset_occluder) - 1)
texture_path, texture_class_index = dataset_occluder.imgs[index]
texture_class = dataset_occluder.classes[texture_class_index]
# load with the alpha channel
texture = io.read_image(texture_path, mode=io.image.ImageReadMode.RGB_ALPHA)
return texture, texture_class
def resize_occluder(occluder_pil, target_area):
alpha = np.array(occluder_pil.getchannel('A'))
non_transparent_area = np.count_nonzero(alpha > 0)
area_scale_factor = target_area / non_transparent_area
width_scale_factor = np.sqrt(area_scale_factor * (occluder_pil.width / occluder_pil.height))
height_scale_factor = np.sqrt(area_scale_factor * (occluder_pil.height / occluder_pil.width))
new_width = occluder_pil.width * width_scale_factor
new_height = occluder_pil.height * height_scale_factor
resized_occluder = occluder_pil.resize((int(new_width), int(new_height)), Image.LANCZOS)
return resized_occluder
def randomly_rotate_occluder(occluder_pil):
angle = random.uniform(-180, 180)
return occluder_pil.rotate(angle, resample=Image.BICUBIC, expand=True)
def calculate_distance(point1, point2):
x1, y1 = point1
x2, y2 = point2
return ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5
def try_rotations(occluder_pil, image_pil, target_area, pos1=None):
best_occluder = None
best_area = 0
best_pos = None
min_distance = 130 # min distance if two occluders
for _ in range(75): # increase number of attempts to find better position
rotated = randomly_rotate_occluder(occluder_pil)
resized = resize_occluder(rotated, target_area)
if resized.width > image_pil.width or resized.height > image_pil.height:
pos = (image_pil.width // 2 - resized.width // 2,
image_pil.height // 2 - resized.height // 2)
else:
max_x = max(0, image_pil.width - resized.width)
max_y = max(0, image_pil.height - resized.height)
pos = (random.randint(0, max_x), random.randint(0, max_y))
if pos1 is not None and calculate_distance(pos1, pos) < min_distance:
continue
mask = Image.new('1', image_pil.size)
mask.paste(resized.getchannel('A'), pos, resized.getchannel('A'))
area = np.count_nonzero(np.array(mask))
if area > best_area:
best_area = area
best_occluder = resized
best_pos = pos
return best_occluder, best_pos
def occlude_image(image, occluder_tensor, percentage_occlusion, occluded_dir, img_name):
occluder_pil = transforms.ToPILImage(mode='RGBA')(occluder_tensor)
image_pil = transforms.ToPILImage()(image)
binary_mask = Image.new('1', image_pil.size)
rn = random.random()
if rn < 0.5: # randomly use two occluders
occluder_resizing_factor = 0.5
else:
occluder_resizing_factor = 1.0
target_area = image_pil.width * image_pil.height * percentage_occlusion * occluder_resizing_factor
if rn < 0.5: # randomly use two occluders (can make this k occluders)
occluder_pil1, pos1 = try_rotations(occluder_pil, image_pil, target_area / 2)
image_pil.paste(occluder_pil1, pos1, occluder_pil1)
occluder_alpha1 = occluder_pil1.getchannel('A')
binary_mask.paste(occluder_alpha1, pos1, occluder_alpha1)
occluder_pil2, pos2 = try_rotations(occluder_pil, image_pil, target_area / 2, pos1)
if occluder_pil2 is not None and pos2 is not None:
image_pil.paste(occluder_pil2, pos2, occluder_pil2)
occluder_alpha2 = occluder_pil2.getchannel('A')
binary_mask.paste(occluder_alpha2, pos2, occluder_alpha2)
if pos2 is None:
pos = [pos1]
else:
pos = [pos1, pos2]
else:
occluder_pil, pos = try_rotations(occluder_pil, image_pil, target_area)
image_pil.paste(occluder_pil, pos, occluder_pil)
occluder_alpha = occluder_pil.getchannel('A')
binary_mask.paste(occluder_alpha, pos, occluder_alpha)
pos = [pos]
image_with_occluder_tensor = transforms.ToTensor()(image_pil)
mask_array = np.array(binary_mask)
mask_path = os.path.join(occluded_dir, f"{img_name}_mask.npy")
np.save(mask_path, mask_array)
return image_with_occluder_tensor, mask_path, pos
def rebuild_display_mask(image_path, mask_path):
image_pil = Image.open(image_path)
binary_mask = Image.new('1', image_pil.size)
mask_array = np.load(mask_path)
mask_indices = np.transpose(np.nonzero(mask_array))
for i, j in mask_indices:
binary_mask.putpixel((j, i), 1)
binary_mask.show()
def build_dataset(data_path, transform):
dataset = datasets.ImageFolder(data_path, transform=transform)
nb_classes = len(dataset.classes)
return dataset, nb_classes
def build_transform():
t = []
t.append(transforms.ToTensor())
return transforms.Compose(t)
def main():
data_dir = 'imagenet'
texture_dir = 'occluders_segmented'
occluded_data_dir = 'imagenet_occluded'
transform = build_transform()
dataset, nb_classes = build_dataset(data_dir, transform)
dataset_occluder, _ = build_dataset(texture_dir, transform)
percentage_occlusion = 0.3 # ~30%
occlusion_info = pd.DataFrame(columns=["image_name", "class_name", "occluder_class",
"percentage_occlusion", "mask", "pos"])
count = 0
for idx in range(len(dataset)):
image, label = dataset[idx]
category = dataset.classes[label]
in_dir = os.path.join(data_dir, category)
occluded_dir = os.path.join(occluded_data_dir, category)
os.makedirs(occluded_dir, exist_ok=True)
img_name = dataset.imgs[idx][0].split('/')[-1].split('.')[0]
occluder_tensor, occluder_class = get_random_occluder(dataset_occluder)
occluded_image, mask_path, pos = occlude_image(image, occluder_tensor,
percentage_occlusion,
occluded_dir,
img_name)
mask_array = np.load(mask_path)
actual_percentage_occlusion = np.count_nonzero(mask_array) / (image.shape[1] * image.shape[2])
occluded_image_path = os.path.join(occluded_dir, f"{img_name}_occluded.png")
transforms.ToPILImage()(occluded_image).save(occluded_image_path)
new_row = pd.DataFrame({
"image_name": [f"{img_name}_occluded.png"],
"class_name": [category],
"occluder_class": [occluder_class],
"percentage_occlusion": [actual_percentage_occlusion],
"mask": [mask_path],
"pos": [pos]
})
occlusion_info = pd.concat([occlusion_info, new_row], ignore_index=True)
if count % 50 == 0:
print("Folder: {}/1000 ({})".format(count / 50, category))
count+=1
occlusion_info.to_csv(os.path.join(occluded_data_dir, "occlusion_info.csv"), index=False)
if __name__ == "__main__":
main() |